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Abstract: A graph is even (resp. odd) if all its vertex degrees are even (resp. odd). We consider edge
coverings by prescribed number of even and/or odd subgraphs. In view of the 8-Flow Theorem,
a graph admits a covering by three even subgraphs if and only if it is bridgeless. Coverability by
three odd subgraphs has been characterized recently [Petruševski, M.; Škrekovski, R. Coverability
of graph by three odd subgraphs. J. Graph Theory 2019, 92, 304–321]. It is not hard to argue that
every acyclic graph can be decomposed into two odd subgraphs, which implies that every graph
admits a decomposition into two odd subgraphs and one even subgraph. Here, we prove that every
3-edge-connected graph is coverable by two even subgraphs and one odd subgraph. The result is
sharp in terms of edge-connectivity. We also discuss coverability by more than three parity regular
subgraphs, and prove that it can be efficiently decided whether a given instance of such covering
exists. Moreover, we deduce here a polynomial time algorithm which determines whether a given
set of edges extends to an odd subgraph. Finally, we share some thoughts on coverability by two
subgraphs and conclude with two conjectures.

Keywords: covering; even subgraph; odd subgraph; T-join; spanning tree

1. Introduction and Preliminaries

We consider only undirected and finite graphs. Loops and/or parallel edges are
allowed. Throughout, we use standard graph notation and terminology from [1]. There
are only two types of graphs that are ‘parity regular’, that is, having all of their vertex
degrees with the same parity. These are called ‘even graphs’ and ‘odd graphs’, where
a graph is said to be even (or odd, respectively) if each of its vertex degrees is even (or
odd, respectively). A covering (also called a cover) of given graph G is a family F of
(not necessarily edge-disjoint) subgraphs of G, such that ⋃F∈F E(F) = E(G); in the more
restrictive case of edge-disjointness, F is said to be a decomposition. A fundamental process
in mathematics is that of partitioning (resp. covering) a set of objects into (resp. by) classes
according to certain rules. Graph theory deals with a situation where the rules translate
to ‘simpler’ subgraphs. In this article we prove several results about graph coverings
comprised of parity regular subgraphs.

Let G = (V, E) be a graph. For an orientation D of E(G), the resulting digraph is
denoted D(G), and for each vertex v ∈ V(G), E+(v) and E−(v) denote the sets of arcs in
D(G) having their tails and heads, respectively, at v. An integer-valued mapping f with
domain E(G) makes the ordered pair (D, f ) an integer flow of G if the equation

∑
e∈E+(v)

f (e) = ∑
e∈E−(v)

f (e)

holds for each vertex v ∈ V(G). The support of f is the set supp( f ) = {e ∈ E(G) ∶ f (e) ≠ 0},
and if supp( f ) = E(G) then the integer flow (D, f ) is said to be nowhere-zero. Given an
integer k, (D, f ) is called a k-flow if ∣ f (e)∣ < k for each edge e ∈ E(G).
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The study of nowhere-zero flows was initiated by Tutte [2]. He demonstrated that
nowhere-zero k-flows are dual to proper k-colorings in planar graphs. Three famous con-
jectures of his, known as the 5-flow, 4-flow, and 3-flow conjectures, extend various coloring
theorems concerning planar graphs to arbitrary graphs. These conjectures still serve as the
driving motivation for the subject of nowhere-zero flows, and, despite considerable effort,
all three remain open. The reader eager to learn more about the topic should consult [3,4].

An old result of Matthews [5] states a connection between nowhere-zero flows in
graphs and coverings by even subgraphs. Namely, in view of the basic result on product of
flows, the obvious correspondence between the supports of 2-flows of graph and its even
subgraphs, gives:

Theorem 1 (Matthews, 1978). A graph admits a covering by k even subgraphs, if and only if, it
has a nowhere-zero 2k-flow.

Since Jaeger-Kilpatrick’s 8-Flow Theorem (c.f. [6–9]) asserts that every bridgeless
graph admits a nowhere-zero 8-flow, Theorem 1 (see also [10]) implies the following:

Theorem 2. A graph can be covered by three even subgraphs if and only if it is bridgeless.

A result which serves as a parity counterpart to Theorem 2, that is, a characterization of
graphs in terms of coverability by three odd subgraphs, has been recently obtained in [11]
through the following. Noting that apart from ‘isolated loops’ (vertices incident only to
loops) other presence of loops has no influence on the coverability by three odd subgraphs,
the proper framework for this particular coverability issue is the class of loopless graphs.

Theorem 3. A connected loopless graph G admits a covering by three odd subgraphs if and only if
it cannot be obtained from a graph depicted in Figure 1 by a (possibly void) sequence of additions of
two parallel edges to a pair of adjacent vertices.

Figure 1. Four graphs G1, G2, G3, G4 such that each Gi is uncoverable by less than m(Gi) odd subgraphs.

Motivated by the above two results, in this article we consider coverability by a com-
bination of even and odd subgraphs (alternatively called ‘parts’). In Section 3, keeping
three as the total number of available parity regular subgraphs, we consider coverability by
one even subgraph and two odd subgraphs, and then coverability by two even subgraphs
and one odd subgraph. With regard to the former covering notion, we prove that such a
decomposition always exists (compare with Proposition 3). Concerning the latter covering
notion, we show that every 3-edge-connected graph admits a covering by two even and
one odd subgraphs. The principal method of proof is the use of T-joins, a graph theoretic
concept defined below. This result is tight in terms of edge-connectivity, as we also demon-
strate the existence of infinitely many 2-edge-connected graphs which are uncoverable in
that sense (compare with Theorem 5). Afterwards, in Section 4, we discuss coverability by
more than three (parity regular) parts, and prove that it can be efficiently decided whether
any given instance of such a covering exists (compare with Theorem 6 and Corollary 2).
Finally, Section 5 contains some of our thoughts on coverability by two parts.

Our work here can be seen as bridging two seemingly unrelated concepts, namely
coverings by odd subgraphs and flows. Although the contribution of this paper is purely
theoretical in that sense, graph theory also provides key tools for disciplines in which there
is a connectedness of elements or components that seem to be related in a system-type.
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For example, families of graphs, and their subgraphs with suitable properties, are used
to construct proof of fixed point results. An additional motivation to carry out this study
comes from the emerging field of signal processing on graphs, which extends classical
discrete signal processing to signals with graphs as underlying structure.

All proofs are postponed for the upcoming sections. We conclude the present section
by introducing some general terminology and notation that are used throughout the paper.

The graph parameters n(G) = ∣V(G)∣ and m(G) = ∣E(G)∣ are called order and size of G,
respectively; a graph of order 1 (resp. size 0) is said to be trivial (resp. empty). For any vertex
v ∈ V(G), the set of edges incident with v is denoted by EG(v). A vertex v having degree
dG(v) (being the number of incident edges with every loop being counted twice) equal to k
is a k-vertex of G; whenever k equals 0 (resp. 1), v is said to be isolated (resp. pendant). If
dG(v) is even (resp. odd) we speak of an even (resp. odd) vertex of G. The collections of even
vertices of G and of odd vertices of G are respectively denoted EvenV(G) and OddV(G).
From the degree-sum formula ∑v∈V(G) dG(v) = 2m(G) it follows that the set OddV(G) is
even-sized. This well-known fact is referred to as the handshaking lemma. Given a subset
T of V(G), a spanning subgraph H is a T-join of G if OddV(H) = T. In other words, the
requirement is that dH(v) is odd for all v ∈ T and even (possibly zero) for all v ∈ V(G)∖ T.

While considering coverings, each subgraph H is often identified with its edge set
E(H), and for notational simplicity we abbreviate the latter to H. Likewise, we won’t make
distinction between a spanning tree F and its edge set of F. The complement E(G)/H of a
subgraph H (seen as subset of E(G)) is the edge-complement of H, denoted H, the role of G
being implicit here. The edge-complement F of a spanning tree F of G is a cotree in G.

For a subset X ⊆ V(G)∪ E(G), G[X] denotes the subgraph of G induced on X. Simi-
larly, G −X is the subgraph obtained from G by removing X; G − {x} is usually abbreviated
to G − x. A vertex v is a cut vertex of G if the (deleted) subgraph G − v has more (connected)
components than G. Likewise, an edge e ∈ E(G) is a cut edge (or bridge) of G if G − e has
more components than G. The connectivity (resp. edge-connectivity) of a graph G, written
κ(G) (resp. κ′(G)), is the minimum size of a subset S ⊆ V(G) (resp. S ⊆ E(G)) such that
G − S is disconnected or of order 1 (resp. size 0); graph G is said to be k-connected (resp.
k-edge-connected) if κ(G) ≥ k (resp. κ′(G) ≥ k).

For X ⊆ V(G), the set of edges from G with one end-vertex in X and the other in X
form the edge cut associated to X, denoted ∂G(X). Thus, a cut edge is simply an edge cut of
size 1. Depending on the parity of the size ∣∂G(X)∣, we speak of an odd edge cut or an even
edge cut of G.

A block graph is a connected graph having no cut vertex. For a graph G, each maximal
block subgraph is called a block of G. Given a block B, any v ∈ V(B) which is not a cut
vertex of G is an internal vertex of B (and of G). The internal vertices of B comprise the
interior of B in respect to G, IntG(B). If at most one cut vertex of G is contained in V(B),
then B is an end-block of G. The block forest of a graph G is an acyclic bipartite graph B(G)

having bipartition (B,C), where B and C are, respectively, the set of blocks of G and the
set of cut vertices of G, such that the block B and the cut vertex v are adjacent in B(G) if
and only if v ∈ V(B). If G is connected then B(G) is a tree, termed the block tree of G. The
end-blocks of G correspond to the leaves of B(G). Tarjan [12] showed that the block tree of
a connected graph can be obtained efficiently by means of depth-first search.

A partition of a set X is a collection of arbitrary nonempty subsets of X that are pairwise
disjoint and contain each element of X. Given a partition P = {V1, V2, . . . , Vk} of V(G),
G/P denotes the graph obtained from G by shrinking each set Vi, 1 ≤ i ≤ k, that is, by first
deleting all edges whose end-vertices lie in the same partition set, and then identifying the
vertices of each Vi.

For two vertex-disjoint graphs G and H, take their disjoint union G ⊍ H and add edges
joining every vertex of G to every vertex of H; the obtained graph G ∨ H is the join of G
and H.
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2. Mathematical Background

We shall use the following classical result about T-joins (see [13]) in order to derive
two useful results regarding containment within parity regular subgraphs.

Lemma 1. Let G be a connected graph, and let T be a subset of V(G). Then a T-join of G exists, if
and only if, T is even-sized. In the affirmative case, a T-join of G can be found efficiently. Moreover,
if G is a tree, then the T-join is unique.

In both upcoming propositions we consider a connected spanning subgraph H of a
(connected) graph G and discuss the containment of its edge-complement H = G − E(H)

into an even (resp. odd) subgraph of G. The proofs are straightforward applications of
Lemma 1 for a suitable choice of T.

Proposition 1. Let G be a connected graph, and let H be a connected spanning subgraph of G.
Then the edge-complement H is contained in an even subgraph K of G. Moreover, if H is a spanning
tree of G, then K is unique.

Proof. Let us set T = OddV(H). Consider a subgraph K of G that contains H. Clearly, K is
even if and only if the spanning subgraph of G with edge set K ∩ H is a T-join of H. Now
the assertion follows from Lemma 1.

Proposition 2. Let G be a connected graph of even order, and let H be a connected spanning
subgraph of G. Then the edge-complement H is contained in an odd subgraph K of G. Moreover, if
H is a spanning tree of G, then K is unique.

Proof. This time we set T = EvenV(H). As n(G) and ∣OddV(H)∣ are even, the former by
assumption and the latter by the handshaking lemma, the set T is even-sized. A subgraph
K of G containing H is odd if and only if the spanning subgraph of G with edge set K ∩ H
is a T-join of H. The assertion once again follows from Lemma 1. (Note that the obtained K
is a spanning odd subgraph of G.)

A fundamental structural theorem, found independently by Nash-Williams [14] and
Tutte [15], has numerous applications.

Theorem 4 (Nash-Williams–Tutte, 1961). A graph G contains at least k edge-disjoint spanning
trees, if and only if, for every partition P of V(G) it holds that

m(G/P) ≥ k(∣P ∣− 1) .

The following straightforward corollary of Theorem 4 (c.f. [16]) guaranties that suffi-
ciently high edge-connectivity implies the existence of k edge-disjoint spanning trees. In
order to make the paper self-contained we also include a brief proof.

Corollary 1. Let G be a 2k-edge-connected graph, and let subset S ⊂ E(G) be of size ∣S∣ ≤ k. Then
G−S contains k edge-disjoint spanning trees. In particular, every 2k-edge-connected graph contains
k edge-disjoint spanning trees.

Proof. Consider a partition P = {V1, . . . , Vt} of V(G), and let vi be the vertex of G/P corre-
sponding to Vi for each i = 1, . . . , t. Since G is 2k-edge-connected, each degree dG/P(vi) ≥ 2k.
Therefore,

2m(G/P) =
t
∑
i=1

dG/P(vi) ≥ 2k ⋅ t ,

gives
m(G/P) ≥ k∣P ∣ .
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Consequently,
m((G − S)/P) ≥ m(G/P)− ∣S∣ ≥ k∣P ∣− k = k(∣P ∣− 1) .

In view of the arbitrariness of the partition P , G − S contains k edge-disjoint spanning trees
by Theorem 4.

3. Coverability by Three Parts

This section considers coverability by three parity regular subgraphs, and it is orga-
nized as follows. We begin by considering coverability by one even and two odd subgraphs,
and then discuss the existence of a covering by two even and one odd subgraphs. It turns
out that the former covering always exists (even more so, it can always be made edge-
disjoint, that is, a decomposition). Contrarily, the latter coverability aspect is not that trivial.

Proposition 3. Every graph admits a decomposition into one even and at most two odd subgraphs.

Proof. Given a graph G, consider a maximal even subgraph H of G. The maximality of
H implies that its edge-complement H = G − E(H) is acyclic. Thus, it suffices to show the
following assertion: Every nontrivial tree T decomposes into at most two odd subgraphs. Proceed
by induction on the number e(T) = ∣EvenV(T)∣ of vertices v of even degree dT(v). The
inductive base e(T) = 0 is trivially true, since then T is an odd graph itself. For the inductive
step, split a vertex v ∈ EvenV(T) into two vertices, say v1 and v2, of odd degree each. The
absence of cycles in T assures that the described splitting procedure furnishes two disjoint
nontrivial trees, say T1 and T2, such that e(Ti) < e(T), i = 1, 2. Assuming vi ∈ V(Ti), by the
inductive hypothesis there exist ‘odd decompositions’ {H′

i , H′′
i } of Ti, with vi ∈ V(H′

i ) (and
vi ∉ V(H′′

i ) as it is of odd degree in Ti). Here we allow that H′′
1 and H′′

2 are possibly void
graphs. Then {H′

1 ∪ H′′
2 , H′′

1 ∪ H′
2} is a decomposition of T into two odd subgraphs.

An alternative argument for the assertion used in the above proof can be found in [17].

Let us turn to coverability of graphs by two even subgraphs and one odd subgraph.
We prove the following result conjectured in [18].

Theorem 5. Every 3-edge-connected graph is coverable by two even subgraphs and one odd
subgraph. There exists an infinite family of 2-edge-connected graphs none of which admits such
a covering.

Proof. Let us first prove that 3-edge-connectedness suffices for coverability by two even
subgraphs and one odd subgraph. This will be achieved as follows. First, we shall reduce
the problem to graphs of edge-connectivity 3. Next, we shall resolve the case when there is
a vertex of degree 3, i.e., when a trivial edge 3-cut is present. Finally, we shall deal with
the case of a graph G having only nontrivial edge 3-cuts: namely, we will look at an edge
3-cut {e1, e2, e3} at the ‘periphery’ of G, and consider the two smaller graphs obtained by
contracting the components of G − {e1, e2, e3}, one at a time.

We begin the task at hand by noting a well-known fact (see Theorem 7 in Section 5):
4-edge-connectedness implies coverability by two even subgraphs. For the sake of completeness,
here is a sketch of the standard textbook proof of this fact: the 4-edge-connectedness
guarantees existence of two edge-disjoint spanning trees, by Corollary 1; their respective
cotrees form a cover of the graph; each of these cotrees is fully contained within an even
subgraph, by Proposition 1, which gives the desired covering. Therefore, we may confine
to graphs G of edge-connectivity κ′(G) = 3.

Claim 1. If there is a 3-vertex v ∈ V(G), then G admits a covering {K′, K′′, H} consisting of two
even subgraphs K′, K′′ and an odd subgraph H such that EG(v) ⊈ E(H).

Denote by 2G the graph obtained from G by duplicating each edge e ∈ E(G). Since G
is 3-edge-connected, 2G is 6-edge-connected. Let S be the duplicate of EG(v). Consider the
graph G∗ = 2G − S. In other words, G∗ is obtained from G by duplicating each edge from
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EG(v) = E(G) ∖ EG(v). (Notice that S is a set of size 3 and E(G) ⊆ E(G∗).) Then G∗ has
three edge-disjoint spanning trees, by Corollary 1. These trees of G∗ correspond to three
spanning trees of G, call them T′, T′′, and T′′′, such that T′ ∩T′′ ∩T′′′ = ∅ (seen as edge sets)
and ET′(v) ⊍ ET′′(v) ⊍ ET′′′(v) = EG(v). Consequently, dT′(v) = dT′′(v) = dT′′′(v) = 2 and
the collection {T′, T′′, T′′′ − EG(v)} constitutes a covering of G. In view of Proposition 1,
there are even subgraphs K′, K′′ of G such that K′ ⊇ T′ and K′′ ⊇ T′′. We show containment
of T′′′ − EG(v) within an odd subgraph H of G such that EG(v) ⊈ E(H) by separately
considering two cases regarding the parity of the order n(G).

Case 1: The order n(G) is even. Since T′′′−EG(v) is of even order, the set EvenV(T′′′−EG(v))
is of even size, by the handshaking lemma. Say NT′′′(v) = {u} and ET′′′(v) = {e}. Then
S = EvenV(T′′′ − EG(v))⊕ {u, v} is an even-sized subset of V(G)/{v}. As v is a leaf of T′′′,
the graph T′′′ − v is connected. In view of Lemma 1, take an S-join of T′′′ − v and form
its (disjoint) union with T′′′ − EG(v). The only even vertices of the constructed graph are
precisely u and v; moreover, v is isolated. By adding the edge e to the resulting graph, we
obtain the desired H. Notice that the only edge from EG(v) included in H is e.

Case 2: The order n(G) is odd. Then S = EvenV(T′′′ − v) is an even-sized subset of V(G)/{v}.
Since T′′′ − v is connected, take an S-join of T′′′ − v and combine it with T′′′ − v. We thus
obtain an odd spanning subgraph of G − v, which serves as our H. Moreover, no edge of
EG(v) is in H. This settles the claim.

Let {e1, e2, e3} be an edge 3-cut of G that induces two connected components G[V1]

and G[V2] of G − {e1, e2, e3} (with {V1, V2} being the corresponding partition of V(G)) such
that ∣V2∣ is minimized (see Figure 2). For i = 1, 2, define Gi = G/V3−i; that is, let Gi be
the graph obtained from G by contracting V3−i into an new vertex v3−i. The graph G1 is
clearly 3-edge-connected, hence Claim 1 guarantees the existence of a covering {K′

1, K′′
1 , H}

of G1 such that K′
1, K′′

1 are even subgraphs, whereas H is an odd subgraph for which
{e1, e2, e3} ⊈ E(H).

V2V1

e1

e2

e3

y1

y2

y3

x1

x2

x3

Figure 2. An edge 3-cut of G for which ∣V2∣ attains minimum value.

If ∣V2∣ = 1 then G = G1 and we are done. Assuming ∣V2∣ > 1, let G′
2 = G[V2]. The

minimality choice of {e1, e2, e3} enforces certain structural properties on G2 and G′
2. The

following property regarding G2 is a known fact, but for sake of completeness, we include
a proof of it.

Claim 2. The 3-set EG2(v1) is the only edge cut of size less than 4 in G2.

By contradiction, as G2 is surely 3-edge-connected, suppose S is an edge 3-cut of G2
distinct from {e1, e2, e3}. Say S disconnects G2 by splitting it into two parts L and R. We
may assume that e1 ∉ S with e1, v1 belonging in L. Consequently, S presents an edge 3-cut
of G itself. Indeed, it splits it into parts V1 ∪ L/{v1} and R. However, R

USV Symbol Macro(s) Description
2264 ≤ \textleq

\textle
LESS-THAN OR EQUAL TO

2265 ≥ \textgeq
\textge

GREATER-THAN OR EQUAL TO

2266 ≦ \textleqq LESS-THAN OVER EQUAL TO

2267 ≧ \textgeqq GREATER-THAN OVER EQUAL TO

2268 ≨ \textlneqq LESS-THAN BUT NOT EQUAL TO

2269 ≩ \textgneqq GREATER-THAN BUT NOT EQUAL TO

226A ≪ \textll MUCH LESS-THAN

226B ≫ \textgg MUCH GREATER-THAN

226C ≬ \textbetween BETWEEN

226E ≮ \textnless NOT LESS-THAN

226F ≯ \textngtr NOT GREATER-THAN

2270 ≰ \textnleq NEITHER LESS-THAN NOR EQUAL TO

2271 ≱ \textngeq NEITHER GREATER-THAN NOR EQUAL TO

2272 ≲ \textlesssim LESS-THAN OR EQUIVALENT TO

2273 ≳ \textgtrsim GREATER-THAN OR EQUIVALENT TO

2274 ≴ \textnlesssim NEITHER LESS-THAN NOR EQUIVALENT TO

2275 ≵ \textngtrsim NEITHER GREATER-THAN NOR EQUIVALENT TO

2276 ≶ \textlessgtr LESS-THAN OR GREATER-THAN

2277 ≷ \textgtrless GREATER-THAN OR LESS-THAN

2278 ≸ \textngtrless NEITHER LESS-THAN NOR GREATER-THAN

2279 ≹ \textnlessgtr NEITHER GREATER-THAN NOR LESS-THAN

227A ≺ \textprec PRECEDES

227B ≻ \textsucc SUCCEEDS

227C ≼ \textpreccurlyeq PRECEDES OR EQUAL TO

227D ≽ \textsucccurlyeq SUCCEEDS OR EQUAL TO

227E ≾ \textprecsim PRECEDES OR EQUIVALENT TO

227F ≿ \textsuccsim SUCCEEDS OR EQUIVALENT TO

2280 ⊀ \textnprec DOES NOT PRECEDE

2281 ⊁ \textnsucc DOES NOT SUCCEED

2282 ⊂ \textsubset SUBSET OF

2283 ⊃ \textsupset SUPERSET OF

2284 ⊄ \textnsubset NOT A SUBSET OF

2285 ⊅ \textnsupset NOT A SUPERSET OF

2286 ⊆ \textsubseteq SUBSET OF OR EQUAL TO

2287 ⊇ \textsupseteq SUPERSET OF OR EQUAL TO

2288 ⊈ \textnsubseteq NEITHER A SUBSET OF NOR EQUAL TO

2289 ⊉ \textnsupseteq NEITHER A SUPERSET OF NOR EQUAL TO

228A ⊊ \textsubsetneq SUBSET OF WITH NOT EQUAL TO

228B ⊋ \textsupsetneq SUPERSET OF WITH NOT EQUAL TO

228D ⊍ \textcupdot MULTISET MULTIPLICATION

228E ⊎ \textcupplus MULTISET UNION

228F ⊏ \textsqsubset SQUARE IMAGE OF

2290 ⊐ \textsqsupset SQUARE ORIGINAL OF

2291 ⊑ \textsqsubseteq SQUARE IMAGE OF OR EQUAL TO

2292 ⊒ \textsqsupseteq SQUARE ORIGINAL OF OR EQUAL TO

2293 ⊓ \textsqcap SQUARE CAP

2294 ⊔ \textsqcup SQUARE CUP

2295 ⊕ \textoplus CIRCLED PLUS

2296 ⊖ \textominus CIRCLED MINUS

2297 ⊗ \textotimes CIRCLED TIMES

2298 ⊘ \textoslash CIRCLED DIVISION SLASH

2299 ⊙ \textodot CIRCLED DOT OPERATOR

229A ⊚ \textcircledcirc CIRCLED RING OPERATOR

40

V2, contradicting
the choice of {e1, e2, e3}.
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Claim 3. The graph G′
2 contains two edge-disjoint spanning trees.

In view of Claim 2, apart from the edge 3-cut ∂G2(v1), every other edge cut of G2 has
size at least 4. Duplicate a selected edge e ∈ EG2(v1). The obtained graph G∗ is 4-edge-
connected. Let S ⊆ E(G∗) be the 2-set consisting of e and its copy. Then G∗ − S has two
edge-disjoint spanning trees, by Corollary 1. Seen in G2, both these trees have v1 as a
pendant vertex. By removing v1 from each, we obtain two edge-disjoint spanning trees of
G′

2. This establishes the claim.
Let us return to the graph G1, and its covering {K′

1, K′′
1 , H} by two even subgraphs

K′
1, K′′

1 and an odd subgraph H such that {e1, e2, e3} ⊈ E(H). Consider the respective
subgraphs of G − E(G′

2), that is, the graphs induced by the edge sets E(K′
1), E(K′′

1 ), E(H).
For simplicity of notation, in what follows we denote the latter three subgraphs also
by K′

1, K′′
1 , H. Obviously, K′

1, K′′
1 may no longer be even, but notice that the condition

{e1, e2, e3} ⊈ E(H) guarantees that H is still odd. Let x1, x2, x3 be the respective end-vertices
of e1, e2, e3 in V2. (Here, vertices x1, x2, x3 may not all be pairwise distinct.) We extend K′

1
and K′′

1 to respective even subgraphs K′ and K′′ of G as follows.
By Claim 3, there exist two edge-disjoint spanning trees T′, T′′ of G′

2. Let S′ = E(K′
1)∩

{e1, e2, e3}. Notice that that S′ is of size 2 or 0. In the former case, assuming S′ = {ei, ej},
set V′ = {xi}⊕ {xj}. In the latter case, let V′ = ∅. Take J′ to be an OddV(T′)⊕V′-join of
T′, where the cotree T′ is seen in G′

2. Then K′ = K′
1 ∪ J′ ∪ T′ is an even subgraph of G that

extends K′
1 ∪ T′ and has E(K′) ∩ {e1, e2, e3} = S′. Define S′′ and V′′ in a similar fashion.

Namely, set S′′ = E(K′′
1 ) ∩ {e1, e2, e3}. If S′′ = {ei, ej} take V′′ = {xi}⊕ {xj}. Otherwise,

S′′ = ∅ and then set V′′ = ∅. Let J′′ be an OddV(T′′)⊕V′′-join of T′′, again with the cotree
T′′ seen in G′

2. The union K′′ = K′′
1 ∪ J′′ ∪ T′′ is an even subgraph of G that extends K′′

1 ∪ T′′
and has E(K′′)∩ {e1, e2, e3} = S′′.

Notice that, as T′, T′′ form a cover of G′
2, the collection {K′, K′′, H} is the desired

covering of G by two even subgraphs and one odd subgraph. This settles the first part
of Theorem 5.

We show next that the first part of Theorem 5 is sharp in terms of edge-connectivity
by exhibiting an infinite family of 2-edge-connected graphs that are uncoverable by two
even subgraphs and one odd subgraph (see Figure 3 for an example). Consider a 2-
edge-connected graph G that has no nowhere-zero 4-flow, that is, uncoverable by two
even subgraphs, by Theorem 1. Note that the family of such graphs G is infinite, as any
snark (being a cubic essentially 4-edge-connected loopless graph of chromatic index 4) is
a member. Subdivide every edge of G at least once; in other words, produce a ‘complete’
subdivision G′ of G. Observe that G′ has edge-connectivity 2. To conclude our proof of
Theorem 5 it suffices to show the following.

Figure 3. The minimum complete subdivision of the Petersen graph.
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Claim 4. The graph G′ does not admit a covering by two even and one odd subgraphs.

Start by recognizing that every even subgraph H′ of G′ corresponds to an even
subgraph H of G obtained by suppressing in H′ each 2-vertex belonging to V(H′)/V(G).
Now for the claim, arguing by contradiction, suppose there exist even subgraphs H′

1, H′
2

and an odd subgraph K′ of G′ such that {H′
1, H′

2, K′} constitute a covering of G′. Let v be
any 2-vertex of G′ contained in V(G′)/V(G). Clearly, EG′(v) is not entirely covered by K′.
Thus, v belongs to at least one of the subgraphs H′

1, H′
2. Consequently, v is a 2-vertex in at

least one of those two even subgraphs.
Consider now an arbitrary edge e ∈ E(G), and let v1, . . . , vk be the 2-vertices ‘intro-

duced’ on e while constructing G′ from G. Assuming v1 belongs in H′
1, we successively

conclude that v2, v3, . . . , vk are also in H′
1. It follows that e ∈ E(H1), where Hi denotes

the even subgraph of G rendered by H′
i , i = 1, 2. The arbitrariness of e tells that {H1, H2}

constitutes a covering of G by two even subgraphs, a contradiction. This establishes
the claim.

Note in passing that Figure 3 depicts a complete subdivision of the Petersen graph,
the smallest snark. Thus, it is uncoverable by two even and one odd subgraphs.

Remark 1. The first part of Theorem 5 allows a succinct argument in the case of even-ordered
graphs. Indeed, by duplicating the edges of G, the obtained 6-edge-connected graph surely contains
three edge-disjoint spanning trees. These trees correspond to three spanning trees of G, call them
T′, T′′, and T′′′, such that the collection of their edge-complements {T′, T′′, T′′′} constitutes a
covering of G. Applying Proposition 1 to T′, T′′ and Proposition 2 to T′′′ gives a covering of G by
two even and one odd subgraphs. In fact, in this case the requirement for 3-edge-connectedness can
be slightly relaxed by admitting the presence of a single edge 2-cut. Namely, then the duplication of
each edge would furnish a graph that is just two edges ‘short’ from being 6-edge-connected, which
in view of Corollary 1, would nevertheless guarantee the existence of three edge-disjoint spanning
trees in it.

Remark 2. The examples provided in the proof of the second part of Theorem 5 point to an infinite
family of 2-edge-connected graphs, uncoverable by two even and one odd subgraphs, that are pairwise
topologically inequivalent.

One naturally wonders if the decision problem whether a graph admits a covering by
two even and one odd subgraphs can be solved efficiently. It turns out that this answers in
the negative.

Proposition 4. The decision problem whether a graph is coverable by two even subgraphs and one
odd subgraph is NP-hard.

Proof. As already observed in the second part of the proof of Theorem 5 (c.f. Claim 4),
given a graph G and one of its complete subdivisions G′, G is coverable by two even
subgraphs if and only if G′ is coverable by two even subgraphs and one odd subgraph.
Thus, generally speaking, the latter decision problem must be at least as hard as the former.
However, the following facts are known to be true (see e.g., [19]). (1) The chromatic index of
each cubic loopless graph (simple or not) equals three or four; accordingly, the graph is said
to be in Class 1 or Class 2. (2) A cubic loopless graph belongs to Class 1 if and only if it can
be covered by two even subgraphs. (3) The classification problem, that decides to which class
a graph belongs, is NP-hard even in the cubic case (Holyer [20] and Leven and Galil [21]).

Consequently, the decision problems regarding coverability by two even subgraphs
and by two even and one odd subgraphs, respectively, are both NP-hard.

4. Coverability by Many Parts

In this section we discuss the coverability of graphs by more than three parity regular
subgraphs. We commence by noting several conclusions in this direction that are straight-
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forward consequences of Theorems 2, 3 and Proposition 3. Afterwards we deal with the
only remaining facet of the matter.

• Coverability by four or more even subgraphs. An obvious necessary condition for cover-
ability by (any number of) even subgraphs is the absence of bridges, and once this
condition is fulfilled, three even subgraphs suffice (by Theorem 2). Thus, coverability
by more than three even subgraphs brings nothing new.

• Coverability by four or more odd subgraphs. As already mentioned in the introductory
section, an obvious necessary condition for coverability by (any number of) odd
subgraphs is the absence of isolated loops, and once this requirement is met, other
presence of loops has no influence on the minimum size of such a covering. Thus,
loopless graphs are the rightful setting for this particular coverability issue. In view of
Theorem 3, apart from four types of graphs of order 3, every other connected loopless
graph is coverable by three odd subgraphs. The remaining four cases (in the realm of
connected loopless graphs) are captured through the following observation: If G is
obtainable from a graph H depicted in Figure 1 by a (possibly void) sequence of additions of
two parallel edges to a pair of adjacent vertices (such G’s form one of the mentioned four types
of connected loopless graphs), then the minimum size of a covering of G by odd subgraphs
equals m(H). Indeed, since n(G) = 3, every non-void odd subgraph of G must be of
order 2.

• Combined coverings by even and odd subgraphs. If at least two odd subgraphs are allowed
then Proposition 3 assures that such a covering always exists (it can even be made a
decomposition). Thus, the only remaining aspect to be considered is the coverability by
three (or more) even subgraphs and one odd subgraph. In fact, in view of Theorem 2,
it makes no difference if more than three even subgraphs are allowed because no
bridge can be covered by an even subgraph. In other words, the set of bridges has to
be contained within the odd subgraph used in such a covering.

We shall show that the decision problem whether a graph is coverable by three
even and one odd subgraphs can be solved efficiently. This will be deduced from the
following result.

Theorem 6. The existence of an odd subgraph H of G that contains a given set S ⊆ E(G) can be
decided in polynomial time. In the affirmative, such a subgraph can be efficiently found.

Proof. The proof is organized as follows. Our initial observation is that the problem is
equivalent to the existence of a certain ‘compatibility’ subgraph in each component of G−S.
We approach this alternative existence problem for an arbitrary connected graph G0, by
first settling particular cases (in Claims 1–3). Afterwards, we induct on the number of
blocks of G0. In the inductive step (realized in Claim 4) we look at an end-block B0 of G0,
and reduce the problem to the graph G0 − Int(B0). These four claims lead to an efficient
algorithm since the case of a 2-connected graph G0, amounting to G0 = Int(G0), is already
covered in Claims 1–3.

Let us consider the induced subgraph G[S] and the (possibly empty) sets EvenV(G[S])
and OddV(G[S]) of even and odd vertices of G[S], respectively. It is straightforward
that the existence of H amounts to the existence of a subgraph K of G − S such that
EvenV(G[S]) ⊆ OddV(K) ⊆ OddV(G[S]) and EvenV(K) ⊆ OddV(G[S]).

We introduce the following ad-hoc terminology. Given a connected graph G0 and dis-
joint (possibly empty) subsets S′, S′′ ⊆ V(G0), say that G0 is (S′, S′′)-compatible if there exists
a subgraph K ⊆ G0 with S′ ⊆ OddV(K) ⊆ S′′ and EvenV(K) ⊆ S′′. We proceed to explain
how it can be efficiently decided on the (S′, S′′)-compatibility of G0, since the considered
existence problem reduces to such compatibility issues for the components of G − S.

Claim 1. If S′′ is even-sized, then G0 is (S′, S′′)-compatible.

Let K be an S′′-join of G0. Then OddV(K) = S′′ ⊇ S′ and EvenV(K) = S′′. Hence, the
subgraph K confirms that G0 is (S′, S′′)-compatible, which settles Claim 1.
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Claim 2. If V(G0) = S′ ∪ S′′, then G0 is (S′, S′′)-compatible if and only if S′ is even-sized.

Under the assumptions, {S′, S′′} is a partition of V(G). Thus, the (S′, S′′)-compatibility
of G0 amounts to the existence of a subgraph K with OddV(K) = S′. In other words, if and
only if there is a subgraph K which (seen as spanning) forms an S′-join of G0. Therefore,
the claimed is a consequence of the handshake lemma and Claim 1.

In what follows we assume that V(G0) ≠ S′ ∪ S′′.

Claim 3. If Int(G0) ⊈ S′ ∪ S′′, then G0 is (S′, S′′)-compatible.

By Claim 1, we may suppose that S′′ is odd-sized. Select a vertex v ∈ Int(G0)/(S′ ∪ S′′).
Then S′′ ∪ {v} is even-sized and G0 − v is connected. Form an S′′ ∪ {v}-join K of G0 − v.
Since OddV(K) = S′′/{v} ⊇ S′ and EvenV(K) = S′′, the subgraph K of G0 has the desired
properties, which confirms Claim 3.

Let us further assume that Int(G0) ⊆ S′ ∪S′′. In view of Claims 2 and 3, we may confine
to κ(G0) = 1, and consider an end-block B0 of G0. Say v0 is the cut vertex of G0 belonging
in V(B0). As V(B0)/{v0} = IntG0(B0) ⊆ Int(G0), it follows that IntG0(B0) ⊆ S′ ∪ S′′. Thus,
IntG0(B0)∩ S′ = IntG0(B0)∩ S′′. Denote G1 = G0 − IntG0(B0). Form disjoint (possibly empty)
subsets S′1, S′′1 of V(G1) from the respective restrictions S′ ∩V(G1), S′′ ∩V(G1) by adjusting
the membership of v0 as follows:

• If IntG0(B0)∩ S′ is even-sized, then simply take S′1 = S′ ∩V(G1) and S′′1 = S′′ ∩V(G1);
• If IntG0(B0)∩ S′ is odd-sized, then define S′′1 = (S′′ ∩V(G1))⊕ {v0} and

S′1 =
⎧⎪⎪
⎨
⎪⎪⎩

(S′ ∩V(G1))∪ {v0} if v0 ∈ S′′ ,
(S′ ∩V(G1))/{v0} if v0 ∉ S′′ .

The above cumbersome definition of the sets S′, S′′ is justified by the following.

Claim 4. The graph G0 is (S′, S′′)-compatible if and only if G1 is (S′1, S′′1 )-compatible.

Assuming G0 is (S′, S′′)-compatible, take a subgraph K with S′ ⊆ OddV(K) ⊆ S′′ and
EvenV(K) ⊆ S′′. Form the subgraph K1 = G1 ∩K of G1. We show that:

S′1 ⊆ OddV(K1) ⊆ S′′1 (complement taken in V(G1)) and EvenV(K1) ⊆ S′′1 . (∗)

Indeed, putting v0 aside, clearly every other vertex of K1 is in order with (∗). As-
suming v0 ∈ K1, consider the graph K0 = B0 ∩ K. Then S′ ∩ IntG0(B0) ⊆ OddV(K0) ⊆

(S′′ ∩ IntG0(B0)) ∪ {v0} and EvenV(K0) ⊆ (S′′ ∩ IntG0(B0)) ∪ {v0}. Since S′′ ∩ IntG0(B0) =

S′ ∩ IntG0(B0), we have:

OddV(K0) =

⎧⎪⎪
⎨
⎪⎪⎩

S′ ∩ IntG0(B0) if S′ ∩ IntG0(B0) is even-sized ,
(S′ ∩ IntG0(B0))∪ {v0} if S′ ∩ IntG0(B0) is odd-sized .

Hence, it holds that dK1(v0) ≡2 dK(v0)+ ∣S′ ∩ IntG0(B0)∣. Consequently, if S′ ∩ IntG0(B0)

is even-sized then (∗) follows from dK1(v0) ≡2 dK(v0) and the choice of K. On the other
hand, if S′ ∩ IntG0(B0) is odd-sized then degrees dK1(v0) and dK(v0) are of different parities,
and proceed by distinguishing between two possibilities: (i) if v0 ∉ S′′, by definition v0 ∈ S′′1 ,
and (∗) is satisfied at v0 (as dK(v0) is odd, and thus dK1(v0) is even); (ii) if v0 ∈ S′′, by
definition v0 ∈ S′1, yielding (∗) at v0 (as dK(v0) is even and dK1(v0) is odd). This completes
the verification of (∗), and shows (S′1, S′′1 )-compatibility of G1.

Proving the other direction, assume that G1 is (S′1, S′′1 )-compatible. Hence, for a
subgraph K1 of G1 condition (∗) holds. We construct a subgraph K0 ⊆ B0 as follows.
If the intersection S′ ∩ IntG0(B0) is even-sized, simply let K0 be an S′ ∩ IntG0(B0)-join of



Mathematics 2021, 9, 182 11 of 15

B0. Then OddV(K0) = S′ ∩ IntG0(B0) and EvenV(K0) = (S′′ ∩ IntG0(B0)) ∪ {v0}. The def-
inition of S′1, S′′1 implies that the graph K = K0 ∪ K1 meets the requirements granting
(S′, S′′)-compatibility of G0. On the other hand, if S′ ∩ IntG0(B0) is odd-sized, take as
K0 an (S′ ∩ IntG0(B0)) ∪ {v0}-join of B0. Then OddV(K0) = (S′ ∩ IntG0(B0)) ∪ {v0} and
EvenV(K0) = S′′ ∩ IntG0(B0). One readily checks that in each of the possibilities regarding
the membership of v0, the graph K = K0 ∪K1 once again shows (S′, S′′)-compatibility of G0.
This settles the claim.

As the number of blocks decreases with passing from G0 to G1 in Claim 4, the four
claims together clearly lead to an efficient algorithm for deciding whether G0 is (S′, S′′)-
compatible. Applied to each component C of the graph G−S by taking S′ = EvenV(G[S])∩
V(C) and S′′ = OddV(G[S])∩V(C) this efficiently solves our initial decision problem.

A straightforward consequence of Theorem 6 is that it can be efficiently decided
whether a given graph is coverable by three even subgraphs and one odd subgraph.

Corollary 2. Given a graph G, it can be decided in polynomial time whether it admits a covering
by three even subgraphs and one odd subgraph.

Proof. Denote by S the (possibly empty) set of bridges of G. Since G − S is bridgeless, it
can be covered by three even subgraphs, by Theorem 2. Hence the considered coverability
issue is equivalent to the existence of an odd subgraph H of G such that S ⊆ E(H). The
assertion follows from Theorem 6.

We end this section by noting that the parity counterpart to Theorem 6 regarding the
existence of an even subgraph K of G that contains a given set S ⊆ E(G) can also be decided
efficiently. Indeed, one readily observes that such a subgraph K exists, if and only if, every
component of G − S contains an even number (possibly zero) of vertices from OddV(G[S]).
In the affirmative, such a subgraph can be found in polynomial time.

5. Coverability by Two Parts

Jaeger [8] proved that sufficiently high edge-connectivity guarantees coverability
by two even subgraphs. Obviously, no higher edge-connectivity could provide further
decrease in the number of required even subgraphs.

Theorem 7 (Jaeger, 1979). Every 4-edge-connected graph is coverable by two even subgraphs.

This result is sharp in terms of edge-connectivity, as every snark presents a 3-edge-
connected (cubic) graph uncoverable by two even subgraphs. Note that a ‘full’ parity
counterpart to Theorem 7, that is, a positive general result on coverability of graphs having
sufficiently high edge-connectivity by two odd subgraphs, is impossible because every
nontrivial Eulerian graph of odd order clearly cannot be covered by two odd subgraphs.
Thus, not even sufficiently high connectivity would guarantee such coverability. On the
other hand, in view of Corollary 1 and Proposition 2, it is easily seen that every 4-edge-
connected even-ordered graph is coverable by two odd subgraphs.

In this section we consider the possibilities for a semi parity counterpart to Theorem 7,
namely, coverability by one even and one odd subgraph. The next result will provide a
useful criterion.

Proposition 5. Let G be a graph, and let H be an odd subgraph of G. The following four statements
are equivalent:

(i) There exists an even subgraph K of G such that {H, K} is a covering of G.
(ii) There exists an OddV(H)-join of H.
(iii) H meets every odd edge cut of G.
(iv) OddV(G) ⊆ V(H) and every component of H intersects the set EvenV(G) in an even

(possibly zero) number of vertices.
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Proof. To establish equivalence between (i) and (ii) simply note that each of them is
equivalent to the requirement that the edge set of H is fully contained within an even
subgraph of G. On the other hand, this equivalent form of (ii) clearly implies (iii). Indeed,
as every even subgraph has even-sized (possibly empty) intersection with every edge cut,
no odd edge cut of G could lie entirely in E(H). Let us show that (iii) implies (ii). Denote
T = OddV(H) and consider an arbitrary component C of H. Since ∂H(V(C)) = ∂G(V(C))

must be even-sized by (iii), we deduce that

∣T ∩V(C)∣ ≡2 ∑
v∈V(C)

dH(v) = ∣∂H(V(C))∣+ ∑
v∈V(C)

dH[V(C)](v) ≡2 ∣∂H(V(C))∣ ≡2 0 .

Using that T ∩V(C) is even-sized, statement (iii) follows from the arbitrariness of C
and Lemma 1.

Finally, we show the equivalence of (ii) and (iv). For this it suffices to observe that

OddV(H) = (OddV(G)/V(H))⊍ (V(H)∩ EvenV(G)) .

Thus, an OddV(H)-join of H exists if and only if OddV(G)/V(H) = ∅ and every
component of H meets EvenV(G) in an even number of vertices.

The equivalence of statements (i) and (iv) in Proposition 5 yields the promised
criterion.

Corollary 3. A graph G is coverable by one even subgraph and one odd subgraph, if and only if,
there is an odd subgraph H of G satisfying that OddV(G) ⊆ V(H) and every component of H
intersects the set EvenV(G) in an even (possibly zero) number of vertices.

It turns out that it cannot be efficiently decided whether such an odd subgraph H of
G exists.

Proposition 6. The decision problem whether a graph is coverable by an even subgraph and an
odd subgraph is NP-hard.

Proof. Given a graph G, let G′ be its crown, that is, the graph obtained by appending a
pendant edge to each vertex v ∈ V(G). Since every vertex of G becomes incident with
a bridge of G′, the graph G′ is coverable by an even subgraph and an odd subgraph, if
and only if, G is coverable by two even subgraphs. Consequently, the considered decision
problem is at least as hard as the problem of deciding whether a graph is coverable by two
even subgraphs. As already mentioned in the proof of Proposition 4, the latter problem is
known to be NP-hard.

Interestingly, the analogous decomposition issue is quite easily solvable in polynomial
time, since it amounts to finding the components of a certain induced subgraph.

Proposition 7. A graph G decomposes into an even subgraph and an odd subgraph, if and only if,
each component of G[OddV(G)] has an even order.

Proof. Assuming such a decomposition {K, H} exists, with H being the odd subgraph, it
must be that V(H) = OddV(G) and thus E(H) ⊆ E(G[OddV(G)]). Consequently, for each
component C of G[OddV(G)], the intersection C ∩ H constitutes a spanning odd subgraph
of C. Hence every component of G[OddV(G)] is of even order.

Proving the other direction, Lemma 1 guarantees the existence of an odd spanning sub-
graph in each component of G[OddV(G)]. Denote by H the union of those odd subgraphs.
Then H is an odd subgraph of G such that H is an even subgraph of G.

We shall make use of Corollary 3 while proving the following result.
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Proposition 8. Every 4-edge-connected graph of even order admits a covering by one even subgraph
and one odd subgraph. Contrarily, there exist graphs of odd order with arbitrarily high edge-
connectivity none of which admits such a covering.

Proof. Let G be a 4-edge-connected graph of even order n(G). In view of Proposition 1, the
edge-connectivity alone guarantees two edge-disjoint spanning trees of G, say T′ and T′′.
Thus, {T′, T′′} constitute a covering of G. By Proposition 1, there exists an even subgraph K′
of G such that K′ ⊇ T′. Since n(G) is even, Proposition 2 yields an odd spanning subgraph
K′′ of G such that K′′ ⊇ T′′. Then {K′, K′′} is a covering of G consisting of an even and an
odd subgraph.

Let us note in passing that, due to the fact that 2k-edge-connectedness is a slightly
stronger requirement than the condition given in Theorem 4, by Corollary 1, the require-
ment for 4-edge-connectedness in the first part of Proposition 8 can be slightly relaxed
by admitting the presence of a single edge 2-cut (and no edge 1-cuts nor 3-cuts), or the
presence of at most two edge 3-cuts (and no edge 1-cuts nor 2-cuts). Indeed, in either
relaxation, two edge-disjoint spanning trees of G would still exist.

Turning to the second part of the statement, consider a pair G′, G′′ of disjoint Eulerian
graphs of odd order each. We assert that the graph G = (G′ ⊍G′′)∨K1 does not admit a
covering by one even subgraph and one odd subgraph. Indeed, arguing by contradiction,
suppose G admits such a covering. Then, according to Corollary 3, there is an odd subgraph
H of G such that OddV(G) ⊆ V(H) and every component of H intersects the set EvenV(G)

in an even (possibly zero) number of vertices. However, this is impossible, as EvenV(G)

is a singleton and G[OddV(G)] consists of two odd components. To assure high edge-
connectivity of G, simply take for G′, G′′ large enough complete graphs of odd order.

One cannot help but notice that the examples of ‘uncoverable’ graphs provided in
the proof of Proposition 8, besides being of odd order, have all but one odd vertices, and
moreover, the unique even vertex constitutes a (vertex) 1-cut of the graph. Each such
example can be seen as being obtained from K2 by subdividing (once) the edge, thus
creating a new vertex, and then ‘blowing up’ every old vertex to an Eulerian graph of
odd order. Analogously, starting from K1,n for an odd n, subdividing each edge, and then
‘blowing up’ every old vertex to an Eulerian graph of odd order, we obtain an example
of a graph that is uncoverable by an even subgraph and an odd subgraph, in view of
Corollary 3. This construction clearly includes graphs of arbitrarily high edge-connectivity,
that contain an arbitrary odd number of even vertices, and such that each even vertex
constitutes a 1-cut.

Note in passing that, given a connected graph G, if EvenV(G) is a singleton that
additionally does not present a 1-cut of G, then the mere connectedness of G − EvenV(G)

guarantees the existence of a covering of G by an even and an odd subgraph; indeed,
Proposition 7 tells that a graph G decomposes into an even and an odd subgraph, if and
only if, each component of G − EvenV(G) is of even order.

However, if the set EvenV(G) becomes larger than a singleton than 2-connectedness
alone does not suffice for the considered coverability. Namely, K3,4 is an example of a
2-connected graph that does not admit a covering by one even subgraph and one odd
subgraph, by Corollary 3. (Note that K3,4 is a graph of edge-connectivity 3.)

We also wish to bring attention to a pair of sufficient conditions for coverability by an
even and an odd subgraphs.

Proposition 9. Let G be a graph, and consider the following three statements:

(a) There are two edge-disjoint spanning trees of G such that a vertex v ∈ EvenV(G) is pendant
in each of them.

(b) There are an Eulerian spanning subgraph Ge of G and a vertex v ∈ EvenV(G) such that
dGe(v) = dG(v) and Ge − v is connected.

(c) G admits a covering by an even subgraph and an odd subgraph.
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Then (a)⇒ (b)⇒ (c).

Proof. We justify the implications (a)⇒ (b) and (b)⇒ (c).

Proof of (a) ⇒ (b): Let T′ and T′′ be such a pair of spanning trees. Note that T′ is a
connected spanning subgraph of G (since T′′ ⊆ T′). Moreover, v ∈ OddV(T′). Take an
OddV(T′)-join H of T′ and form the union Ge = H ∪ T′. Then Ge is an Eulerian spanning
subgraph of G such that dGe(v) = dG(v). Moreover, since T′′ − v is connected and fully
contained within Ge − v, the latter graph is connected.

Proof of (b)⇒ (c): Let Ge be such an Eulerian spanning subgraph of G. Consider the set
S = EvenV(Ge). Assume first that n(G) is even. As then S is even-sized, there exists an
S-join H of Ge. The union Go = H ∪Ge is a spanning odd subgraph of G. Clearly, {Ge, Go}

constitutes a cover of G by an even and an odd (spanning) subgraphs. Assume now that
n(G) is odd. This time S is odd-sized. Baring in mind that v is an isolated vertex of Ge,
take an S/{v}-join H′ of Ge − v and form the union G′

o = H′ ∪ (Ge − v). Then G′
o is an odd

subgraph of G, and {Ge, G′
o} is a cover of G.

Now we promptly obtain the following.

Corollary 4. Let G be a 4-edge-connected graph that contains an even vertex v ∈ V(G) of degree
dG(v) = 4. Then G admits a covering by one even subgraph and one odd subgraph.

Proof. Let S ⊂ EG(v) be an arbitrary 2-set. Take a pair of edge-disjoint spanning trees of G−

S, guaranteed by Corollary 1, and apply the implication (a)⇒ (c) from Proposition 9.

It is therefore tempting to conclude the current discussion with a pair of conjectures.
Note that Corollary 4 supports the former, which in turn readily implies the latter. In
view of the first part of Proposition 8, for even-ordered graphs the 4-edge-connectedness
requirement alone grants both conjectures.

Conjecture 1. G be a 4-edge-connected graph that contains an even non-cut vertex. Then G admits
a covering by one even subgraph and one odd subgraph.

Conjecture 2. Every 2-connected and 4-edge-connected graph admits a covering by one even
subgraph and one odd subgraph.
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