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Abstract: In this paper, a new class of Runge–Kutta-type collocation methods for the numerical
integration of ordinary differential equations (ODEs) is presented. Its derivation is based on the
integral form of the differential equation. The approach enables enhancing the accuracy of the
established collocation Runge–Kutta methods while retaining the same number of stages. We
demonstrate that, with the proposed approach, the Gauss–Legendre and Lobatto IIIA methods can
be derived and that their accuracy can be improved for the same number of method coefficients.
We expressed the methods in the form of tables similar to Butcher tableaus. The performance of
the new methods is investigated on some well-known stiff, oscillatory, and nonlinear ODEs from
the literature.

Keywords: collocation methods; Runge–Kutta methods; numerical integration; ordinary differential
equations; stiff systems

1. Introduction

A special type of initial value problems, treated in this work, involves highly oscil-
latory systems and problems known as stiff systems. In the field of numerical analysis,
scientific computing, and engineering, many such problems exhibit these properties [1–3].
Ordinary differential equations (ODEs) describing these systems are ill-conditioned in a
computational sense and challenging to solve [1]. For such problems, implicit Runge–Kutta
(RK) methods are a convenient and frequent choice. The methods gained prominence after
Butcher showed that the s-stage fully implicit Gaussian RK method of order 2s is A-stable
for all s [4].

A subset of implicit RK methods involves collocation methods. They yield a continu-
ous approximation which makes them suitable for problems where globally continuously
differentiable functions are required [5]. Despite being known for decades, the methods are
still under continuous development. Publications examine the application of the methods
to new problems, the derivation of new strategies, or the development of new procedures
for solving nonlinear equations [3]. Three basic types of implicit RK methods, each based
on different Gauss–Legendre-type quadrature formulae, are Gauss–Legendre quadrature
formulae, Gauss–Radau quadrature formulae, and Gauss–Lobatto quadrature formulae [6].

Perez-Rodriguez et al. [7] applied an implicit RK method of Radau IIA type to semi-
discretized, multidimensional partial differential equations (PDEs) of advection–diffusion–
reaction type. To mitigate the stiffness of these systems, a special iteration technique was
applied to solve the resulting implicit relations encountered in the integration steps. Ramos
and Garcia-Rubio [8] constructed a new family of implicit methods on the basis of the
s-degree Chebyshev approximation using the Chebyshev–Gauss–Lobatto points. Similarly,
Vigo-Aguiar and Ramos [9], in addition to constructing an A-stable iRK method, proposed
an embedding technique for changing the step size using the Runge–Kutta method and a
linear multistep one. Teh and Yaacob [10] recently developed several implicit RK methods,
two of them being Gauss–Kronrod methods with five stages and order 8 accuracy. These
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are based on five-point Gauss–Kronrod quadrature formula. They also developed four
implicit RK methods on the basis of Gauss–Kronrod–Radau quadrature formulae [11]
and four seven-stage 10th-order implicit RK methods using seven-point Gauss–Kronrod–
Lobatto quadrature formula [6]. Liu and Sun [12] studied the Lobatto III-type RK methods.
They extended the existing Lobatto methods using the W-transformation and constructed
general Lobatto III methods with three parameters of stages two to four. Implicit RK
methods play a vital role in solving systems of differential algebraic equations (DAEs) [13].
For example, Jay [14] analyzed the application of RK methods to DAEs of index-2 in
Hessenberg form and (see [15]) applied the s-stage Lobatto IIIA–Lobatto IIIB method as a
partitioned RK method to integrate Hamiltonian systems with holonomic constraints. A
particularly important type of implicit RK methods for stiff and DAE problems involves
the Radau IIA methods, implemented in the well-known code for stiff and DAE systems,
RADAU5 [16].

In this work, we present a new class of collocation methods for numerical integration
of ODEs by basing the derivation on their integral form. The approach resembles the
well-known Galerkin method, which is based on the so-called weak formulation of the
governing differential equations; nevertheless, we could not find any references involving
applying the presented idea to initial value problems and deriving collocation methods.
With the approach, we present how the accuracy of RK-type collocation methods (more
specifically, the Gauss–Legendre and Lobatto IIIA method) can be increased while retaining
the number of method coefficients. In addition to proposing some method instances of
the new class of methods, we also demonstrate how the Gauss–Legendre and Lobatto IIIA
methods can also be derived with the proposed approach.

In this paper, some theoretical preliminaries are given first (Section 2), followed by a
general derivation of the method (Section 3). Particular method families are then presented
in Section 4 where their accuracy and linear stability are also investigated. The performance
of methods is analyzed using several numerical examples in Section 5. The discussion and
conclusion then follow in Sections 6 and 7.

2. Theoretical Preliminaries

Consider the following initial value problem:

y′(x) = f (x, y(x)), (1)

with y(xn) = y0, y ∈ Rd, for which we seek an approximate solution in the interval
[xn, xn + h], with h as the step size. Collocation methods utilize a polynomial, say u, of
degree s to approximate the solution y. The polynomial needs to satisfy the initial condition
u(xn) = y0 and the differential equation u′(xi) = ki = f (xi, u(xi)) at collocation points
xi = xn + ci h for i = 1, . . . , s, with 0 ≤ c1 < c2 < · · · < cs ≤ 1. The numerical solution of
the collocation method is defined by y1 = u(xn + h).

The general class of RK methods is defined as follows [17]:

y1 = y0 + h
s

∑
i=1

ki bi, ki = f

(
xn + ci h, y0 + h

r

∑
j=1

k j aij

)
, (2)

where a fully implicit RK method is obtained when the upper limit r in the sum defining the
ki is equal to s. The collocation method is equivalent to the s-stage RK method, Equation (2),
with the following coefficients:

aij =
∫ ci

0
lj(τ)dτ, bi =

∫ 1

0
lj(τ)dτ, (3)

where lj(τ) is the Lagrange polynomial lj(τ) = ∏l 6=j(τ − cl)/
(
cj − cl

)
, j = 1, . . . , s [18].

The choice of coefficients aij and bi, and points c1, . . . , cs defines a method instance. This
work limits the arbitrary choice of ci points to either the roots of Legendre polynomials
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or a combination of Legendre polynomials of different stages. RK method subclasses
based on these collocation points are Gauss–Legendre, Radau, and Lobatto [19]. The
Gauss–Legendre quadrature employs a shifted Legendre polynomial of degree s on the
interval [0, 1].

P∗s (τ) =
ds

dτs

(
τs(τ − 1)s). (4)

The method subclass accuracy is of order 2s and its stability function is the diagonal
(s, s)-Padé approximation [20]. The “Radau I quadrature formula” defines ci as the zeros of
a polynomial P∗s (τ) + P∗s−1(τ), yielding c1 = 0, while the “Radau II quadrature formula”
yields cs = 1 on the basis of the polynomial P∗s (τ)− P∗s−1(τ). The “Lobatto III quadrature
formula” with both c1 = 0 and cs = 1 originates from the polynomial P∗s (τ)− P∗s−2(τ).
The accuracy of the s-stage Radau IA and Radau IIA methods is of order 2s− 1, and their
stability function is the (s− 1, s) subdiagonal Padé approximation. The accuracy of the
Lobatto III class of method is of order 2s− 2, with the stability function being the diagonal
(s− 1, s− 1) Padé approximation for Lobato IIIA and IIIB and (s− 2, s) for Lobatto IIIC [20].

In contrast to classical collocation methods, the novel method class is derived from
the integral form of Equation (1).

∫ xn+h

xn
y′(x) v(x) dx =

∫ xn+h

xn
f (x, y(x)) v(x) dx, (5)

where v(x) is the test function, arbitrary in general. The usage of the integral approach is,
for instance, widely employed in finite element formulation. Its property is a functional
approximation of the observed (primary) variable which needs to satisfy the governing
(partial) differential equation in an integral fashion. The approximation function, denoted
as u′, is assumed to approximate the solution of the differential equation y′. The system
of equations determining the approximation polynomial u′ is constructed by substituting
different test functions v(x) in Equation (5) and imposing the initial condition.

A new class of methods follows from Equation (5) by, firstly, employing differ-
ent approximation polynomial functions for u′. Functions are defined on the basis of
roots of the Legendre polynomial P∗s (τ) or its combinations (recall: P∗s (τ) + P∗s−1(τ),
P∗s (τ) − P∗s−1(τ) or P∗s (τ) − P∗s−2(τ)). The choice of u′ then determines the quadrature
rule in integrating the left-hand side of Equation (5). Secondly, different quadrature formu-
lae are employed for the integration of the right-hand side of Equation (5). This integration
can be conducted by any quadrature rule (Gauss–Legendre, Radau I, Radau II, or Lobatto),
independent of the choice for the left-hand side.

3. General Derivation of the Method

Let us introduce in Equation (5) a new dimensionless variable τ ∈ [0, 1], where
x = xn + τ h. Equation (5) now yields∫ 1

0
y′(xn + τ h)v(τ)dτ =

∫ 1

0
f (xn + τ h, y(xn + τ h))v(τ)dτ. (6)

For the approximate solution of y′, we consider a collocation polynomial u′ of stage s.

y′(xn + τ h) ≈ u′(xn + τ h) =
s

∑
j=1

k j lj(τ), (7)

where k j represents discrete values of u′(xn + τ h) at collocation points cj, k j = u′
(

xn + cj h
)
,

and lj(τ) represents the Lagrange polynomials.
The collocation points cj, j = 1, . . . , s can generally be chosen arbitrarily. As discussed

in the preliminaries, this work limits their choice to the roots of P∗s (τ) or any of its combi-
nations. We continue without setting their numerical values until the next section where
certain options are investigated.
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By considering Equation (6) in Equation (5), we obtain

∫ 1

0

s

∑
j=1

k j lj(τ)v(τ)dτ =
∫ 1

0
f

(
xn + τ h, y0 + h

s

∑
j=1

k j

∫ τ

0
lj(τ) dτ

)
v(τ)dτ, (8)

substituting the integrated approximation function.

u(xn + τ h) = y0 + h
s

∑
j=1

k j

∫ τ

0
lj(τ)dτ. (9)

Unknowns in Equation (8) are k j, j = 1, . . . , s, the discrete values of the approximation
function u′. Equations that determine the coefficients are generated by substituting different
test functions in Equation (8). For the test function, we choose the Lagrange polynomials
of degree s (as is common in finite element method).

vi(τ) = ∏
l 6=i

τ − ζl
ζi − ζl

, i = 1, . . . , s, (10)

where s denotes the number of equations instantiated from Equation (8). Points ζi in
Equation (10) are chosen as the roots of the Lobatto polynomial P∗s (τ)− P∗s−2(τ), for the
property ζ1 = 0, ζs = 1.

The left-hand side of Equation (8) assumes the form of the standard quadrature
formula,

s

∑
j=1

k j pij where pij =
∫ 1

0
lj(τ) vi(τ)dτ, i = 1, . . . , s, (11)

with lj(τ) and vi(τ) defined by Equations (7) and (10), respectively.
The right-hand side of Equation (8) is approximated as

f (xn + τ h, u(xn + τ h)) ≈
ŝ

∑
j=1

F̂j l̂j(τ), (12)

where F̂j represents discrete values of f (xn + τ h, u(xn + τ h)) at collocation points ĉj,
F̂j = f

(
xn + ĉj h, u

(
xn + ĉj h

))
. Functions l̂j(τ) are the Lagrange polynomials.

l̂j(τ) = ∏
l 6=j

τ − ĉl
ĉj − ĉl

, j = 1, . . . , ŝ, (13)

where collocation points are ĉj, j = 1, . . . , ŝ. As in the case of collocation points cj, the
numerical values of ĉj are arbitrary in general and there is no requirement for ĉj = cj. In
this work, we limit their values to the roots of P∗ŝ (τ) and some combinations, which we
analyze in the next section.

The right-hand side of Equation (8) can thus be expressed as∫ 1

0

ŝ

∑
j=1

F̂j l̂j(τ)v(τ)dτ =
∫ 1

0

ŝ

∑
j=1

f

(
xn + ĉj h, y0 + h

s

∑
m=1

km

∫ ĉj

0
lm(τ)dτ

)
l̂j(τ)v(τ)dτ. (14)

By employing Equations (6) and (10), the right-hand side of Equation (8) finally
becomes

∑ŝ
j=1 f

(
xn + ĉjh, y0 + h ∑s

m=1 km ajm
)
qij, i = 1, . . . , s where

qij =
∫ 1

0 l̂j(τ) vi(τ) dτ, ajm =
∫ ĉj

0 lm(τ) dτ, i = 1, . . . , s, j = 1, . . . , ŝ,
(15)

with l̂j(τ) and vi(τ) defined by Equations (13) and (10), respectively.
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The final form of Equation (8) is given as

s

∑
j=1

k j pij =
ŝ

∑
j=1

f

(
xn + ĉjh, y0 + h

s

∑
m=1

km ajm

)
qij, i = 1, . . . , s, (16)

with the coefficients specifying a method instance summarized as follows:

pij =
∫ 1

0 lj(τ) vi(τ) dτ, i = j = 1, . . . , s
qij =

∫ 1
0 l̂j(τ) vi(τ) dτ, i = 1, . . . , s; j = 1, . . . , ŝ

ajm =
∫ ĉj

0 lm(τ) dτ, j = 1, . . . , ŝ; m = 1, . . . , s
bj =

∫ 1
0 lj(τ) dτ, j = 1, . . . , s

 . (17)

Equation (16) determines the discrete values of the approximation function k j,
j = 1, . . . , s and can be linear or nonlinear. The end-point of the interval y(xn + h) is
approximated as

y(xn + h) ≈ u(xn + h) = y0 + h
s

∑
j=1

k j

∫ 1

0
lj(τ)dτ = y0 + h

s

∑
j=1

k jbj, (18)

with coefficients bj defined with the last line in Equation (17). The numerical values of the
coefficients summarized in Equation (17) are found after specifying the collocation points
cj, j = 1, . . . , s, and ĉj, j = 1, . . . , ŝ (Equations (7) and (13), respectively).

4. Particular Method Families: Their Accuracy and Stability

The behavior of a method instance is determined by the choice of the collocation points
cj, j = 1, . . . , s, and ĉj, j = 1, . . . , ŝ, arbitrary in general. In this work, we investigate the
option of selecting the Gauss–Legendre and Lobatto points. We denote method instances
according to the quadrature formula used, e.g., Gs|Gŝ employs s-stage Gauss points for cj,
j = 1, . . . , s, and ŝ-stage Gauss points for ĉj, j = 1, . . . , ŝ.

The coefficients of a method instance, Equation (17), are listed in the manner of
Butcher [21] as follows:

[p]s×s [q]s×ŝ

[a]ŝ×s

{b}s {ĉ}ŝ

Method families that we introduce in this work are presented in Table 1. Methods are
chosen due to their favorable accuracy (e.g., Gs|Gs+1 and Ls|Gs+1) or to demonstrate the
option of enhanced integration accuracy of the right-hand side of the ODEs (for instance,
by comparing methods Gs|Gs and Gs|Gs+1 or methods Ls|Ls and Ls|Ls+1). Method
families of interest are also eLs|Gs and eLs|Gs+1. Their definition only differs in the
computation of the first coefficient k1, i.e., explicitly by using the initial condition y0. Their
labels include an “e” before the quadrature rule designation.

The coefficient arrays of the methods in Table 1, obtained for s = 2, 3, 4, are reported in
the Supplementary Materials (in the form of analytical expressions), whereas Appendix A
provides tableaus for methods Gs|Gs, Ls|Ls, and Ls|Ls+1. For convenience in practical
usage, we provide the numerical values of coefficients in Appendix B. In Section 4.1, we
prove that the Gs|Gs, and Ls|Ls method families are identical to the Gauss–Legendre and
the Lobatto IIIA methods, respectively. The accuracy and linear stability of the methods
are analyzed in Section 4.2.
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Table 1. The proposed method families.

Method Family Polynomials Defining the Collocation Points 1:
cj, j=1,. . . ,s ^

cj, j=1,. . . ,
^
s

Gs|Gs P∗s (τ) P∗ŝ (τ); ŝ = s
Gs|Gs+1 P∗s (τ) P∗ŝ (τ); ŝ = s + 1

Ls|Ls P∗s (τ)− P∗s−2(τ) P∗s (τ)− P∗s−2(τ); ŝ = s
Ls|Ls+1 P∗s (τ)− P∗s−2(τ) P∗s (τ)− P∗s−2(τ); ŝ = s + 1
Ls|Gs+1 P∗s (τ)− P∗s−2(τ) P∗ŝ (τ); ŝ = s + 1
eLs|Gs P∗s (τ)− P∗s−2(τ) P∗ŝ (τ); ŝ = s

eLs|Gs+1 P∗s (τ)− P∗s−2(τ) P∗ŝ (τ); ŝ = s + 1
1 Collocation points coincide with the roots of the listed polynomials, where P∗s (τ) is the shifted Legendre
polynomial of degree s, Equation (3).

4.1. Gauss–Legendre and Lobatto IIIA Method Families as Subclasses of the Novel Method Class

Let us show that (a) the Gs|Gs method family is identical to the Gauss–Legendre
method and (b) the Ls|Ls method family is identical to the Lobatto IIIA method.

Proof. For cj = ĉj, j = 1, . . . , s, (s = ŝ), the coefficients pij = qij in Equation (16) can be
factored out, yielding

s

∑
j=1

(
k j − f

(
xn + cjh, y0 + h

s

∑
m=1

km ajm

))
pij = 0, i = 1, . . . , s, (19)

exploiting qij = pij, i = j = 1, . . . , s. The system of Equation (19) is equivalent to the
classical RK system in Equation (2) if and only if the coefficients ajm and cj in Equation (19)
are identical to aij and cj of a RK method, and the matrix P =

[
pij
]

is invertible.
Statement (a) is verified by reviewing the definition of the ajm coefficients (see

Equation (17)). These can be defined in the exact same manner in the Gauss–Legendre
and Lobatto IIIA methods (see Equation (2)) [18]. To verify statement (b), review the
definition of pij in Equation (17). In this case, the matrix P is a square matrix of size s× s.
The nonzero determinant is a consequence of linearly independent equations (i.e., matrix
rows), generated from test functions vi. These are, specifically, the Lagrange polynomials
of degree s, Equation (10), with points ζi as the roots of the Legendre polynomial. This is a
sufficient condition for the matrix P to be invertible.

4.2. Accuracy and Linear Stability

The accuracy of the methods is investigated by integrating the following two test
equations:

Test equation A

{
y′(x) = λy(x), y(xn) = y0,

ye(x) = y0exλ

Test equation B

{
y′(x) = λ cos(xλ) + x, y(xn) = y0,

ye(x) = y0 + sin(xλ) + x2/2

(20)

where ye(x) is the exact solution. Equation A is a standard test equation for investigating
the accuracy and linear stability of methods. Test equation B is proposed to demonstrate
the impact of using different quadrature rules for the integration of the right-hand side
of ODEs.

The accuracies are determined by applying the methods to both test equations. The ap-
proximate and the exact solutions are expanded into a Taylor series about xn and subtracted
at xn + h, yielding an error of the approximate solution. The stability analysis was per-
formed using test equation A according to the established procedure. The same procedure
was conducted for the Gauss–Legendre, Lobatto IIIA, and Lobatto IIIC method [13].
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The results of accuracy and stability analysis are given in Table 2. The methods were
grouped as follows by matching behavior:

• Ls|Ls and Gs|Ls (first column in the table);
• Gs|Gs, Ls|Gs, Gs|Ls+1, and Ls|Ls+1 (the second column);
• Gs|Gs+1 and Ls|Gs+1 (the third column).

Table 2. The accuracy orders of the proposed methods, Lobatto IIIA, Lobatto IIIC [22], and Gauss–
Legendre [21] methods when applied to the test equations in Equation (20). Linear stability (integrat-
ing test equation A in Equation (20)) is reported in the form of Padé approximation [20].

Method Ls|Ls 1

Gs|Ls

Gs|Gs 2

Ls|Gs
Gs|Ls+1
Ls|Ls+1

Gs|Gs+1
Ls|Gs+1

Lobatto
IIIC eLs|Gs eLs|Gs+1

No. of coefficients to be
determined s s s s s − 1 s − 1

Order of
accuracy

Test equation A 2s − 2 2s 2s 2s − 2 2s − 1 2s − 1
Test equation B 2s − 2 2s 2s + 2 2s − 2 2s 2s + 2

Linear stability provided as
Padé approximation [20]

(s − 1, s
− 1) (s, s) (s, s) (s − 2, s) (s, s − 1)

1 Lobatto IIIA method. 2 Gauss–Legendre method.

The results suggest that the behavior of a method is primarily determined by the
integration rule of the right-hand side of the ODE, and that taking Gauss points of s stages
is equivalent to using Lobatto points with s + 1 stages.

The effect of using a higher integration rule for the right-hand side of ODEs is evident
upon comparing the accuracy of Ls|Ls vs. Ls|Ls+1, Gs|Ls vs. Gs|Ls+1, and Gs|Gs
vs. Gs|Gs+1 methods (Table 2). Their accuracy was improved by merely enhancing the
integration of the right-hand side of the ODE while retaining the number of coefficients.
This improvement in accuracy cannot be general since it was not observed in Ls|Gs vs.
Ls|Gs+1, and Gs|Gs vs. Gs|Gs+1 for test equation A (Equation (20)).

The stability of the methods denoted with “e” (where the first coefficient is computed
explicitly, eLs|Gs and eLs|Gs+1 in Table 2), is reduced to a (s, s − 1)-Padé approximation.
This is the cost of having a smaller system of equations for computing the method’s
coefficients, having the size of s − 1 × s − 1. Unlike the other proposed method families,
“e”-methods are not A-stable. However, an interesting feature of these methods is their
accuracy. Their accuracy order was 2s − 1 in test equation A but increased to 2s for eLs|Gs
and even 2s + 2 for eLs|Gs+1 in test equation B.

5. Numerical Examples

We applied the novel and the established methods to several test problems and com-
pared the results, finding that the novel methods offer either comparable or significantly
improved performance. In this work, four examples are presented. Example 1 is proposed
by the authors, while the remaining examples are well-known stiff and/or highly nonlinear
test problems from the literature. In Example 1 (dynamic problem of a mass–spring system),
we investigate the application of the methods to problems involving high-frequency oscil-
lations. The behavior of the method with respect to the high initial stiffness of the system
was analyzed in Example 2. In Example 3, the methods were examined for problems where
the Lobatto IIIC methods might pose stability issues, and, in Example 4, the methods were
investigated for a highly nonlinear system.

The examples are integrated by Gs|Gs, Gs|Gs+1, Ls|Ls+1, Ls|Gs, and Ls|Gs+1
for stages s = 3, 4, which have orders of accuracy 4 and 6, respectively (Table 2). For
comparison, we also analyzed the examples with the Lobatto IIIC method of the same
orders of accuracy, 4 and 6.
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Analyses were performed in the fixed step size environment for different step sizes h.
The approximations were compared to the exact solutions by computing the error as the
discrete L2 norm, defined for the variable y as

N2y =

√√√√ N

∑
i=1

[ye(xi)− y(xi)]
2, (21)

where y and ye are the approximate and the exact solutions, respectively. N is the number
of intervals and xi represents the discrete values of the independent variable. All computa-
tions were conducted in Wolfram Mathematica 11. Nonlinear systems of equations were
solved using the Newton–Raphson method with relative error tolerance 10−15.

5.1. Example 1

Mass–spring system:
y′1 = y2, y1(0) = 1.1,
y′2 = 10− 100 y1 − 10000 sin(20 π x), y2(0) = 1
x ∈ [0, 5]

, (22)

with the exact solution for y1 (representing the displacement of the mass) being

y1(x) =
(
−1 + 4π2 + 10

(
−1 + 4π2) cos(10x)

+(−1 + 4(−500 + π)π) sin(10x) + 1000 sin(20πx))/
(
40π2 − 10

)
.

The differential equations describe the dynamic behavior of a mass–spring system.
The mass is subject to a harmonic excitation and is oscillating about its static equilibrium.
The particular excitation used adds high-frequency oscillations to the natural response of
the mass, requiring a small step size and making the problem computationally demanding.
The approximation errors of different methods for the y1 variable are reported in Figure 1
with squares and circles for methods of order 4 and 6, respectively. In the same manner,
the results for methods eLs|Gs and eLs|Gs+1 are denoted by triangles.

In Figure 1, Ls|Gs and Gs|Gs yielded the same error and, likewise, the Gs|Gs+1 and
Ls|Gs+1 pair, as observed for all analyzed cases. The results demonstrate that the behavior
of the new method seems to be determined by the integration rule on the right-hand side of
the ODE. Gs|Gs+1 and Ls|Gs+1 also performed significantly better than the other methods.
Ls|Ls+1 performed slightly better than Lobatto IIIC. A significant finding is that the usage
of a different quadrature rule for the right-hand side of the ODE improved the accuracy of
a numerical method.

Methods eLs|Gs and eLs|Gs+1 produced equivalent results in the analyzed example,
as evident in Figure 1. Although they are of higher order (5 and 7) than the rest, they
employ the same number of coefficients per variable (except Lobatto IIIC, which has a
coefficient more than Gs|Gs at a given order of accuracy). For example, Gs|Gs of order
4 (G2|G2) employs two coefficients per variable, matching eLs|Gs at order 5; G3|G3
is of order 6 and employs three coefficients per variable and so does eL4|G4 at order
7. Although these methods share the same number of coefficients per step, a significant
advantage of the “e” methods is observed.

Methods eLs|Gs and eLs|Gs+1 were applied only to Example 1. They require a very
small step size for solving the remaining problems because they are not A-stable.
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5.2. Example 2

The problem proposed by Frank and van der Houwen [23],
y′1 = −1002 y1 + 1000 y2

2, y1(0) = 1
y′2 = y1 − y2 (1 + y2), y2(0) = 1
x ∈ [0, 5]

, (23)

with exact solution y1(x) = e−2x, y2(x) = e−x is a common choice for benchmarking [2,24].
Its intentionally designed stiffness is confirmed by computing the Jacobian of the right-hand
side at the initial point and determining the eigenvalues λ1 = −1004, λ2 = −1.00199 [2].
The computed errors of different methods for the y1 variable are reported in Figure 2 with
squares and circles for methods of order 4 and 6, respectively.

In Figure 2, Ls|Ls+1 outperformed the rest. The problem also seems to be suitable for
the Lobatto IIIC, which performed better than Gs|Gs, Ls|Gs, Gs|Gs+1, and Ls|Gs+1. The
latter two outperformed the Gs|Gs. However, while Ls|Gs, Gs|Gs+1, Ls|Gs+1, and Gs|Gs
have the same number of unknown coefficients per step, Lobatto IIIC has a coefficient more
per variable.
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5.3. Example 3

A problem presented by Vigo-Aguiar et al. [2], and Frank and van der Houwen [23]:
y′1 = −0.04 y1 + 104 y2 y3 − 0.96 e−x, y1(0) = 1
y′2 = 0.04 y1 − 104 y2 y3 − 3× 107 y2

2 − 0.04 e−x, y2(0) = 0
y′3 = 3× 107 y2

2 + e−x, y3(0) = 0
x ∈ [0, 5]

, (24)

with the exact solution y1(x) = e−x, y2(t) = 0, and y3(t) = 1− e−x. The same highly stiff
Jacobian matrix is computed as in the famous Robertson problem (describing the kinetics
of three species), only altered by the nonhomogeneous terms [23]. The computed errors for
the y1 variable are reported in Figure 3 with squares and circles for methods of order 4 and
6, respectively.

In this problem (see Figure 3), Lobatto IIIC was unstable at larger step sizes. Among
the methods of order 4, L2|G3 and G2|G3 performed best, while L3|L4 seemed to be the
most appropriate order 6 method.

5.4. Example 4

The problem presented by Vigo-Aguiar et al. [2], and Frank and van der Houwen [23]:
y′1 = −103(y3

1 y6
2 − cos3(t) sin6(t)

)
− sin(t), y1(0) = 1

y′2 = −103(y5
2 y4

3 − sin9(t)
)
+ cos(t), y2(0) = 0

y′3 = −103(y2
1 y3

3 − cos2(t) sin3(t)
)
+ cos(t), y3(0) = 0

x ∈ [0, 5]

, (25)

with exact solution y1(t) = cos(t), y2(t) = y3(t) = sin(t). This is a more computationally
intensive test problem due to strong nonlinearity. The approximation errors of different
methods for the y1 variable are reported in Figure 4 with squares and circles for methods
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of order 4 and 6, respectively. The best was Ls|Ls+1, followed by Ls|Gs+1 and Gs|Gs+1,
and then Gs|Gs.
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6. Discussion

The results show that changing the quadrature rule for the left-hand side of differential
Equation (4) had a minuscule effect on the results. However, increasing the order on the
right-hand side, i.e., methods #s|#s+1, improved the accuracy at the same number of
coefficients. This was demonstrated on test equations analytically, as well as on some
numerical examples.

In contrast to the classical derivation of collocation RK-type methods, the new method
class is derived from the integral form of the ODE. This approach allows integrating the
left-hand and the right-hand side separately, enabling us to employ different quadrature
rules for each, resulting in a multitude of method families. Proof is provided that using
Gauss quadrature on both ODE sides results in the Gauss–Legendre method and, likewise,
Lobatto quadrature returns the Lobatto IIIA method.

By examining the computational cost of the analyzed methods for the presented
examples (data not shown), the Gauss–Legendre method somewhat outperformed the
proposed methods whereas the Lobatto method was the slowest. However, despite pro-
ducing computationally somewhat inefficient results, we still believe that the presented
approach contributes to our understanding of RK-type collocation methods; it shows how
their accuracy can be enhanced (for the same number of method’s coefficients) and presents
a new way of constructing them.

The proposed method class was found to be especially suitable for (high-frequency)
oscillatory and stiff problems. We compared certain novel subclasses to implicit RK-
type methods, i.e., the established collocation methods with the same framework and
purpose, and we demonstrated the advantage of the new methods. Certain extensions and
alternatives could outperform the proposed approach: the embedded formula collocation
method [20,25], multivalue methods [26], parallel time integration methods [27], variable
step size methods [28], block methods [29–32], etc. We focused on the popular RK-type
methods to avoid an extensive comparison to all the possible alternatives. Tables similar
to Butcher tableaus are provided for convenience and comparison to the RK methods.
The behavior of methods was in this work demonstrated on some of the well-known
ODEs from literature. These include stiff problems, as well as a nonlinear and highly
oscillatory system. Systems where the accuracy of methods can behave differently, such as
chaotic-type problems [33] or DAE systems [14], are beyond the scope of this work.

Although the implicit RK methods are known to be computationally expensive, much
effort has been devoted to developing effective numerical algorithms and efficient com-
puter software packages [3]. Well-known solvers based on the implicit RK approach are
RADAU, STRIDE, DIRK, and SDIRK, popular for integrating stiff systems. Implicit RK
methods can employ a much larger step size than the explicit ones. The relatively small
interval of absolute stability makes the explicit RK methods unsuitable for stiff initial value
problems [6]. The presented approach allows improving the implicit RK by increasing the
integration accuracy of the right-hand side of the ODE at no additional computational cost.

7. Conclusions

A new class of methods for numerical integration of ODEs was proposed. The methods
allow the usage of differing quadrature rules for the integration of the right-hand side
of ODEs while using the same approximation function for the solution of the ODE. We
demonstrated how the accuracy of Gauss–Legendre and Lobatto IIIA methods, which
can also be derived from the proposed approach, can be increased at the same number of
method stages.

In engineering and natural sciences, implicit RK-type methods are still widely used,
especially for solving stiff systems [34,35]. As researchers are familiar with Butcher tableaus,
the existing program codes can be enhanced in accuracy according to the proposed ap-
proach by forming an altered set of equations which is a rather small modification that
retains the number of unknowns.
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More methods of the novel class remain to be analyzed. For the sake of clarity, in
this work, we only analyzed the Gauss–Legendre and Lobatto collocation points. Several
more options are available, such as the Radau I, Radau II, or the so-called Gauss–Lobatto
Chebyshev points. These would yield different method instances, further extending the
investigation. The optimal choice for the quadrature on the right-hand side still remains to
be determined.

Supplementary Materials: The following are available online at https://www.mdpi.com/2227-739
0/9/2/174/s1, Tableaus for the proposed families of methods (provided in the form of analytical
expressions), Tables S1–S21.
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Appendix A

Below, tableaus for some of the presented families of methods (with s = 2, 3, 4) are
provided in the form of analytical expressions. A complete set of tableaus is provided in
the Supplementary Materials. The tables include Tables A1–A3: tableaus for the Gs|Gs
method, Tables A4–A6: tableaus for the Ls|Ls method, and Tables A7–A9: tableaus for the
Ls|Ls+1 method.

Table A1. G2|G2 method.

π1 π2 π1 π2

π2 π1 π2 π1

1/4 α2

α1 1/4

1/2 1/2 2 π2 2 π1

π1,2 = 1/12
(

3±
√

3
)

, α1,2 = 1/12
(

3± 2
√

3
)

.

Table A2. G3|G3 method.

π1 0 π2 π1 0 π2

1/9 4/9 1/9 1/9 4/9 1/9

π2 0 π1 π2 0 π1

5/36 α2 α′2
α′′1 2/9 α′′2

α′1 α1 5/36

5/18 4/9 5/18
(

5−
√

15
)

/10 1/2
(

5 +
√

15
)

/10

π1,2 = 1
36

(
3±
√

15
)

, α1,2 = 2
9 ±

1√
15

, α′1,2 = 5
36 ±

1
2
√

15
, α
′′
1,2 = 1

72

(
10± 3

√
15
)

.

https://www.mdpi.com/2227-7390/9/2/174/s1
https://www.mdpi.com/2227-7390/9/2/174/s1
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Table A3. G4|G4 method.

π1|1|1 π2|2|2 π2|1|2 π1|2|1 π1|1|1 π2|2|2 π2|1|2 π1|2|1

π′2|1|2 π′1|1|1 π′1|2|1 π′2|2|2 π′2|1|2 π′1|1|1 π′1|2|1 π′2|2|2

π′2|2|2 π′1|2|1 π′1|1|1 π′2|1|2 π′2|2|2 π′1|2|1 π′1|1|1 π′2|1|2

π1|2|1 π2|1|2 π2|2|2 π1|1|1 π1|2|1 π2|1|2 π2|2|2 π1|1|1

1/24
(
3−
√

5/6
)

α1|2|2 α2|1|2 α′′2|2|2

α′1|2|1|1 α′′′1 α′′1|2|1 α′2|2|2|1

α′1|1|1|2 α′′1|1|1 α′′′1 α′2|1|2|2

α′′2|1|2 α1|2|1 α2|1|1 1/24
(
3−
√

5/6
)

2 α′′′2 2 α′′′1 2 α′′′1 2 α′′′2 γ2|1 γ2|2 γ1|2 γ1|1

π1,2|1,2|1,2 = 1
720

(
15± 5

√
30±

√
15
(

45± 8
√

30
))

, π′1,2|1,2|1,2 = 1
144

(
15± 2

√
30±

√
225± 30

√
30
)

, α1,2|1,2|1,2 =

630+35
√

30±60
√

45+6
√

30±39
√

150+20
√

30±3
√

70(585+106
√

30)
5040 , α′1,2|1,2|1,2|1,2 = ±39±6

√
14±6

√
30±3

√
105+7

√
75+4

√
30

24
√

630+84
√

30
,

α
′′
1,2|1,2|1,2 = 1

8 ±
√

5
6

24 ±
1
24

√
90
7 ±

52
√

6
5

7 , α
′′′
1,2 = 1

144

(
18±

√
30
)

, γ1,2|1,2 = 1
2 ±

1
2

√
1

35

(
15± 2

√
30
)

.

Table A4. L2|L2 method.

1/3 1/6 1/3 1/6

1/6 1/3 1/6 1/3

0 0

1/2 1/2

1/2 1/2 0

Table A5. L3|L3 method.

2/15 1/15 −1/30 2/15 1/15 −1/30

1/15 8/15 1/15 1/15 8/15 1/15

−1/30 1/15 2/15 −1/30 1/15 2/15

0 0 0

5/25 1/3 −1/24

1/6 2/3 1/6

1/6 2/3 1/6 0 1/2 1

Table A6. L4|L4 method.

1/14
√

5/84 −
√

5/84 1/84 1/14
√

5/84 −
√

5/84 1/84
√

5/84 5/14 5/84 −
√

5/84
√

5/84 5/14 5/84 −
√

5/84

−
√

5/84 5/84 5/14
√

5/84 −
√

5/84 5/84 5/14
√

5/84

1/84 −
√

5/84
√

5/84 1/14 1/84 −
√

5/84
√

5/84 1/14

0 0 0 0

α1 α′2 α′′2 α′′′1

α2 α′′1 α′1 α′′′2

1/12 5/12 5/12 1/12

1/12 5/12 5/12 1/12 0
(

5−
√

5
)

/10
(

5 +
√

5
)

/10 1

α1,2 = 1
120

(
11±

√
5
)

, α′1,2 = 1
120

(
25±

√
5
)

, α
′′
1,2 = 1

120

(
25± 13

√
5
)

, α
′′′
1,2 = 1

120

(
−1±

√
5
)

.
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Table A7. L2|L3 method.

1/3 1/6 1/6 1/3 0

1/6 1/3 0 1/3 1/6

0 0

3/8 1/8

1/2 1/2

1/2 1/2 0 1/2 1

Table A8. L3|L4 method.

2/15 1/15 −1/30 1/12 ω1 ω2 0

1/15 8/15 1/15 0 1/3 1/3 0

−1/30 1/15 2/15 0 ω2 ω1 1/12

0 0 0

α2 α′2 α′′2

α1 α′1 α′′1

1/6 2/3 1/6

1/6 2/3 1/6 0
(

5−
√

5
)

/10
(

5 +
√

5
)

/10 1

ω1,2 = 1
24

(
1±
√

5
)

, α1,2 = 1
300

(
55±

√
5
)

, α′1,2 = 1
75

(
25± 7

√
5
)

, α
′′
1,2 = 1

300

(
−5±

√
5
)

.

Table A9. L4|L5 method.

1/14
√

5/84 −
√

5/84 1/84 1/20 ω1 −2/45 ω2 0
√

5/84 5/14 5/84 −
√

5/84 0 ω′1 2/9 ω′2 0

−
√

5/84 5/84 5/14
√

5/84 0 ω′2 2/9 ω′1 0

1/84 −
√

5/84
√

5/84 1/14 0 ω2 −2/45 ω1 1/20

0 0 0 0

α1 α′1|2 α′2|2 α′′′1

17/192 α′′1 α′′2 −1/192

α2 α′1|1 α′2|1 α′′′2

1/12 5/12 5/12 1/12

1/12 5/12 5/12 1/12 0 γ2 1/2 γ1 γ1|1

ω1,2 = 1
180

(
7 +
√

21
)

, ω′1,2 = 1
72

(
7 +
√

105
)

, γ′1,2 = 1
14

(
7±
√

21
)

, α1,2 = 103+3
√

21
1176 , α′1,2|1,2 =

5(49±6
√

5±9
√

21)
1176 , α

′′
1,2 = 5

192

(
8± 3

√
5
)

,

α
′′′
1,2 = −5±3

√
21

1176 .

Appendix B

Below, tableaus for the proposed families of methods (with s = 2, 3, 4) are provided
in the form of numerical values. Tables include Tables A10–A12: tableaus for the Gs|Gs
method, Tables A13–A15: tableaus for the Gs|Gs+1 method, Tables A16–A18: tableaus for
the Ls|Ls method, Tables A19–A21: tableaus for the Ls|Ls+1 method, Tables A22–A24:
tableaus for the Ls|Gs+1 method, Tables A25–A27: tableaus for the eLs|Gs method, and
Tables A28–A30: tableaus for the eLs|Gs+1 method.
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Table A10. G2|G2 method.

0.3943375673 0.1056624327 0.3943375673 0.1056624327

0.1056624327 0.3943375673 0.1056624327 0.3943375673

0.2500000000 −0.0386751346

0.5386751346 0.2500000000

0.5000000000 0.5000000000 0.2113248654 0.7886751346

Table A11. G3|G3 method.

0.1909162041 0.0000000000 −0.0242495374 0.1909162041 0.0000000000 −0.0242495374

0.1111111111 0.4444444444 0.1111111111 0.1111111111 0.4444444444 0.1111111111

−0.0242495374 0.0000000000 0.1909162041 −0.0242495374 0.0000000000 0.1909162041

0.1388888889 −0.0359766675 0.0097894440

0.3002631950 0.2222222222 −0.0224854172

0.2679883338 0.4804211120 0.1388888889

0.2777777778 0.4444444444 0.2777777778 0.1127016654 0.5000000000 0.8872983346

Table A12. G4|G4 method.

0.1095643912 −0.0230516341 −0.0113542767 0.0081748529 0.1095643912 −0.0230516341 −0.0113542767 0.0081748529

0.0821909249 0.3172608528 0.0432176354 −0.0260027464 0.0821909249 0.3172608528 0.0432176354 −0.0260027464

−0.0260027464 0.0432176354 0.3172608528 0.0821909249 −0.0260027464 0.0432176354 0.3172608528 0.0821909249

0.0081748529 −0.0113542767 −0.0230516341 0.1095643912 0.0081748529 −0.0113542767 −0.0230516341 0.1095643912

0.0869637113 −0.0266041801 0.0126274627 −0.0035551497

0.1881181175 0.1630362887 −0.0278804286 0.0067355006

0.1671919220 0.3539530060 0.1630362887 −0.0141906949

0.1774825723 0.3134451147 0.3526767575 0.0869637113

0.1739274226 0.3260725774 0.3260725774 0.1739274226 0.0694318442 0.3300094782 0.6699905218 0.9305681558

Table A13. G2|G3 method.

0.3943375673 0.1056624327 0.2464717596 0.2222222222 0.0313060182

0.1056624327 0.3943375673 0.0313060182 0.2222222222 0.2464717596

0.1429533731 −0.0302517077

0.4665063509 0.0334936491

0.5302517077 0.3570466269

0.5000000000 0.5000000000 0.1127016654 0.5000000000 0.8872983346

Table A14. G3|G4 method.

0.1909162041 0.0000000000 −0.0242495374 0.1393760495 0.0742741410 −0.0365843541 −0.0103991697

0.1111111111 0.4444444444 0.1111111111 0.0449505428 0.2883827906 0.2883827906 0.0449505428

−0.0242495374 0.0000000000 0.1909162041 −0.0103991697 −0.0365843541 0.0742741410 0.1393760495

0.0919034035 −0.0309624389 0.0084908796

0.2761524294 0.0631476522 −0.0092906034

0.2870683812 0.3812967923 0.0016253483

0.2692868982 0.4754068833 0.1858743743

0.2777777778 0.4444444444 0.2777777778 0.0694318442 0.3300094782 0.6699905218 0.9305681558
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Table A15. G4|G5 method.

0.1095643912 −0.0230516341 −0.0113542767 0.0081748529 0.0876663770 0.0206983089 −0.0355555556 0.0062093567 0.0043148463

0.0821909249 0.3172608528 0.0432176354 −0.0260027464 0.0400713018 0.2340778829 0.1777777778 −0.0216712133 −0.0135890825

−0.0260027464 0.0432176354 0.3172608528 0.0821909249 −0.0135890825 −0.0216712133 0.1777777778 0.2340778829 0.0400713018

0.0081748529 −0.0113542767 −0.0230516341 0.1095643912 0.0043148463 0.0062093567 −0.0355555556 0.0206983089 0.0876663770

0.0627027106 −0.0240331396 0.0114763336 −0.0032358275

0.1782025822 0.0646259362 −0.0159331476 0.0038699741

0.1761059379 0.3049159395 0.0211566379 −0.0021785154

0.1700574485 0.3420057250 0.2614466412 −0.0042751596

0.1771632501 0.3145962439 0.3501057171 0.1112247120

0.1739274226 0.3260725774 0.3260725774 0.1739274226 0.0469100770 0.2307653449 0.5000000000 0.7692346551 0.9530899230

Table A16. L2|L2 method.

0.3333333333 0.1666666667 0.3333333333 0.1666666667

0.1666666667 0.3333333333 0.1666666667 0.3333333333

0.0000000000 0.0000000000

0.5000000000 0.5000000000

0.5000000000 0.5000000000 0.0000000000 1.0000000000

Table A17. L3|L3 method.

0.1333333333 0.0666666667 −0.0333333333 0.1333333333 0.0666666667 −0.0333333333

0.0666666667 0.5333333333 0.0666666667 0.0666666667 0.5333333333 0.0666666667

−0.0333333333 0.0666666667 0.1333333333 −0.0333333333 0.0666666667 0.1333333333

0.0000000000 0.0000000000 0.0000000000

0.2083333333 0.3333333333 −0.0416666667

0.1666666667 0.6666666667 0.1666666667

0.1666666667 0.6666666667 0.1666666667 0.0000000000 0.5000000000 1.0000000000

Table A18. L4|L4 method.

0.0714285714 0.0266198569 −0.0266198569 0.0119047619 0.0714285714 0.0266198569 −0.0266198569 0.0119047619

0.0266198569 0.3571428571 0.0595238095 −0.0266198569 0.0266198569 0.3571428571 0.0595238095 −0.0266198569

−0.0266198569 0.0595238095 0.3571428571 0.0266198569 −0.0266198569 0.0595238095 0.3571428571 0.0266198569

0.0119047619 −0.0266198569 0.0266198569 0.0714285714 0.0119047619 −0.0266198569 0.0266198569 0.0714285714

0.0000000000 0.0000000000 0.0000000000 0.0000000000

0.1103005665 0.1896994335 −0.0339073642 0.0103005665

0.0730327669 0.4505740309 0.2269672331 −0.0269672331

0.0833333333 0.4166666667 0.4166666667 0.0833333333

0.0833333333 0.4166666667 0.4166666667 0.0833333333 0.0000000000 0.2763932023 0.7236067977 1.0000000000
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Table A19. L2|L3 method.

0.3333333333 0.1666666667 0.1666666667 0.3333333333 0.0000000000

0.1666666667 0.3333333333 0.0000000000 0.3333333333 0.1666666667

0.0000000000 0.0000000000

0.3750000000 0.1250000000

0.5000000000 0.5000000000

0.5000000000 0.5000000000 0.0000000000 0.5000000000 1.0000000000

Table A20. L3|L4 method.

0.1333333333 0.0666666667 −0.0333333333 0.0833333333 0.1348361657 −0.0515028324 0.0000000000

0.0666666667 0.5333333333 0.0666666667 0.0000000000 0.3333333333 0.3333333333 0.0000000000

−0.0333333333 0.0666666667 0.1333333333 0.0000000000 −0.0515028324 0.1348361657 0.0833333333

0.0000000000 0.0000000000 0.0000000000

0.1758797734 0.1246336554 −0.0241202266

0.1907868933 0.5420330112 −0.0092131067

0.1666666667 0.6666666667 0.1666666667

0.1666666667 0.6666666667 0.1666666667 0.0000000000 0.2763932023 0.7236067977 1.0000000000

Table A21. L4|L5 method.

0.0714285714 0.0266198569 −0.0266198569 0.0119047619 0.0500000000 0.0643476427 −0.0444444444 0.0134301350 0.0000000000

0.0266198569 0.3571428571 0.0595238095 −0.0266198569 0.0000000000 0.2395409829 0.2222222222 −0.0450965384 0.0000000000

−0.0266198569 0.0595238095 0.3571428571 0.0266198569 0.0000000000 −0.0450965384 0.2222222222 0.2395409829 0.0000000000

0.0119047619 −0.0266198569 0.0266198569 0.0714285714 0.0000000000 0.0134301350 −0.0444444444 0.0643476427 0.0500000000

0.0000000000 0.0000000000 0.0000000000 0.0000000000

0.0992752781 0.0900222220 −0.0240628789 0.0074385434

0.0885416667 0.3830261441 0.0336405226 −0.0052083333

0.0758947899 0.4407295456 0.3266444447 −0.0159419448

0.0833333333 0.4166666667 0.4166666667 0.0833333333

0.0833333333 0.4166666667 0.4166666667 0.0833333333 0.0000000000 0.1726731646 0.5000000000 0.8273268354 1.0000000000

Table A22. L2|G3 method.

0.3333333333 0.1666666667 0.2464717596 0.2222222222 0.0313060182

0.1666666667 0.3333333333 0.0313060182 0.2222222222 0.2464717596

0.1063508327 0.0063508327

0.3750000000 0.1250000000

0.4936491673 0.3936491673

0.5000000000 0.5000000000 0.1127016654 0.5000000000 0.8872983346
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Table A23. L3|G4 method.

0.1333333333 0.0666666667 −0.0333333333 0.1393760495 0.0742741410 −0.0365843541 −0.0103991697

0.0666666667 0.5333333333 0.0666666667 0.0449505428 0.2883827906 0.2883827906 0.0449505428

−0.0333333333 0.0666666667 0.1333333333 −0.0103991697 −0.0365843541 0.0742741410 0.1393760495

0.0624238165 0.0091952744 −0.0021872467

0.1906101591 0.1698923826 −0.0304930634

0.1971597301 0.4967742841 −0.0239434924

0.1688539134 0.6574713923 0.1042428501

0.1666666667 0.6666666667 0.1666666667 0.0694318442 0.3300094782 0.6699905218 0.9305681558

Table A24. L4|G5 method.

0.0714285714 0.0266198569 −0.0266198569 0.0119047619 0.0876663770 0.0206983089 −0.0355555556 0.0062093567 0.0043148463

0.0266198569 0.3571428571 0.0595238095 −0.0266198569 0.0400713018 0.2340778829 0.1777777778 −0.0216712133 −0.0135890825

−0.0266198569 0.0595238095 0.3571428571 0.0266198569 −0.0135890825 −0.0216712133 0.1777777778 0.2340778829 0.0400713018

0.0119047619 −0.0266198569 0.0266198569 0.0714285714 0.0043148463 0.0062093567 −0.0355555556 0.0206983089 0.0876663770

0.0406464521 0.0082518815 −0.0029225402 0.0009342837

0.1084254894 0.1444003333 −0.0317501637 0.0096896860

0.0885416667 0.3830261441 0.0336405226 −0.0052083333

0.0736436474 0.4484168303 0.2722663333 −0.0250921560

0.0823990496 0.4195892069 0.4084147852 0.0426868813

0.0833333333 0.4166666667 0.4166666667 0.0833333333 0.0469100770 0.2307653449 0.5000000000 0.7692346551 0.9530899230

Table A25. eL2|G2 method.

0.5000000000 0.5000000000 0.5000000000 0.5000000000

0.1889957660 0.0223290994

0.4776709006 0.3110042340

0.5000000000 0.5000000000 0.2113248654 0.7886751346

Table A26. eL3|G3 method.

0.1666666667 0.3333333333 0.0000000000 0.2464717596 0.2222222222 0.0313060182

0.0000000000 0.3333333333 0.1666666667 0.0313060182 0.2222222222 0.2464717596

0.0946034999 0.0234946656 −0.0053965001

0.2083333333 0.3333333333 −0.0416666667

0.1720631668 0.6431720010 0.0720631668

0.1666666667 0.6666666667 0.1666666667 0.1127016654 0.5000000000 0.8872983346

Table A27. eL4|G4 method.

0.0833333333 0.1348361657 −0.0515028324 0.0000000000 0.1393760495 0.0742741410 −0.0365843541 −0.0103991697

0.0000000000 0.3333333333 0.3333333333 0.0000000000 0.0449505428 0.2883827906 0.2883827906 0.0449505428

0.0000000000 −0.0515028324 0.1348361657 0.0833333333 −0.0103991697 −0.0365843541 0.0742741410 0.1393760495

0.0560561704 0.0174153788 −0.0059212859 0.0018815809

0.1082653175 0.2428250379 −0.0304595597 0.0093786825

0.0739546508 0.4471262264 0.1738416287 −0.0249319842

0.0814517525 0.4225879525 0.3992512878 0.0272771630

0.0833333333 0.4166666667 0.4166666667 0.0833333333 0.0694318442 0.3300094782 0.6699905218 0.9305681558
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Table A28. eL2|G3 method.

0.5000000000 0.5000000000 0.2777777778 0.4444444444 0.2777777778

0.1063508327 0.0063508327

0.3750000000 0.1250000000

0.4936491673 0.3936491673

0.5000000000 0.5000000000 0.1127016654 0.5000000000 0.8872983346

Table A29. eL3|G4 method.

0.1666666667 0.3333333333 0.0000000000 0.1618513209 0.2184655363 0.1076070411 0.0120761017

0.0000000000 0.3333333333 0.1666666667 0.0120761017 0.1076070411 0.2184655363 0.1618513209

0.0624238165 0.0091952744 −0.0021872467

0.1906101591 0.1698923826 −0.0304930634

0.1971597301 0.4967742841 −0.0239434924

0.1688539134 0.6574713923 0.1042428501

0.1666666667 0.6666666667 0.1666666667 0.0694318442 0.3300094782 0.6699905218 0.9305681558

Table A30. eL4|G5 method.

0.0833333333 0.1348361657 −0.0515028324 0.0000000000 0.1023134256 0.0991262123 0.0000000000 −0.0297372127 −0.0050357585

0.0000000000 0.3333333333 0.3333333333 0.0000000000 0.0211857754 0.1699253357 0.2844444444 0.1699253357 0.0211857754

0.0000000000 −0.0515028324 0.1348361657 0.0833333333 −0.0050357585 −0.0297372127 0.0000000000 0.0991262123 0.1023134256

0.0406464521 0.0082518815 −0.0029225402 0.0009342837

0.1084254894 0.1444003333 −0.0317501637 0.0096896860

0.0885416667 0.3830261441 0.0336405226 −0.0052083333

0.0736436474 0.4484168303 0.2722663333 −0.0250921560

0.0823990496 0.4195892069 0.4084147852 0.0426868813

0.0833333333 0.4166666667 0.4166666667 0.0833333333 0.0469100770 0.2307653449 0.5000000000 0.7692346551 0.9530899230
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