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Abstract: We face the problem to determine whether an algebraic polynomial is nonnegative in an
interval the Yau Number Theoretic Conjecture and Yau Geometric Conjecture is proved. In this paper,
we propose a new theorem to determine if an algebraic polynomial is nonnegative in an interval. It
improves Wang-Yau Lemma for wider applications in light of Sturm’s Theorem. Many polynomials
can use the new theorem but cannot use Sturm’s Theorem and Wang-Yau Lemma to judge whether
they are nonnegative in an interval. New Theorem also performs better than Sturm’s Theorem
when the number of terms and degree of polynomials increase. Main Theorem can be used for
polynomials whose coefficients are parameters and to any interval we use. It helps us to find the roots
of complicated polynomials. The problem of constructing nonnegative trigonometric polynomials
in an interval is a classical, important problem and crucial to many research areas. We can convert
a given trigonometric polynomial to an algebraic polynomial. Hence, our proposed new theorem
affords a new way to solve this classical, important problem.

Keywords: algebraic polynomial; trigonometric polynomials; nonnegative; Wang-Yau Lemma;
Sturm’s Theorem; Yau Number Theoretic Conjecture; Yau Geometric Conjecture; integral points

1. Introduction

Due to the application in singularity theory and number theory, the problem of
computing positive lattice points in n-dimensional simplexes has aroused the interest of
mathematicians. In recent years, great progress has been made in the calculation of the
number of integral points in n-dimensional simplex with non-integral vertice (cf. [1,2]).
Such an estimate could be applied to find large gaps between primes, to Waring’s problem,
to primality testing and factoring algorithms, to singularity theory (cf. [3]) and many
others (e.g., classification theory of singularities (cf. [4]); characterization of weighted
homogeneity (cf. [5–7]); Bernoulli Polynomials (cf. [8]); PDE (cf. [9,10]). For more details
concerning a recent progress in this rapidly growing area of counting positive lattice points
in n-dimensional simplexes, the interested reader is referred to [11–13]. Stephen S.-T. Yau
proposes Yau Number Theoretic Conjecture and Yau Geometric Conjecture (cf. [14]) to
solve the above-mentioned problems. The novelty of Yau Number Theoretic Conjecture
is that we can count the integral points in a polytope whose vertices are not necessarily
integer points. Proving the above-mentioned conjectures needs to prove many complicated
polynomials are nonnegative in an interval. For example, proving 8 dimension Yau Number
Theoretic Conjecture (cf. [15]), we need to prove many complicated 8th degree polynomials
are nonnegative in an interval. The coefficients for each term of the polynomials are
complicated rational function of many parameters. We use Wang-Yau Lemma (cf. [16]) and
Sturm’s Theorem to prove whether many complicated polynomials are nonnegative in
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an interval for 8 dimension case. It is much easier to use Wang-Yau Lemma than Sturm’s
Theorem, but the condition to use it is too restricted and, hence, influences the range of
its application. The Main Theorem in Section 3 will cover the improvement of Wang-Yau
Lemma and shows how to increase its range of application.

Yau Number Theoretic Conjecture. Let

Pn = Pn(a1, a2, . . . , an) = #{(x1, . . . , xn) ∈ Zn
+ :

x1

a1
+

x2

a2
+ · · ·+ xn

an
≤ 1},

where n ≥ 3, a1 ≥ a2 ≥ · · · ≥ an > 1 are real numbers, #{. . . } denotes the number of elements
in the set. If Pn > 0, then

n!Pn ≤
n

∏
i=1

(ai − 1)− (an − 1)n +
n−1

∏
i=0

(an − i) (1)

and equality holds if and only if a1 = a2 = · · · = an are integers.

Yau Geometric Conjecture. Let f : (Cn, 0) → (C, 0) be a weighted homogeneous polynomial
with an isolated singularity at the origin. Let µ, pg and ν be the Milnor number, geometric genus
and multiplicity of singularity V = {z : f (z) = 0}, respectively. Then

µ− h(ν) ≥ n!pg (2)

where h(ν) = (ν − 1)n − ν(ν − 1) . . . (ν − n + 1). The equality holds if and only if f is a
homogeneous polynomial after a biholomorphic change of coordinates.

For recent progress of Yau Number Theoretic Conjecture, one can see the cited refer-
ences [15,17]. The Yau Geoemtric Conjecture has been proven for 3 ≤ n ≤ 6 (cf. [14,18]).
We believe that our Main Theorem (Theorem 1) will play an important role in the proof of
these two Yau conjectures.

Example 1 illustrates some examples that the Main Theorem can judge whether the
polynomial is nonnegative in an interval but Sturm’s Theorem and Wang-Yau Lemma
cannot do the same. It is obvious we can find infinitely many polynomials can only use
the Main Theorem to judge whether they are nonnegative in an interval but cannot use
Sturm’s Theorem and Wang-Yau Lemma to get the same results.

Example 2 illustrates the Main Theorem is much better for polynomials of many terms
and high degree. When the number of terms and degree of polynomials increase Main
Theorem performs dramatically better than Sturm’s Theorem. Take P11(x) as example.
If Main Theorem needs 1 min for result then Sturm’s Theorem uses about 3 h to do the
same job.

Examples 3 and 4 are taken from Kwong’s paper (cf. [19]). They show how to con-
vert a given trigonometric polynomial to an algebraic polynomial. Then one can apply
Main Theorem or Sturm’s Theorem to judge whether the polynomial is nonnegative in
the interval.

Example 4 considers a polynomial whose coefficients are irrational numbers (cf. [19]).
It is worth noting that we cannot solve this example by Sturm’s Theorem in Maple, be-
cause the coefficients of this polynomial are irrational numbers. Main Theorem can be used
for polynomials with irrational coefficients like this example.

Example 5 considers a polynomial whose coefficients are parameters. It’s very useful
and important in the proof of Yau conjectures.

Example 6 illustrates how to apply Main Theorem to any interval we use and how it
helps us to find the roots of polynomials.

We can combine Main Theorem with Newton method or bisection method to find
roots of polynomials or find roots of those series which can be transformed to polynomials
(for instance cosine polynomials). In practice, we can convert a given trigonometric
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polynomial to an algebraic polynomial by using Maple. Hence, to determine whether
an algebraic polynomial is nonnegative in an interval is closely related to whether a
trigonometric sum is nonnegative in an interval. The construction of nonnegative or
positive trigonometric sums in an interval is an old problem and has been dealt with
by many mathematicians (cf. [19,20]). The most familiar examples are the Fejér–Jackson–
Gronwall inequality and Young’s inequality. Indeed, these inequalities have remarkable
applications in the approximation theory, positive quadrature methods, the theory of
univalent functions, positive Jacobi polynomial sums, orthogonal polynomials on the unit
circle, zero-free regions for the Riemann zeta-function, distributions for circular random
variable, Gibbs phenomenon of the the Fourier series, zero-free regions for the Riemann
zeta-function, just to mention a few.

2. The Review of Previous Works

The following two lemmas can be used to identify the nonnegative of polynomials in
some restricted domains. Wang-Yau Lemma is easy to use, because when judging whether
a polynomial is nonnegative, Wang-Yau Lemma only needs to sum the coefficients of
the polynomial. However, the condition to use Wang-Yau Lemma is too restricted. It has
happened more than once in our quest for a general criterion that the arguments we devised
work well for polynomials of high degrees, but not for a finite collection of small values of
dimension. Sturm’s Theorem can then be used to complete the proof. In addition, the proof
of a general result may require a few trigonometric inequalities that can be proved using
the Sturm procedure. Sturm’s Theorem is used as the last choice because it is difficult
to use if not use software like Maple. In addition, when the polynomials have irrational
coefficients, Maple cannot handle such case and the work will become much harder. That’s
why we try hard to improve Wang-Yau Lemma and get the Main theorem that can be used
in much wider area. Wang-Yau Lemma is needed in the proof of the Main Theorem.

Lemma 1 (Wang-Yau Lemma). ([16] Lemma 3.1) Let f (β) be a polynomial defined by

f (β) =
n

∑
i=0

ciβ
i (3)

where β ∈ (0, 1). If for any k = 0, 1, . . . , n

k

∑
i=0

ci ≥ 0 (4)

then f (β) ≥ 0 for β ∈ (0, 1).

Lemma 2 (Sturm’s Theorem). Starting from a given polynomial X = f (x), let the polynomials
X1, X2, . . . , Xr be determined by Euclidean algorithm as follows:

X1 = f ′(x) ,

X = Q1X1 − X2,

X1 = Q2X2 − X3, (5)

. . . . . . . . . . . .

Xr−1 = QrXr

where deg Xk > deg Xk+1 for k = 1, . . . , r− 1. For every real number a which is not a root of
f (x) let w(a) be the number of variations in sign in the number sequence

X(a), X1(a), . . . , Xr(a)
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in which all zeros are omitted. If b and c are any numbers (b < c) for which f(x) does not vanish,
then the number of the various roots in the interval b ≤ x ≤ c (multiple roots to be counted only
once) is equal to

w(b)− w(c).

Proof. See [21].

It is obvious that the computation in Lemma 2 is much more complicated than that in
Lemma 1. We prefer Lemma 1 when it works.

3. Proof of the Main Theorem

Lemma 3. Consider a polynomial

P(x) = d− x + δ1x2 + δ2x3 + · · ·+ δn−1xn + (1− d− δ1 − δ2 − · · · − δn−1)xn+1,

where 0 < d < 1, δi, i = 1, · · · , n− 1 are constants satisfying

d + δ1 + δ2 + · · ·+ δl < 1, l = 1, · · · , n− 1.

If
(n + 1)d + (n− 1)δ1 + (n− 2)δ2 + · · ·+ δn−1 − n ≥ 0,

then P(x) ≥ 0 for 0 ≤ x ≤ 1.

Proof.

P(x) =d(1− xn+1) + (xn+1 − x) + δ1(x2 − xn+1) + δ2(x3 − xn+1) + · · ·+ δn−1(xn − xn+1)

=d(1− x)(1 + x + x2 + · · ·+ xn)− x(1− xn) + δ1x2(1− xn−1) + δ2x3(1− xn−2)

+ · · ·+ δn−1xn(1− x)

=d(1− x)(1 + x + x2 + · · ·+ xn)− x(1− x)(1 + x + · · ·+ xn−1)

+ δ1x2(1− x)(1 + x + · · ·+ xn−2) + · · ·+ δn−1xn(1− x)

=(1− x)
[
d(1 + x + x2 + · · ·+ xn)− (x + x2 + · · ·+ xn) + δ1(x2 + x3 + · · ·+ xn)

+ δ2(x3 + x4 + · · ·+ xn) + · · ·+ δn−1xn
]

=(1− x)[d + (d− 1)x + (d + δ1 − 1)x2 + (d + δ1 + δ2 − 1)x3

+ · · ·+ (d + δ1 + δ2 + · · ·+ δn−1 − 1)xn]

=(1− x)g(x),

where g(x) = d + (d− 1)x + (d + δ1 − 1)x2 + (d + δ1 + δ2 − 1)x3 + · · ·+ (d + δ1 + δ2 +
· · ·+ δn−1− 1)xn. Note that all coefficients of xk with k = 1, · · · , n are negative so that g(x)
is a decreasing function. Hence

g(x) ≥ 0⇔ g(1) ≥ 0⇔ (n + 1)d + (n− 1)δ1 + (n− 2)δ2 + · · ·+ δn−1 − n ≥ 0.

This completes the proof of the lemma.

Theorem 1 (Main Theorem). Consider a polynomial f (x) = C0 + C1x + C2x2 + · · ·+ Cnxn.
Assume

k

∑
i=0

Ci ≥ 0, k = 0, 1, · · · , m, m + l + 1, · · · , n.
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and
k

∑
i=0

Ci < 0, k = m + 1, · · · , m + l.

Denote
m

∑
i=0

Ci = d|Cm+1|

Cm+2 = δ1|Cm+1|, Cm+3 = δ2|Cm+1|, · · · , Cm+l = δl−1|Cm+1|

If

(l + 1)d + (l − 1)δ1 + (l − 2)δ2 + · · ·+ δl−1 − l ≥ 0,

then f (x) ≥ 0 for x ∈ [0, 1].

Proof. Firstly, note that under the assumption of the theorem, we have

Cm+1 < 0,

moreover,
d + δ1 + · · ·+ δk < 1, k = 1, · · · , l − 1.

Now rewrite the polynomial f (x) as

f (x) =C0 + C1x + · · ·+ Cmxm + Cm+1xm+1 + · · ·+ Cm+l x
m+l + Cm+l+1xm+l+1

+ · · ·+ Cnxn

=C0 + C1x + · · ·+ (Cm − d|Cm+1|)xm + 0 + · · ·+ 0

+ (Cm+l+1 − (1− (d + δ1 + · · ·+ δl−1))|Cm+1|)xm+l+1 + · · ·+ cnxn

+ d|Cm+1|xm + Cm+1xm+1 + · · ·+ Cm+l x
m+l + (1− (d + δ1 + · · ·+ δl−1))|Cm+1|xm+l+1

=g(x) + h(x),

where

h(x) =d|Cm+1|xm − |Cm+1|xm+1 + δ1|Cm+1|xm+2 + · · ·+ δl−1|Cm+1|xm+l

+ (1− (d + δ1 + · · ·+ δl−1))|Cm+1|xm+l+1

=|Cm+1|xm
[
d− x + δ1x2 + δ2x3 + · · ·+ δl−1xl + (1− (d + δ1 + · · ·+ δl−1))xl+1

]
.

By Lemma 3, h(x) ≥ 0 for x ∈ [0, 1] under the assumption of the Theorem. We now
turn to show that g(x) ≥ 0 for x ∈ [0, 1].

By using the results of Wang-Yau Lemma. Rewrite g(x) as

g(x) =C0 + C1x + · · ·+ (Cm − d|Cm+1|)xm + 0 + · · ·+ 0

+ (Cm+l+1 − (1− (d + δ1 + · · ·+ δl−1))|Cm+1|)xm+l+1 + Cm+l+2xm+l+2

+ · · ·+ Cnxn

=C̄0 + C̄1x + · · ·+ C̄mxm + C̄m+1xm+1 + · · ·+ C̄m+l xm+l + C̄m+l+1xm+l+1

+ C̄m+l+2xm+l+2 + · · ·+ C̄nxn,

where
C̄i = Ci, i = 0, 1, · · · , m− 1, m + l + 2, · · · , n,

C̄m = Cm − d|Cm+1|, C̄m+1 = & · · · = C̄m+l = 0,

C̄m+l+1 = Cm+l+1 − (1− (d + δ1 + · · ·+ δl−1))|Cm+1|.
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Straightforward calculation shows that

k

∑
i=0

C̄i ≥0, k = 0, · · · , m− 1,

m

∑
i=0

C̄i =
m−1

∑
i=0

C̄i + C̄m =
m−1

∑
i=0

Ci + Cm − d|Cm+1| =
m

∑
i=0

Ci − d|Cm+1| = 0 ≥ 0,

m+1

∑
i=0

C̄i = · · · =
m+l

∑
i=0

C̄i = 0 ≥ 0

m+l+1

∑
i=0

C̄i =
m+l

∑
i=0

C̄i + C̄m+l+1

=Cm+l+1 − |Cm+1|+ d|Cm+1|+ δ1|Cm+1|+ · · ·+ δl−1|Cm+1|

=Cm+l+1 + Cm+1 +
m

∑
i=0

Ci + Cm+2 + Cm+3 + · · ·+ Cm+l

=
m+l+1

∑
i=0

Ci

≥0
k

∑
i=0

C̄i =
k

∑
i=0

Ci ≥ 0, for k ≥ m + l + 2.

Hence g(x) ≥ 0. Therefore f (x) = g(x) + h(x) ≥ 0 and completes the proof of the
main theorem.

The theorem holds also for a polynomial when the summations of the coefficients
become negative in arbitrary sections, and the assumption in the theorem holds for the
coefficients in each section.

4. Application Examples

Example 1. This example illustrates by three polynomials the Main Theorem can but Sturm’s
Theorem and Wang-Yau Lemma cannot judge whether the polynomial is nonnegative in an interval.
Note that Sturm’s Theorem requires that the value of the polynomial is not zero at the end of the
interval. It is obvious we can find infinitely many polynomials can use the Main Theorem but
cannot use Sturm’s Theorem and Wang-Yau Lemma to judge whether they are nonnegative in an
interval. Consider

P1(x) = 1 + x + x2 − 7
2

x3 − 1
2

x4 + x5, x ∈ [0, 1].

It’s easy to find that P1(1) = 0. Because the Sturm’s Theorem requires that the endpoint value
of the polynomial cannot be zero, thus we can’t use the Sturm’s Theorem.

In P1(x),

C0 = 1, C1 = 1, C2 = 1, C3 = −7
2

, C4 = −1
2

, C5 = 1,

C0 = 1, C0 + C1 = 2, C0 + C1 + C2 = 3, C0 + C1 + C2 + C3 = −7
2

,

C0 + C1 + C2 + C3 + C4 = −1, C0 + C1 + C2 + C3 + C4 + C5 = 0.

Then
k

∑
i=0

Ci < 0, f or k = 3, 4.
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Wang-Yau Lemma requires for every k = 0, 1, . . . , n ,
k
∑

i=0
Ci ≥ 0, so we cannot use Wang-Yau

Lemma to judge whether this polynomial is nonnegative.
Apply Main Theorem to P1(x), we get

k

∑
i=0

Ci ≥ 0, f or k = 0, 1, 2, 5,

k

∑
i=0

Ci < 0, f or k = 3, 4.

Then we can get m = 2, l = 2.

d =

m
∑

i=0
Ci

|Cm+1|
=

3
| − 7

2 |
=

6
7

, δ1 =
Cm+2

|Cm+1|
=
− 1

2

| − 7
2 |

= −1
7

(l + 1)d + δ1 − l = (2 + 1)× 6
7
− 1

7
− 2 =

3
7
> 0,

thus, according to the Main Theorem, P1(x) ≥ 0, for x ∈ [0, 1].
The following two polynomials P2(x) and P3(x) can not use Sturm’s Theorem and Wang-Yau

Lemma to judge whether they are nonnegative by similar reasoning.

P2(x) = 1 + x + x2 − 15
4

x3 +
1
4

x4 − 1
4

x5 − 1
4

x6 + x7, x ∈ [0, 1].

We check this polynomial by the Main Theorem, we find,

m = 2, l = 4,

d =
4
5

, δ1 =
1

15
, δ2 = − 1

15
, δ3 = − 1

15
,

(l + 1)d + (l − 1)δ1 + (l − 2)δ2 + δ3 − l = 0,

so we can conclude that P2(x) ≥ 0, for x ∈ [0, 1].
Then we consider a polynomial of higher degree.

P3(x) = 1 + x + x2 − 17
4

x3 + x4 +
1
8

x5 − 3
4

x6 +
5
8

x7 +
1
2

x8 +
1
4

x9 − 1
2

x10, x ∈ [0, 1].

By the Main Theorem,
m = 2, l = 5,

d =
12
17

, δ1 =
4

17
, δ2 = − 1

34
, δ3 = − 3

17
, δ4 = − 5

34
,

(l + 1)d + (l − 1)δ1 + (l − 2)δ2 + (l − 3)δ3 + δ4 − l =
1
17

> 0,

so we can conclude that P3(x) ≥ 0, for x ∈ [0, 1].

Example 2. This example compares the computing efficiency of the Sturm’s Theorem and the
Main Theorem by using Maple 2019. The computer we use is Intel i7-8665U CPU @ 1.90 GHz
and Windows 10, the software is Maple 2019. It illustrates the Main Theorem is much better for
polynomials of many terms and high degree. When the number of terms and degree of polynomials
increase Main Theorem performs dramatically better than Sturm’s Theorem. For x ∈ [0, 1], consider

P4(x) = 1 + x− 9
4

x2 − 1
5

x3 +
1
2

x4 +
1
3

x5,
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P5(x) =
1
3
+ x− 20

7
x2 +

11
4

x3 − 1
3

x4 − 1
4

x5 +
11
5

x6 +
1
2

x7 +
3
4

x8 +
1
6

x9 + x10,

P6(x) = 1+ x+ x2− 17
4

x3 + x4 +
1
8

x5− 3
4

x6 +
5
8

x7 +
1
2

x8 +
1
4

x9− 1
2

x10 +
2
7

x12 +
1
8

x15 +
1
3

x18 +
1
2

x20,

P7(x) =1 + x + x2 − 17
4

x3 + x4 +
1
8

x5 − 3
4

x6 +
5
8

x7 +
1
2

x8 +
1
4

x9 − 1
2

x10 +
2
7

x12 + x16 +
1
3

x18

+ x20 +
1
3

x21 − 1
4

x22 +
1
5

x24 +
1
8

x25 +
2
5

x27 − 2
7

x28 +
1
9

x30 − 1
8

x32 +
2
5

x35 +
1
6

x40,

P8(x) =1 + x + x2 − 17
4

x3 + x4 +
1
8

x5 − 3
4

x6 +
5
8

x7 +
1
2

x8 +
1
4

x9 − 1
2

x10 +
1
3

x11 +
2
7

x12 − 1
5

x13

+
3
4

x14 +
1
8

x15 − 1
9

x16 +
1
2

x17 +
1
3

x18 +
2
7

x19 +
1
2

x20 +
2
7

x22 − 1
7

x24 +
1
8

x26 − 1
5

x30

+
2
5

x32 +
1
2

x34 +
2
9

x36 − 1
6

x38 +
1
7

x40 +
1
5

x50 +
1
4

x60 +
1
5

x65 − 1
8

x70 +
1
9

x75 +
1
3

x80

+
2
9

x85 +
1
2

x90 − 1
7

x95 +
1
6

x100,

P9(x) =1 + x + x2 − 17
4

x3 + x4 +
1
8

x5 − 3
4

x6 +
5
8

x7 +
1
2

x8 +
1
4

x9 − 1
2

x10 +
1
3

x11 +
2
7

x12 − 1
5

x13

+
3
4

x14 +
1
8

x15 − 1
9

x16 +
1
2

x17 +
1
3

x18 +
2
7

x19 +
1
2

x20 +
2
7

x22 − 1
7

x24 +
1
8

x26 − 1
5

x30

+
2
5

x32 +
1
2

x34 +
2
9

x36 − 1
6

x38 +
1
7

x40 +
1
5

x50 +
1
4

x60 +
1
5

x65 − 1
8

x70 +
1
9

x75 +
1
3

x80

+
2
9

x85 +
1
2

x90 − 1
7

x95 +
1
6

x100 +
1
3

x110 +
2
3

x120 − 1
8

x130 +
1
7

x140 +
1
6

x150 +
2
5

x160

− 1
9

x170 + x180 +
1
9

x190 +
1
2

x200 +
1
3

x210 +
2
3

x220 − 1
8

x230 +
1
7

x240 +
1
6

x250 +
2
5

x260

− 1
9

x270 +
2
5

x280 +
1
9

x290 +
1
2

x300,

P10(x) =1 + x + x2 − 17
4

x3 + x4 +
1
8

x5 − 3
4

x6 +
5
8

x7 +
1
2

x8 +
1
4

x9 − 1
2

x10 +
1
3

x11 +
2
7

x12 − 1
5

x13

+
3
4

x14 +
1
8

x15 − 1
9

x16 +
1
2

x17 +
1
3

x18 +
2
7

x19 +
1
2

x20 +
2
7

x22 − 1
7

x24 +
1
8

x26 − 1
5

x30

+
2
5

x32 +
1
2

x34 +
2
9

x36 − 1
6

x38 +
1
7

x40 +
1
5

x50 +
1
4

x60 +
1
5

x65 − 1
8

x70 +
1
9

x75 +
1
3

x80

+
2
9

x85 +
1
2

x90 − 1
7

x95 +
1
6

x100 +
1
3

x110 +
2
3

x120 − 1
8

x130 +
1
7

x140 +
1
6

x150 +
2
5

x160

− 1
9

x170 + x180 +
1
9

x190 +
1
2

x200 +
1
3

x210 +
2
3

x220 − 1
8

x230 +
1
7

x240 +
1
6

x250 +
2
5

x260

− 1
9

x270 +
2
5

x280 +
1
9

x290 +
1
2

x300 +
1
3

x320 +
2
3

x340 − 1
8

x360 +
1
7

x380 +
1
6

x400 +
2
5

x420

− 1
9

x440 +
2
5

x460 +
1
9

x480 +
1
2

x500,

P11(x) =1 + x + x2 − 17
4

x3 + x4 +
1
8

x5 − 3
4

x6 +
5
8

x7 +
1
2

x8 +
1
4

x9 − 1
2

x10 +
1
3

x11 +
2
7

x12 − 1
5

x13

+
3
4

x14 +
1
8

x15 − 1
9

x16 +
1
2

x17 +
1
3

x18 +
2
7

x19 +
1
2

x20 +
2
7

x22 − 1
7

x24 +
1
8

x26 − 1
5

x30

+
2
5

x32 +
1
2

x34 +
2
9

x36 − 1
6

x38 +
1
7

x40 +
1
5

x50 +
1
4

x60 +
1
5

x65 − 1
8

x70 +
1
9

x75 +
1
3

x80

+
2
9

x85 +
1
2

x90 − 1
7

x95 +
1
6

x100 +
1
3

x110 +
2
3

x120 − 1
8

x130 +
1
7

x140 +
1
6

x150 +
2
5

x160

− 1
9

x170 + x180 +
1
9

x190 +
1
2

x200 +
1
3

x210 +
2
3

x220 − 1
8

x230 +
1
7

x240 +
1
6

x250 +
2
5

x260

− 1
9

x270 +
2
5

x280 +
1
9

x290 +
1
2

x300 +
1
3

x310 +
2
3

x320 − 1
8

x330 +
1
7

x340 +
1
6

x350 +
2
5

x360

− 1
9

x370 +
2
5

x380 +
1
9

x390 +
1
2

x400 +
1
3

x410 +
2
3

x420 − 1
8

x430 +
1
7

x440 +
1
6

x500 +
2
5

x600

− 1
9

x700 +
2
5

x800 +
1
9

x900 +
1
2

x1000.

In the Table 1, tS means the cpu time used by the Sturm’s Theorem using Maple, tM means
the cpu time of the Main Theorem using Maple. According to our tests, the cpu time needed for
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calculations are roughly as follows: using Main Theorem cpu time needed grows like linearly and
using Sturm’s theorem cpu time needed grows like exponentialy when the terms and degree of the
polynomial increase. Take P11(x) as example. If Main Theorem needs 1 min for result then Sturm’s
Theorem uses about 3 h to do the same job. We believe the complexity of calculations by Main
Theorem and by Sturm’s theorem, respectively, can be estimated. But it is not our goal or within the
interests of the paper.

Table 1. Comparison of CPU running speed between Sturm’s Theorem and Main Theorem.

Polynomial P4(x) P5(x) P6(x) P7(x) P8(x) P9(x) P10(x) P11(x)

Degree (n) 5 10 20 40 100 300 500 1000

Number of terms (N) 6 11 15 25 40 60 70 80

Sturm’s Theorem (tS) 0.016 s 0.016 s 0.016 s 0.098 s 0.859 s 7.421 s 36.531 s 288.953 s

Main Theorem (tM) 0.016 s 0.016 s 0.031 s 0.047 s 0.156 s 0.578 s 0.922 s 1.594 s

Ratio ( tS
tM

) 1 1 0.52 2.09 5.51 12.84 39.62 181.28

Example 3. Examples 3 and 4 are taken from Kwong’s paper (cf. [19]). They show how to convert
a given trigonometric polynomial to an algebraic polynomial. Then one can try to apply Main
Theorem or Sturm’s Theorem to judge whether the polynomial is nonnegative in the interval.

S1(x) = 5 + 4 + cos(x) + 3cos(2x) + 4cos(3x), x ∈ [0,
π

2
].

For all integers n, cos(nx) can be expanded into a polynomial of cos(x). For example,
cos(3x) = 4cos3(x)− cos(x) = 4y3 − y, where y = cos(x). Applying this to S1(x), we obtain

S1(x) = P12(y) = 16y3 + 6y2 − 8y + 2.

As x varies from 0 to π
2 , y varies from 1 to 0. According to the Main Theorem,

m = 0, l = 1, δ0 = 1, d =
1
4

,

(l + 1)d + δ0 − l =
1
3
> 0,

then P12(y) ≥ 0 for y ∈ [0, 1]. Thus, S1(x) ≥ 0 for x ∈ [0, π
2 ].

Example 4. Example 4 considers a polynomial whose coefficients are irrational numbers (cf. [19]).
It is worth noting that we cannot solve this example by Sturm’s Theorem in Maple, because the
coefficients of this polynomial are irrational numbers. The Main Theorem can be used in this example.

S2(x) = sin(x) +
1
2

sin(2x) +
1√
2
(sin(3x) +

3
4

sin(4x)), x ∈ [0,
π

2
].

For all integers n, sin(nx) can be expanded into a polynomial of cos(x) and sin(x). For exam-
ple, sin(3x) = 2sin(x)cos2(x)− (2cos2(x)− 1)sin(x) = 2y2sin(x)− (2y2 − 1)sin(x), where
y = cos(x). Let cos(x) = y, after expansion, we can get

S2(x) = sin(x)[(1− 1√
2
) + (1− 3√

2
)y +

4√
2

y2 +
6√
2

y3].

Because when x ∈ [0, π
2 ], sin(x) ≥ 0, so if we want to discuss when x ∈ [0, π

2 ], whether
S2(x) is nonnegative, it’s equal to discuss

P13(y) = (1− 1√
2
) + (1− 3√

2
)y +

4√
2

y2 +
6√
2

y3, y ∈ [0, 1],
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so it’s equivalent to do the transformation cos(x) = y, sin(x) = 1.
As x varies from 0 to π

2 , y varies from 1 to 0. According to the Main Theorem,

m = 0, l = 1, d =

√
2− 1

3−
√

2
, δ0 = 1,

(l + 1)d + δ0 − l =
2
√

2− 2
3−
√

2
> 0,

then P13(y) ≥ 0 for y ∈ [0, 1]. Thus, S2(x) ≥ 0 for x ∈ [0, π
2 ].

Example 5. Example 5 considers a polynomial whose coefficients are parameters. Consider

P14(x) = 1 + x + x2 − ax3 − 1
2

x4 + x5, x ∈ [0, 1].

Suppose in this interval, P14(x) ≥ 0. Apply the Main Theorem to P14(x), we get

m = 2, l = 2,

3− a < 0,
5
2
− a < 0,

7
2
− a ≥ 0,

d =
3
|a| , δ1 = − 1

2|a| ,

(l + 1)d + δ1 − l =
11

2|a| − 2 ≥ 0.

In summary, a ∈ (3, 7
2 ]. Thus, we can get P14(x) ≥ 0,for x ∈ [0, 1], a ∈ (3, 7

2 ].

Example 6. Example 6 illustrates how to apply the Main Theorem to any interval we want.
Example 1 shows P1(x) = 1 + x + x2 − 7

2 x3 − 1
2 x4 + x5 ≥ 0, for x ∈ [0, 1]. We can also test this

with other intervals; for example, let us consider x ∈ [−2, 0].
When x ∈ [−1, 0], we do an affine transformation. Let y = x + 1; then, we get

P15(y) = 3− 9
2

y− 3
2

y2 +
17
2

y3 − 11
2

y4 + y5, y ∈ [0, 1],

then use the Main Theorem,

m = 0, l = 2, d =
15
17

, δ1 = −1
3

,

(l + 1)d + δ1 − l =
16
51

> 0,

thus, when y ∈ [0, 1], P15(y) ≥ 0. So P1(x) ≥ 0, for x ∈ [−1, 0].
When x ∈ [−2,−1], using Sturm’s Theorem, we get that there exists a root in this interval.

Hence, in this interval, the polynomial has both positive and negative values (we assume this root is
not an even multiple root). Therefore, we continue to cut this interval. Firstly, we cut this interval
into five parts. After calculation, when x belongs to [−1.6,−1.4] ∪ [−1.4,−1.2] ∪ [−1.2,−1], we
separately do the linear transformation y = 5(x + 8

5 ), y = 5(x + 7
5 ), y = 5(x + 6

5 ), then apply the
Main Theorem; we get m = 5, l = 0; thus, for x ∈ [−1.6,−1], P1(x) ≥ 0.

When x ∈ [−2,−1.8], we do a linear transformation y = 5(x + 2); we get

P16(y) = −9 +
51
5

y− 14
5

y2 +
81

250
y3 − 21

1250
y4 +

1
3125

y5, y ∈ [0, 1],
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This interval is more likely to take negative values. Hence, consider that

P17(y) = −P16(y) = 9− 51
5

y +
14
5

y2 − 81
250

y3 +
21

1250
y4 − 1

3125
y5, y ∈ [0, 1],

then applying the Main Theorem to P17(y), we get

m = 0, l = 1, d =
15
17

, δ0 = 1,

(l + 1)d + δ0 − l =
30
17

> 0,

so P17(y) ≥ 0, where y ∈ [0, 1],thus, P16(y) ≤ 0, for y ∈ [0, 1]. Therefore, P1(x) ≤ 0,
for x ∈ [−2,−1.8].

When x ∈ [−1.8,−1.6], we first use Sturm’s Theorem where there exists a root in this interval.
Then, we further divide the interval into [−1.8,−1.7] and [−1.7,−1.6].

When x ∈ [−1.7,−1.6], we do a linear transformation y = 10(x + 17
10 ); using Main Theorem,

we get m = 5, l = 0. Thus, P1(x) ≥ 0, for x ∈ [−1.7,−1.6].
Now only [−1.8,−1.7] need to be tested. When the interval [−1.8,−1.7] is cut into five

parts, and then Main Theorem is used, we get the following: when x belongs to [−1.8,−1.78] ∪
[−1.78,−1.76], P1(x) ≤ 0, when x belongs to [−1.74,−1.72] ∪ [−1.72,−1.7], P1(x) ≥ 0. We
can find the root to any desired accuracy by using the bisection method. When the accuracy is 10−9,
the root of P1(x) is x = −1.748592480, for x ∈ [−2, 0].

It is much easier to use Main Theorem to find the roots of polynomials.

5. Conclusions

We propose a theorem to determine whether an algebraic polynomial is nonnegative
in an interval. This theorem improves Wang-Yau Lemma for Wider Applications in light of
Sturm’s Theorem. Infinitely many polynomials can be judged by using the new theorem
but cannot be judged by using Sturm’s Theorem and Wang-Yau Lemma to see whether
they are nonnegative in an interval. Main Theorem performs much better than Sturm’s
Theorem for polynomials of many terms and high degree. Main Theorem can be used
for a polynomial whose coefficients are parameters and to any interval we want. It helps
us to find the roots of polynomials. To determine whether an algebraic polynomial is
nonnegative in an interval is closely related to determine whether a trigonometric sum
is nonnegative in an interval. Main Theorem provides a new way to solve this classical,
important problem. It perfoms much better than Wang-Yau Lemma. Main Theorem is
a sufficient condition. Many cases can be proved nonnegative by Sturm’s Theorem but
fail in our test using Main Theorem. However, Main Theorem is much easier to use than
Sturm’s Theorem. Therefore, we suggest making further improvements to Main Theorem
in this way.
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