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Abstract: The heart consists of a complex network of billions of cells. Under physiological conditions,
cardiac cells propagate electrical signals in space, generating the heartbeat in a synchronous and co-
ordinated manner. When such a synchronization fails, life-threatening events can arise. The inherent
complexity of the underlying nonlinear dynamics and the large number of biological components
involved make the modeling and the analysis of electrophysiological properties in cardiac tissue still
an open challenge. We consider here a Hybrid Cellular Automata (HCA) approach modeling the
cardiac cell-cell membrane resistance with a free variable. We show that the modeling approach can
reproduce important and complex spatiotemporal properties paving the ground for promising future
applications. We show how GPU-based technology can considerably accelerate the simulation and
the analysis. Furthermore, we study the cardiac behavior within a unidimensional domain consid-
ering inhomogeneous resistance and we perform a Monte Carlo analysis to evaluate our approach.

Keywords: Cellular Automata; cardiac modeling; Monte Carlo simulation; matlab simulink; GPU

1. Introduction

Computational cardiology provides a safe, non-invasive, and ethical method to in-
vestigate the heart and its dysfunctionalities. Early mathematical models [1–4] extend the
pioneering work of Hodgkin-Huxley [5] to describe and explain, with a set of ordinary
differential equations (ODEs), the ionic mechanisms responsible for the initiation and
the electrical propagation of action potentials traversing excitable cells such as cardiac
myocytes and neurons [6,7]. These early studies enabled innovative in-silico research and
clinically oriented applications [8]. For example, they allow us to understand a variety of
nonlinear phenomena affecting cardiac dynamics [9–13] and unexpected, chaotic properties
of the heart [14,15]. The mathematical complexity of such models has stimulated several
works [16–18] trying to improve the analysis by simplifying the model representation.

Cellular Automata (CA) are a well-known class of discrete simplified dynamical
systems widely used to reproduce pattern formation and growth [19,20]. One of the first
approaches using CA and its theory was proposed by von Neumann et al. [21]. A cellular
automaton consists of a regular grid of cells where a discrete state is associated to each cell.
The state of each cell can evolve in time according to a set of rules operating over the states
of the neighboring cells. This class of models provides a simple mathematical framework
to reproduce several emergent behaviors that can be observed in excitable media such
as the cardiac tissue [22] and the nervous system [23]. Other extensions of CA allow one
to customize the model describing how each cell reacts to the external stimuli from the
neighboring cells. For example, the electrophysiological process in a myocyte is driven by
a set of voltage-dependent thresholds that control the opening/closing of ionic channels
regulating the flux of ions across the cellular membrane. These thresholds generally
identify specific phases of the myocyte’s behavior, such as the rapid depolarization, the
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initial repolarization, the plateau, and the late repolarization/resting phase, characterized
by different dynamics.

A well-established approach to describe such processes is via Hybrid
Automata [24–26], a modeling formalism that extends finite automata with a set of ODEs de-
scribing the continuous behavior of the action potential at each phase (a phase corresponds
to a discrete state in the finite automata). A set of guard conditions over voltage-dependent
thresholds determine how each cell switches the continuous dynamics that modeling the
inward/outward flux of ionic currents at each phase. Previous works [24,25,27] have
shown that HA can accurately reproduce the action potential occurring in myocytes. HA
can be simulated using numerical integration, but they are also amenable to formal analysis
techniques such as model checking [18,28]. HA and CA can be then combined in a Hybrid
Cellular Automata (HCA) that can model both the reaction of each cell to external stimuli
and the diffusion of the ionic currents among neighboring cells.

In this work, we consider an HCA model where the single cell behavior is described
by a simplified but very accurate four-variables hybrid model proposed in [16] and the
cells are coupled with a simple link (resistance) to propagate signals as a unidirectional
cable or as a ring of cardiac cells. The considered phenomenological modeling approach
stems from experimental works on one-dimensional rings of cardiac cells and whole heart
models studying the onset of alternans and irregular rhythms [29–31].

In addition to modeling, one can reduce simulation time and associated computational
costs using special hardware accelerators such as Graphical Processing Units (GPU) [32–34]
and Field Programmable Gate Arrays (FPGA) [35,36]. To optimally simulate our cardiac
cell model, we compare common numerical methods in combination with different coding
approaches: Matlab®Simulink, a sequential C implementation running on a CPU and an
NVIDIA®CUDA-based implementation running on a modern GPU. Such a comparison is
a required step to evaluate the limitations and trade-offs of the different technologies as
well as the reliability of our modeling approach.

The literature is populated by a multitude of physiological and phenomenological
mathematical models of cardiac cell electrophysiology [37]. These dynamical systems are
usually analyzed in terms of local restitution features (e.g., changes of the action potential
duration versus decreasing stimulation pacing periods) as well as bifurcation diagrams
(when period-doubling occurs) and space-time visualization [38–42]. Like the biological
original, models depend on a variety of additional parameters, i.e., including temperature,
membrane resistance, and nonlinearities within the tissue [11,43–45].

One-dimensional cables and rings of cardiac cells fulfill standard physiology studies
on reentry circuits in cardiology [46,47]. Monolayers of cardiomyocytes [29], as well as
multiorgan structures [30], introduced a fine control of system’s dynamics improving our
understanding of complex neurocardiac diseases. Due to certain pathological conditions,
such as ischemia, current sinks might develop. This behavior can be simulated by changing
the amount of heterogeneity within the tissue and the coupling between cells [48]. In this
perspective, we will conduct an extended analysis investigating emergent phenomena asso-
ciated with alternans and conduction blocks by using bifurcation diagrams and modeling
the cell-cell coupling with a random variable. First, we investigate the propagation and
benchmarks of our model, with respect to conduction velocity (CV) and action potential
duration (APD). Then we analyze the resiliency of the proposed HCA by decreasing the
length (cell count) within the ring structure after a freely chosen amount of time-steps.
Doing so, we achieve shortening and spatiotemporal adaptation of the excitation wave,
without the need of electrical pacing, also observing the onset of electrical alternans.

The final object of the paper is to assess the proposed HCA approach under different
implementations. We do so by investigating the results of a Monte Carlo simulation
analysis. As we are using a free resistance variable, we test the robustness of the approach
using random values for this variable. We then use a numerical analysis of the bifurcation
over APD in a decreasing number of cells. This study allows us to draw conclusions on
usability, deficiencies, and further improvement of HCA as a cardiac modeling technique.
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The paper is structured as follows: we first present the considered computational
models and analysis techniques in Section 2. In Section 3, we summarize the main findings
of our computational experiments, and we compare the performance of different model im-
plementations. We discuss our results in Section 4. We conclude in Section 5 by discussing
limitations and perspectives of our work.

2. Computational Models and Methods

In this section, we present the computational models that we have considered in our
analysis and different computational approaches to simulate them.

2.1. Unidirectional Hybrid Cellular Automata Model

The presented HCA model satisfies the properties of a Cellular Automata by following
simple principles: each node represents a cell and the smallest entity of an HCA, which can
have different states. The state of a cell depends on the states of its neighbors in the
previous step, leading to a unidirectional coupling between cardiac cells.

For the determination of the cell state, we are using the four-variable phenomenologi-
cal Minimal Model [16], recapitulated in Equations (1) and (2), adopting the minimum set
of ODEs to recover specific cardiac behaviors, e.g., action potential shape and duration,
restitution properties, conduction velocity, and alternans dynamics [49,50]:

∂tu = ∇ · (D̃∇u)− (j f i + jso + jsi) + jext

∂tv = (1− H(u− θv))(v∞ − v)/τ−v − H(u− θv)v/τ+
v

∂tw = (1− H(u− θw))(w∞ − w)/τ−w − H(u− θw)w/τ+
w

∂ts = (1− tanh(ks(u− us)))/2− s)/τs

(1)

j f i = −vH(u− θv)(u− θv)(uu − u)/τf i

jso = (u− uo)(1− H(u− θw))/τo + H(u− θw)/τso

jsi = H(u− θw)ws/τsi

(2)

Equation (1) lists the four state-variables reaction-diffusion dynamics, where u is
the normalized transmembrane voltage variable and v, w, and s are normalized virtual
gates, namely gating variables, ranging between 1 and 0. These gating variables are a
phenomenological equivalent of ion-channels kinetics within a cell and used to compute the
three currents listed in Equation (2): fast inward, j f i, slow inward, jsi and slow outward, jso.
Such a phenomenological description has been proved to recreate the spatiotemporal action
potential features of cardiac cells and tissues. In particular, the diffusion term ∇ · (D̃∇u)
allows for cell-cell signal transmission in space, where D̃ represents the diffusion coefficient
based on human ventricular tissue experiments. Finally, an external time-dependent
stimulation current, jext, is added to the ionic currents to reproduce electrical pacing of the
tissue and H is the standard Heaviside function.

Model parameters, defining time-constants and threshold values, refer to epicardial
cells behavior (see Appendix A). More precisely, the constant values are listed in Table A1,
the determination for the varying definitions are shown in Equation (A1) and the infinity
values in Equation (A2). According to [16,51] the critical parameters ruling system’s
features include, amongst others, the maximum AP upstroke velocity (via τf i, τ+

v , θv ),
AP amplitude (via uu, uo), maximum and minimum APD (via τ+

w , τsi, τso).
The local state of a cell is determined by the difference between its two neighboring

cells. To control the CV and other expected physical properties of the HCA, we intro-
duced a free variable for the cell membrane resistance. Accordingly, the computation for
propagation reads:

(ui−1 − ui) ∗ RV (3)
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where ui, represents the voltage of the current cell, i, and RV the free resistance variable
among cell i and cell i− 1. Therefore, the resulting discretized reaction-diffusion equation
(cable equation) for the voltage variable u becomes:

∂tu = u− ((ui−1 − ui) ∗ RV + j f i + jso + jsi) (4)

Equation (4) together with the local kinetics (1) are the mathematical foundation of the
present approach, as the state of the HCA cells is represented by the four state-variables
of the Minimal Model. For state-change propagation within the HCA, i.e., the update
function, we use Equation (3) using the voltage-state of the predecessor in the previous
time step. The activation wave in the HCA is created by setting an excited initial condition
for the cell at index 0 with values u = 1, v = 1, w = 1 and s = 0. For all other cells we
set instead as initial condition the values u = 0, v = 1, w = 1 and s = 0 corresponding to
resting state. The state values for computation are dimensionless to recreate phenomena
and not scaled to any biophysical properties or ion concentrations. According to [16], u can
be scaled to mV using the equation VmV = 85.7u− 84.

A highly simplified illustration of the propagation flow within the proposed HCA
is shown in Figure 1. Each node represents a cell Cx at position x. In particular, the first
cell is activated at time step 0 (T0), the cell in the second position updates only in the
next step (T1). This pattern is valid for all the cells. Due to the difference of potential
between neighboring cells, the action potential u will propagate in time across all the
cells. Restoration of resting (quiescent) conditions follows the cardiac action potential time
constant with vanishing activation wave propagation. Figure 1 shows different shades of
gray that corresponds, and we assume that at time step 2 (T2), the impulse created at C2 is
too weak to activate the last cell; therefore, it does not change color in Figure 1e.

0 1 2 3

(a) (T0) C0 is activated (initial condition)

0 1 2 3

(b) (T1) C1 changes state

0 1 2 3

(c) (T1) No state change in C2 & C3

0 1 2 3

(d) (T2) C2 changes state

0 1 2 3

(e) (T2) Failing propagation sequence

Figure 1. Schematic propagation in a 4-cell-HCA with vanishing activation wave propagation.

2.2. Model Behavior Evaluation

The original Minimal Model by Bueno-Orovio et al. can simulate a wide range of
cardiac behavioral patterns. Therefore, to evaluate our HCA model, we assess which
patterns and characteristics we can recover. One of the most important benchmarks to
evaluate the model, is the CV which is approximately 0.5 m/s [52]. This benchmark asserts
the usability of a free resistance variable in the model, which we use to control CV. Further,
we evaluate the AP propagation and its duration within the model to ensure correct
physiological behavior. These benchmarks are also used to determine the optimal value for
the resistance variable.
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Additionally, we use highly simplified structures to evaluate the functionality and
behavior of our HCA. We are using a unidirectional propagation in 1D cell structures,
shown in Figure 2. The cells are a voltage source, propagating from previous to next
(left to right). Between each cell is a resistor, resembling the computation of Equation (3).
In Figure 2b the last cell propagates to the first cell, creating a closed ring. If a circular cell
construct is stimulated at a single point, it propagates bidirectionally. Propagation waves,
then, meet in the middle and extinguish each other (annihilate) [53]. If the stimulus is
delivered with hyperpolarization on one site (i.e., one of the two concurring cells cannot be
activated), the wave starts to propagate only in one direction, as the different state of the
cells does not allow stimulation in the other. Due to connections between first and last cell
(i.e., periodic boundary conditions), propagation of state-change runs in a circle. The wave
is, therefore, "trapped" in our ring, showing self-sustained propagation, a prototype of
cardiac reentry and arrhythmias. To simulate this one-directional wave, we designed the
previously described 1D ring of cells in Figure 2b. With this unidirectional flow of waves,
we are able to simulate a trapped circuit wave [54] and omit the necessity to establish a
one-sided block in the opposite direction.

Figure 2a shows the cell cable, with no-flux boundary conditions, represented as a
barrier at beginning and end. These two constructs will give us insights into the properties
and recoverable characteristics of our model, as the ring represents the smallest closed
circuit entity in cardiac arrhythmias [46]. The cable, on the other hand, gives us insight into
the correct propagation properties and alternans dynamics of the presented approach.

Cell

RV

Cell

RV

Cell

(a) 1D cable circuit

Cell

RV
Cell RV

Cell

RV

(b) 1D ring circuit

Figure 2. 1D cell structures circuit schematic. Panel (a) sketches a cable and Panel (b) a ring with
3 cells each. Cells are represented as voltage source and the resistors in between represent the
membrane resistance.

Specifically, using 1D structures, we study CV and APD features. Further, by reducing
the ring length during the simulation, we highlight the self-adapting properties of cardiac
cells within a ring. To avoid unnecessary computation steps, we validate the sum of the
voltage over the cable in each time step: if it falls below a value of 0.5, the simulation
stops assuming that no action potential occurs. Additionally, we investigate the impact
of the resistance value on our model in these scenarios. Each scenario is performed
once in a homogeneous setup, with a constant resistance value for each cell. Then we
introduce tissue heterogeneity using different resistance in each cell and time step. The
adopted values follow the von Mises distribution, and a Monte Carlo study is performed
as described below.

2.3. Computational Methods

High-performance CPUs and GPUs are the most common hardware technologies em-
ployed to simulate complex cardiac models [32]. Additionally, Matlab®Simulink provides a
suitable graphical programming framework enabling fast model prototyping and revision.
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2.3.1. Matlab®Simulink

Matlab®Simulink is a proprietary graphical programming environment designed to
model, simulate and analyze dynamical systems. It provides a graphical block diagram-
ming language and a set of block libraries that can be easily customized by the user. Each
block represents a mathematical function and the graphical environment provides the user
with the possibility to build complex models by just dragging-and-dropping blocks and
connecting them, without the need to have much experience in programming. Moreover,
the language enables one to derive new composite blocks out of other primitive/atomic or
composite blocks.

We have implemented our HCA model using this framework (see Figures in
Appendix E.1). In particular, we have implemented the Minimal Model as a single Simulink
block representing a cell. We then compose several cell blocks in a cable by connecting
the input/output of each cell block with its neighboring cells. In Figure A1, we show the
first cell of the cable, where the constant mode in this block, as well as the switch, decide if
the first cell is connected to the last cell, forming a ring of cells. The computation of input
connection is performed within a separate blockResistor, shown in Figure A2. The external
impulse (Iex) in both blocks represents an external stimulation (Pulse Generator block)
which can be activated in the main Model block, as shown in Figure A4.

We created special block that groups a certain amount of cells block together. Using
these special blocks, we were able to create and simulate structures of maximum 3000 cells.
For example, in Figure A3, we show the smallest entity of five grouped cells.

2.3.2. Central Processing Unit (CPU) and Graphics Processing Unit (GPU)

Despite Matlab®Simulink being suitable for fast model prototyping and revision, it is
less efficient when it comes to handling the simulation of thousands or millions of cardiac
cells. Thus, we first implemented in C-language a second version of our simulator that
runs sequentially on a CPU. In this implementation, we represent the HCA model as an
array of cells, avoiding the use of complex pointer-arithmetic; for example, the access to
the neighboring cells and the decreasing of the cable size at runtime are performed using
only integer indices instead of pointers.

We use this sequential implementation as a baseline to both check the correctness and
compare the performance of a third parallel implementation that we developed to run on
a GPU. GPUs are programmable chipsets with flexible throughput-oriented processing
architecture and were originally designed to solve problems that require high-performance
computing, such as 3D graphic renderings. Figure 3 illustrates how GPU architecture is
organized around an array of streaming multiprocessors (SMs). Each SM includes several
scalar processors (SPs), and each SP consists of an arithmetic logic unit that can perform a
floating-point operation.

The GPU code development is generally simplified by a software layer that provides
access to the instruction set and parallel computational elements of the GPU. In this
work, we used the Compute Unified Device Architecture (CUDA) designed specifically for
NVIDIA®GPU cards. The CUDA parallel model enables the execution of thousands
of lightweight threads organized in thread blocks. Each thread executes in parallel the
code of a function called kernel while using different parameters. The threads that are
within the same thread block can cooperate using different mechanisms. For example,
a synchronization point in the code of the kernel makes sure that all the threads must reach
that point before the execution can continue. Threads in the same block can also exchange
data among each other using on-chip shared memory. Threads that are located in different
blocks cannot be synchronized during the kernel execution and operate independently.
The CUDA environment provides the possibility to use C/C++ languages extended with
built-in primitives enabling the programmer to launch thousands of threads and to specify
parameters for the threads and their blocks.

The CUDA model refers a GPU with the term device while a CPU with the term
host. A device has different types of memory, and their correct use can highly impact the
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performance of the implementation. The global memory is a device memory that can be
read/written by all the threads running on the device. The host can also access the global
memory of the device using special CUDA primitives. This enables the exchange of data
between the host and the device memories. The global memory is generally available in
large amounts (e.g., in the order of gigabytes), but its access is also very expensive. Within
the SM, there are instead two very fast (but limited in size) types of memory: the registers
and the shared memory. Registers have the largest bandwidth, but very small size and can
only be accessed by a single thread. They are partitioned among all the threads of a thread
block running on a SM. The amount of available registers also limits the number of threads
that can be executed in the same thread block. Shared memory can be accessed as fast as the
registers, and it facilitates the communication among the threads in the same thread block.

In our implementation, we developed two kernels: the first calculates the diffusion of
the action potential among the cells using the values of the first neighbors for each cell;
the second computes the numerical integration for a time-step of the piece-wise nonlinear
ordinary differential equations modeling the inward/outward current flows in each cardiac
cell. The program starts with a main function running on the CPU. First, it allocates the
necessary global memory space in the GPU device to store the cardiac cells, and then it
initializes the simulation. This procedure is followed by a while loop terminating when the
simulation is completed. At each loop iteration, the program first calls the kernel function
to compute the action potential diffusion across the cells and then calls the kernel updating
the values of the ionic current flows and of the action potential for each cell. When a kernel
is called, its code is executed in parallel on a grid with multiple blocks of threads running
on the device, one thread assigned to each cell. At the end of the execution of a kernel, the
control flow returns to the CPU, and this provides an implicit point of synchronization,
enabling data consistency before the launch of the threads for the next kernel. When other
analysis are necessary, intermediate results can be transferred from the GPU to the CPU
after multiple loop iterations. However, this operation is computationally expensive and
can slow down the computation.

The work in [32] shows that the use of shared memory can increase the efficiency
of the simulation when it is employed to compute the diffusion for large 2D/3D cardiac
domains. However, for the simulation of a one-dimensional cable or ring of cardiac cells,
we have not observed a significant increase in efficiency by using shared memory.

Global Memory (Device Memory)

Graphic Processing Unit (GPU)

CPU Chipset
PCIe

Host Memory

Streaming 
Multiprocessor

Shared 
Memory

Scalar 
ProcessorSMEM #1

Registers #1

SMEM #2

Registers #2

SMEM #n

Registers #n

SMEM #i

Registers #i

Thread Block #1 Thread Block #2 Thread Block #n

Kernel Execution
(Single Thread)

Figure 3. Schematic of GPU and CPU communication and memories. Left, memory interaction on a single execution
grid created by a single kernel call, with N sketched (thread) blocks and multiple threads within the blocks on GPU.
Right, CPU interface and legend.

It is worth noting that we use a pre-generated lookup table (LUT) for the resistance
variables following the von Mises distribution, as we do not have enough memory available
on GPU it is only accessible on CPU. Therefore, for the GPU implementation in each step,
we randomly generate an array of indices to access the LUT and read the values into another
array, which is then copied onto the device, and the indices correspond to the indices of
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the cells. To exploit the full usage of GPU, we use cuRand, a built-in random number
generation library. On the CPU, we use a similar approach to sample the resistance values,
with the C-library function rand(). These functions must be initialized with a different seed
to produce different sequences each time. In both versions, we use the current system time
to initialize the seed. For LUT, we pre-generated several distributions with various κ and µ
for a greater sample size pool.

For reasonable results, we introduced a virtual cell size, meaning a size that one cell
supposedly has in length. In all following images and representations, each cell has a
length of 100 µm. The virtual cell size is mostly used to compute the CV and APD. If not
said otherwise, we measure the length of the structures in the number of cells and the
simulation time in time-steps per cell.

3. Results

In this section, we present the results for the different test scenarios that we have
considered. All the experiments were performed on a workstation equipped with an
NVIDIA®GeForce GTX TITAN X (with 12 GB GDDR5 of memory) and an Intel®CoreTM

i7-5820K CPU (with 32 GB of RAM). We used Matlab®version 2019b, including the full
toolbox set for Simulink. The sample size is determined by the number of cells in the HCA
as well as the number of performed time-steps in the simulations without decreasing size.

3.1. Accuracy of GPU

We assume the calculations in the CPU-based implementation are correct. To deter-
mine the correctness and truncation error and hence resulting loss of accuracy, we computed
the mean squared error, E, comparing the voltage values obtained by simulating a cell cable
with both the GPU-based (ū) and CPU-based (û) implementations:

E =
1

N ∗ T

N−1

∑
s=0

T−1

∑
t=0

(ûs
t − ūs

t)
2 , (5)

where N refers to the number of cells and T to the simulation time in time-steps computed
per cell. As Figure 4 shows, the error is negligible for a variety of resistance variables, num-
ber of cells, and simulation time (i.e.,: 20,000 steps ~1 s, as 1 step = 0.05 ms). In Figure 4a the
boxplot was computed for each RV in Table A2 using the MSE of the 12 simulations with
increasing number of executed computation steps (N ∗ T). The boxplot in Figure 4b was
computed for each number of executed computations (N ∗ T) in Table A2 using the MSE
corresponding to 6 different RV values. It is worth noticing that the error is independent of
the resistance variable and is, in general, very small.
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Figure 4. Boxplots of the mean squared error E of the variable u among CPU and GPU solutions. Panel (a) are sampled per
RV over increasing number of executed computations (N ∗ T) while panel (b) per number of executed computations (N ∗ T)
over varying RV .
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3.2. Acceleration using GPU

To measure the gain in execution time using GPU w.r.t. CPU, we have considered
only the time spent for the simulation. Therefore, we did not consider the time for the
analysis (i.e., the time necessary for computing the APD and CV), to store the results in the
file system and for generating the plots.

Tables A4 and A5 provide the execution times for the simulation of the decreasing
ring-structure using CPU and GPU, respectively. The number of cells (length), as well as
the values for the resistance variable, are varied to increase the complexity of the simulation.
Unlike simulations with a fixed number of time-steps, the decreasing ring simulation stops
when no AP can be recovered; therefore, the execution time in this scenario depends also on
cell resistance. So, it is worth noting that as the simulation automatically stops depending
on when no AP of the trapped wave can be recovered, the execution time varies heavily.
Further, CPU and GPU simulations end before when no AP can be recovered within a short
ring with a high value of the free resistance.

Tables A12–A14 list the the execution times for the GPU-based simulation of a
cable-structure while Tables A15–A17 using the ring-structure. Each table represents
20,000, 30,000, and 40,000 time-steps, respectively. Again, additionally to the simulation
time, we vary the value of RV and the number of cells to increase the computation load.
The same principle applies for the CPU times in Tables A6–A8 for the cable-structure
and Tables A9–A11 for the ring-structure. Figure 5 provides a comparison of the mean
execution times using GPU-based vs CPS-based implementations.

In the case of cable simulation for 40,000 time-steps (2 s), Figure 5a, the GPU takes on
average less than half of the execution times of CPU. For the ring in Figure 5b the average
execution times of the GPU is nearly ten times less. We also compared the execution times
of the decreasing ring simulation, Figure 5c, where GPU takes less than half of CPU time.
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Figure 5. Mean execution times over all cable lengths and resistance values for GPU (orange) and CPU (blue). (a) Cable,
(b) ring, and (c) decreasing ring structure.

3.3. Model Behavior

In order to evaluate the behavior of the proposed model, we have considered two
main aspects. First, we shortly describe if we were able to achieve the CV we aimed for,
and secondly, we evaluate the HCA’s self-adapting properties. These properties consider
which behavior can be observed when inhomogeneities within the cell resistance occur.
Even with small discrepancies, the propagation of the signal should be possible. The effect
on CV and APD will also be investigated throughout a Monte Carlo analysis, where we
assign a random value for the free resistance variable.

3.3.1. Conduction Velocity

For Matlab®Simulink, we studied a maximum size of 3000 cells, recovering a conduc-
tion velocity of ∼400 µm/ms.
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As for the implementations on CPU and GPU, Figure 6 shows the impact of the
introduced free resistance variable on the computed CV (due to the low error discussed
before, we present CPU-based results). We considered a fixed voltage threshold of u = 0.5,
and the computed wave-front velocity refers to the whole structure length. We observe
that CV depends both on the resistance value and the overall length of the structure.
For a length of ≥3000 cells (~30 cm) and a resistance variable RV = 0.5, it was impossible
to create a propagating wave (no CV). For all the other cable lengths, CV depends on the
value of RV . In particular, a high resistance variable, representing a high diffusivity, leads
to higher CV values. In view of physiological application, the value of RV should span
within 2.0 and 2.2, such to get ∼400 µm/ms. A tabular recapitulation of the CV is provided
in Appendix C.

1
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200

300

400

500

600

Figure 6. CV (in µm/ms) in different sized cell rings with varying value for RV .

3.3.2. Self-Adapting Properties: Monte Carlo Study

We investigated the self-adapting properties of our model by simulating a decreas-
ing ring. In this case, the same ring structure is solved for 500 ms (10,000 time-steps),
then the last cell is virtually deleted, and its predecessor is connected to the first cell.
Such a procedure incorporates a valid alternative methodology to the electrical pacing
protocol [11].

The Monte Carlo Study was performed on such a decreasing ring scenario, with ran-
dom resistance variable values following a von Mises distribution to simulate fluctuations
and spatial heterogeneity of the cell-cell coupling. We conducted the simulation analysis
on nine different sized ring structures, with an initial length of 750 cells (7.5 cm) up to 2750
cells (27.50 cm) by increasing 250 cells (2.5 cm). We assigned a random spatial distribution
of resistance for every initial length, further sampling RV at each time step. Considering a
preliminary analysis on the limiting values of AP wave propagation, we found a stable exci-
tation wave for 0.5 < RV < 3.0 using different parametrizations of von Mises distribution,
i.e., varying the concentration parameter κ and the expected value µ together with a proper
normalization of the distribution. This procedure allows us to reproduce the intrinsic
heterogeneity of the cardiac tissue, as shown in Figure 7. Among the three distributions
investigated, the case characterized by 0.5 < RV < 5.0 yields a global CV ' 540 µm/ms, not
realistic for the myocardium but appropriate for the fast conduction system. To focus on a
myocardial tissue analog, we do not discuss further case Figure 7c in this paper.

To investigate CV dependence on RV heterogeneity, we analyzed in detail the two
cases Figure 7a,b. In the first case we chose µ = 1.25, κ = 8. We then adapt accordingly to fit
the range 0.5 < RV < 2.0 and obtained an effective µ = 1.55 with a global CV ' 320 µm/ms;
in the second test we adopted µ = 1.5, κ = 10 and fit this distribution to 0.5 < RV < 2.5
yielding shifted µ = 1.98 with a global CV ' 380 µm/ms resulting in the closest approxi-
mation of the deterministic homogeneous ring. In both analyses, CV fluctuates ±10 µm/ms

due to the imposed heterogeneity. Besides, the minimum number of cells, i.e., shortest ring,
producing a stable excitation wave consisted of 1000 cells (10 cm).
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(a) κ = 8, µ = 1.55 (b) κ = 10, µ = 1.98 (c) κ = 10, µ = 4.21

Figure 7. Von Mises distribution functions for RV spatial characterization.

We evaluated the dynamical behavior of the system by constructing the APD bifur-
cation diagram plotting two consecutive APDs corresponding to the excitation wave’s
sequential rotations. In a stable regime (no alternans), two identical APDs are obtained.
Once a critical point is reached, electrical alternans appear, and the APD starts to fluctuate
(long-short). When the ring length is short enough, sustained propagation is no longer
feasible, and wave annihilation (autoannihilating) occurs.

In Figure 8 we show the APD bifurcation diagram for four different ring locations:
first cell Figure 8a, first quarter Figure 8b, central cell Figure 8c, and last quarter Figure 8d.
Consistently in the four locations, alternans appear for a ring size of ∼7.1 cm, increases
dramatically at ∼6.8 cm, and stops at about 6.7 cm. Notably, the last oscillation before
autoannihilation is characterized by quasi-null APD values such that a high level of spatial
dispersion of repolarization appears in the tissue. Besides, small fluctuations are the result
of the heterogeneous distribution of the resistance value over the ring.
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Figure 8. APD bifurication diagrams of four sampled cells within the decreasing ring experiment. The original number of
cells is 1000 (10 cm). Parameters of the used von Mises distribution µ = 1.55, κ = 8.

Figure 9 shows the comparison of the APD bifurcation diagrams obtained for two
rings of 17.5 cm considering two von Mises distribution parametrization. It is worth noting
that both alternans onset and autoannihilation occur for different ring lengths. In particular,
a narrower distribution allows for smaller lengths and higher alternans amplitudes. Such a
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result is further confirmed by the bifurcation diagrams obtained from rings with a much
higher spatial dimension. Figure 10 shows the computed APD bifurcation diagrams
extracted from the four selected cells and using a von Mises distribution resulting in a
faster CV. Consistently, the alternans start below 9 cm and autoannihilation occurs when
the length is about 8.4 cm.
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Figure 9. APD bifurication diagrams of two rings with 1750 cells (17.5 cm) and different von Mises distributions: (a) µ = 1.55,
κ = 8; (b) µ = 1.98, κ = 10.
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Figure 10. Bifurication diagrams of four sampled cells within the decreasing ring experiment. The original number of cells
is 2500 (25 cm). von Mises Distribution parameters µ = 1.98, κ = 10.

4. Discussion

We presented a simplified phenomenological cardiac model based on a Hybrid Cellu-
lar Automata formulation by introducing the cell-cell coupling membrane resistance as a
free variable. This approach enables us to thoroughly investigate the CV and APD features
in the presence of distributed conductivity thus linked to excitation wave spatiotemporal
organization and alternans onset [55–58].
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From the implementation point of view, we found Matlab®Simulink very suitable for
the development of rapid model prototypes. However, it is limited when it is necessary to
handle large scale simulations. Furthermore, it was not possible to change the length of the
cable/ring at runtime. Thus, we were not able to test the self-adapting properties described
in the previous sections. In addition, the values of the variables at a certain time step cannot
be updated using just the values of the previous step but rather all the values already
computed in the current step. Furthermore, we found that the computational resources
required to compile large HCA models with several cells were prohibitive (we could
consider only models with a length of max. 3000 cells). Due to these restrictions, we could
not implement the decreasing ring and the related Monte Carlo analysis in this environment.
Nevertheless, as illustrated in the space-time plot shown in Figure 11b, we were able to
induce electrical alternans with a trapped wave in a ring with a small number of cells by
setting the value of the resistance to 2.0.

(a) Matlab®Simulink cable (b) Matlab®Simulink ring

(c) GPU\CPU cable (d) GPU\CPU ring

Figure 11. Space-time diagram comparison. The x-axis indicates the simulation time (in ms), the
y-axis the length (in mm). Colormaps refer to the voltage variable u.

We performed the same numerical experiments by using CPU-based and GPU-based
implementations (see Figure 11d). Due to the negligible error between the results obtained
using GPU and CPU, in Figure 11 we only provide the result obtained using CPU as
representative. While Figure 11b,d look very similar, there is actually a small difference in
the APD alternans profile. Specifically, the APD in Figure 11d, is longer than in Figure 11b.

If we observe the color representing the value of the variable u, we notice that the
transition in Figure 11a is softer and shorter than in Figure 11c. This is due to the different
mechanisms for updating the variables in Matlab®Simulink previously discussed and
that are not suitable to implement CA updating rules that depend on the values of the
previous step.

We, therefore, focused on the implementations using CPU (sequential) and GPU
(parallel), producing instead results with a negligible difference (the average mean squared



Mathematics 2021, 9, 164 14 of 24

error is 1.3361× 10−6). As expected, the parallel GPU-based implementation benefits of the
use of many-cores accelerating considerable the simulation. In Figure 5 we compute the
average execution times for all used lengths and RV . For simulations with a fixed number
of time-steps, only the number of cells and time-steps increase the execution times.

The longest execution time measured was the decreasing ring simulation in both
implementations, as we stop when no AP can be recovered. Still, the average execution
time overall lengths and RV for this scenario using GPU is 1/4 compared to the measured
times using CPU, as shown in Figure 5c. Since this kind of analysis does not depend on a
fixed number of time-steps, but it relies on the AP dynamics, the execution time for this
scenario depends highly on the number of cells and the chosen value for the resistance RV ,
shown in Tables A4 and A5.

If we consider simulations with a fixed number of time-steps, the GPU implementation
started to perform approximately 10× faster on average than the CPU-based implemen-
tation for simulations with more than 40,000 time-steps. If we consider the simulations
with the highest number of required time-steps, this becomes more evident: the average
measured execution time for simulating the ring with 40,000 time-steps and 2750 cells on
GPU is ~2.60 ms while on the CPU required on average 21.60 ms. For the cable using these
lengths and number of time-steps, the GPU implementation finishes consistently with an
average of ~2.60 ms, while the CPU implementation required (less time than in the ring
setting) within ~14.86 ms. In all implementations, we were able to control the CV with the
free resistance variable.

Although it is possible to observe APD fluctuations at the beginning of the Monte
Carlo simulations of shorter rings, the critical limit in length for the onset of the alternans
is consistent in all ring sizes simulated using both CPU and GPU implementations. The oc-
currence of alternans depends only on the distribution of the resistance and thus on the
resulting CV.

The observed decrease in the CV and the occurrence of APD fluctuations in inhomo-
geneous settings can be compared to the behavior observed in studies of ischemic cardiac
tissue [59,60]. Even though we have slight inhomogeneities in the cell’s resistance, our
analysis shows that the APD is stable until the length falls below a certain critical point
when too many cells undergo large oscillations, thus a continuous propagation. Such a
condition depends on the chosen initial number of cells and CV, as we could observe an
early onset with both von Mises distributions that we have considered. Considering a
CV of 380 µm/ms, the obtained APD is similar to the results in [11] attained considering a
regular body temperature of 37 ◦C. It is also similar to the original measurement data for
epicardial cells referenced in [16].

5. Conclusions

We have presented an HCA modeling the cardiac cell-cell membrane resistance with a
free variable.

We provide three different implementations comparing pros and cons: one using
the Matlab®Simulink graphical environment, a second implementation running on a
CPU sequentially, and a third implementation running on a GPU in parallel. While
Matlab®Simulink provides a suitable environment for fast prototyping complex models
is less efficient in handling simulation instances of large HCA models. The GPU-based
implementation could handle instead larger instances accelerating considerably the simu-
lation (in our experiments, we could observe 10× speed-up with respect to the CPU-based
implementation) and indeed the overall analysis of the model.

We then study the cardiac behavior within a unidimensional domain considering
inhomogeneous resistance by performing a Monte Carlo simulation. We show that our
modeling approach can reproduce important and complex spatiotemporal properties such
as self-adaptive properties and the onset of alternans, paving the ground for promising
future applications.
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In future work, we plan to extend our analysis from the one-dimensional cases to
two and three spatial dimensions, including the possibility to use different cell types.
We foresee to generalize the present study towards an efficient computation of ECG
signals [61] simulating pathological conditions adapting critical parameters such as the
free resistance variable and the ionic time constants. Additionally, we aim to apply our
HCA computational approach in a more physiological context by implementing species-
specific models [62–65] and investigating the underlying genetics [66] linked to cell-to-cell
communications problems [67–69].

As mentioned in [58,70,71], the estimation of cardiac conductivity is still under in-
vestigation; therefore, we need to consider approaches to determine a more precise value
for this parameter for future work. One strategy worth investigating is to use machine
learning approaches or optimization algorithms such as the one described in [58] that map
the free resistance variable to a specific conduction velocity. We also plan to improve our
GPU-based implementation by combining our current approach with other optimizations
described in other papers such as [34,72,73].

The use of other hardware accelerators, such as FPGAs that are becoming more and
more employed to handle computational extensive problems in simulation [74,75] and
graphic processing [76,77] represents a promising perspective.
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Appendix A. Model Parameters

τ−v = (1− H(u− θ−v ))τ−v1 + H(u− θ−v )τ−v2

τ−w = τ−w1 + (τ−w2 − τ−w1)(1 + tanh(k−w (u− u−w )))/2

τso = τso1 + (τso2 − τso1)(1 + tanh(kso(u− uso)))/2

τs = (1− H(u− θw))τ
−
s1 + H(u− θw)τs2

τo = (1− H(u− θo))τ
−
o1 + H(u− θo)τo2

(A1)

w∞ = (1− H(u− θw∞))(1− u/τw∞) + H(u− θw∞)w
∗
∞

v∞ =

{
1, u < θv∞

0, u ≥ θv∞

(A2)
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Table A1. Model Parameters.

τ+
v τ−1v τ−2v τ+

w τ−1w τ−2w τs1 τs2 τf i τo1 τo2

1.4506 60 1150 200 60 15 2.7342 16 0.11 400 6

θv∞ θw θw∞ θso θsi θo τso1 τso2 τsi τw∞ θv θ−v

0.006 0.13 0.006 0.13 0.13 0.006 30.0181 0.9957 1.8875 0.07 0.3 0.006

k+w k−w ks kso ksi u−w us uo uu uso w∗∞
5.7 65 2.0994 2.0458 97.8 0.03 0.9087 0 1.55 0.65 0.94

Appendix B. Tabulated Mean Squared Error

Table A2. MSE of u between CPU and GPU Sample size as number of cells times simulation time
(in time-steps) on the Left Value of the RV on Top.

Sample Size|RV 0.5 1.7 2.0 2.2 3.0 3.5

1000 ∗ 20,000 3 ×10−6 3 ×10−6 1 ×10−6 0.0 0.0 0.0
1000 ∗ 30,000 8 ×10−6 3 ×10−6 2 ×10−6 0.0 0.0 0.0
1000 ∗ 40,000 1 ×10−5 2 ×10−6 5 ×10−6 3 ×10−6 0.0 0.0
2000 ∗ 20,000 1 ×10−6 1 ×10−6 0.0 0.0 1 ×10−6 0.0
2000 ∗ 30,000 1 ×10−6 1 ×10−6 1 ×10−6 1 ×10−6 2 ×10−6 0.0
2000 ∗ 40,000 6 ×10−6 0.0 2 ×10−6 1 ×10−6 2 ×10−6 0.0
3000 ∗ 20,000 0.0 1 ×10−6 1 ×10−6 0.0 0.0 1 ×10−6

3000 ∗ 30,000 1 ×10−6 1 ×10−6 1 ×10−6 0.0 0.0 0.0
3000 ∗ 40,000 2 ×10−6 3 ×10−6 1 ×10−6 0.0 1 ×10−6 0.0
4000 ∗ 20,000 0.0 1 ×10−6 2 ×10−6 0.0 0.0 0.0
4000∗ 30,000 0.0 1 ×10−6 7 ×10−6 0.0 0.0 0.0
4000 ∗ 40,000 1 ×10−6 0.2 ×10−6 1×10−5 0.0 0.0 1 ×10−6

Appendix C. Tabulated Conduction Velocity

Table A3. CV in a cell ring.

Length|RV 0.5 1.7 2.0 2.2. 3.0 3.5

1000 139.059021 341.596832 384.452545 411.704071 516.145691 577.957764
2000 139.070541 341.621796 384.49700 411.740479 516.137329 578.07977
3000 341.610657 384.51181 411.752563 516.34583 578.064758
4000 341.619690 384.500732 411.758636 516.133179 578.057251

Appendix D. Tabulated Execution Times CPU vs. GPU

Table A4. Execution times in milliseconds for the CPU-based implementation of the decreasing ring
simulation. On the left the number of cells (length) while on top the value considered for RV).

Length|RV 0.50 1.00 1.70 2.00 2.20 3.00 3.50

750 240.192 238.468 2.90253 2.8968 2.84844 2.78341 2.84889
1000 564.484 579.127 350.292 220.442 131.932 4.29828 4.35958
1250 969.275 1011.07 784.288 653.249 558.842 202.407 6.14406
1500 1455.63 1526.11 1319.38 1185.8 1092.33 718.903 483.882
1750 2018.12 2117.92 1939.51 1817.11 1725.46 1345.71 1100.71
2000 2660.24 2791.34 2641.93 2527.15 2439.14 2073.84 1819.97
2250 3383.76 3544.19 3429.59 3323.34 3244.67 2890.8 2640.81
2500 4183.63 4386.91 4300.8 4204.9 4133.38 3800.71 3556.48
2750 5062.56 5291.62 5246.47 5169.95 5096.36 4826.3 4566.59
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Table A5. Execution times in milliseconds for the GPU-based implementation of the decreasing ring
simulation. On the left the number of cells (length) while on top the value considered for RV .

Length|RV 0.50 1.00 1.70 2.00 2.20 3.00 3.50

750 41.8529 125.058 1.32457 0.146041 0.165624 1.26863 1.25893
1000 254.9 255.257 135.833 82.8866 48.4579 1.47809 1.4264
1250 464.078 488.732 344.528 266.477 226.149 77.6642 2.07172
1500 647.826 649.191 512.527 455.636 411.114 253.568 165.798
1750 818.234 820.921 684.815 625.691 580.426 423.808 336.593
2000 1009.94 1025.43 890.362 799.599 754.914 597.915 509.719
2250 1212.77 1205.46 1070.18 1023.48 967.128 808.924 721.257
2500 1402.38 1415.23 1282.1 1192.58 1147.75 986.991 896.333
2750 1616.38 1635.49 1480.98 1426.67 1349.12 1189.27 1099.99

Table A6. Execution times in milliseconds on CPU with cable structure for 20,000 time-steps (1.0 S); RV on the Left and
number of cells (length) on the Top.

RV|Length 750 1000 1250 1500 1750 2000 2250 2500 2750

0.5 2.17779 2.91875 3.60391 4.22735 4.89102 5.48444 6.11441 6.74417 7.31926
1.0 2.46055 2.88422 3.59794 4.31426 5.05442 5.70277 6.33951 6.97667 7.6054
1.7 2.1395 2.86173 3.5842 4.28218 5.01475 5.70856 6.42313 7.08627 7.77064
2.0 2.15932 2.86457 3.65434 4.38999 5.14664 5.90104 6.64811 7.39858 8.11657
2.2 2.13437 2.84882 3.56744 4.23231 5.005 5.69307 6.40477 7.06973 7.81166
3.0 2.12842 2.8367 3.55478 4.25004 4.95389 5.68169 6.33873 7.08078 7.79899
3.5 2.17363 2.89022 3.68692 4.43204 5.11849 5.81953 6.59956 7.44243 8.19544

Table A7. Execution times in milliseconds on CPU with cable structure for 30,000 time-steps (1.5 s); RV on the Left and
number of cells (length) on the Top.

RV|Length 750 1000 1250 1500 1750 2000 2250 2500 2750

0.5 3.12263 4.15651 5.21524 6.25149 7.29587 8.21946 9.22595 10.1734 11.0834
1.0 3.02776 4.13103 5.13779 6.21179 7.24284 8.27689 9.31198 10.3538 11.3794
1.7 3.07845 4.11506 5.1605 6.18692 7.07477 8.23436 9.08837 10.2346 11.1813
2.0 3.04207 4.15862 5.21818 6.24523 7.19768 8.42383 9.48892 10.5595 11.5156
2.2 3.07943 4.10617 5.05179 6.16922 7.16885 8.22107 8.97064 10.2735 11.3051
3.0 3.07324 4.09731 5.12766 6.14702 7.1781 8.20001 9.12954 10.2564 11.1974
3.5 3.11948 4.18857 5.2585 6.32607 7.39699 8.45868 9.53566 10.4431 11.6698

Table A8. Execution times in milliseconds on CPU with cable structure for 40,000 time-steps (2.0 s); RV on the Left and
number of cells (length) on the Top.

RV|Length 750 1000 1250 1500 1750 2000 2250 2500 2750

0.5 4.07271 5.40147 6.74728 7.91406 9.49966 10.8645 12.2209 13.5426 14.7493
1.0 4.05133 5.39391 6.71023 8.10064 9.45727 10.7963 12.0464 13.4511 14.8274
1.7 4.03446 5.37714 6.7095 8.07219 9.37009 10.6967 12.088 13.428 14.7969
2.0 4.05247 5.35428 6.77558 8.17905 9.57027 10.9469 12.3277 13.7138 15.0427
2.2 4.02911 5.37049 6.68062 8.05332 9.39624 10.7436 12.0882 13.4151 14.7604
3.0 4.00694 5.36161 6.70148 8.04218 9.26858 10.6034 11.9962 13.3591 14.7013
3.5 4.06723 5.44716 6.83255 8.22621 9.59891 10.9868 12.3376 13.6897 15.1424
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Table A9. Execution times in milliseconds on CPU with ring structure for 20,000 time-steps (1.0 s); RV on the Left and
number of cells (length) on the Top.

RV|Length 750 1000 1250 1500 1750 2000 2250 2500 2750

0.5 2.40232 3.31226 4.41017 5.23823 5.90022 6.5286 7.1236 7.75293 8.39601
1.0 2.44475 3.39442 4.40293 5.55135 6.90426 8.30695 9.32327 10.0085 10.6383
1.7 2.28215 3.39336 4.46288 5.60701 6.87933 8.27943 9.80254 11.5531 13.0987
2.0 2.30926 3.36279 4.55691 5.751 7.05894 8.43163 10.0547 11.7666 13.625
2.2 2.30105 3.31152 4.44178 5.63829 6.87634 8.28893 9.81915 11.4697 13.3359
3.0 2.29924 3.17312 4.29249 5.56422 6.89196 8.31743 9.82524 11.3518 13.2487
3.5 2.3378 3.2688 4.31792 5.60091 7.08923 8.5631 10.1441 11.6524 13.6406

Table A10. Execution times in milliseconds on CPU with ring structure for 30,000 time-steps (1.5 s); RV on the Left and
number of cells (length) on the Top.

RV|Length 750 1000 1250 1500 1750 2000 2250 2500 2750

0.5 3.54459 4.78716 6.20219 7.85189 9.68717 11.1427 11.9949 13.3181 14.2619
1.0 3.62855 4.96414 6.28532 7.77905 9.42828 11.2651 13.3017 15.4316 17.8885
1.7 3.23275 4.91963 6.4203 7.93681 9.53062 11.254 13.1553 15.2147 17.4927
2.0 3.27914 4.8756 6.47453 7.98471 9.72569 11.1829 13.0988 15.4282 17.7083
2.2 3.22943 4.76811 6.3693 7.92068 9.59352 11.3215 13.0317 15.2034 17.3761
3.0 3.22724 4.43279 6.07518 7.84952 9.5962 11.3885 13.2657 15.2252 17.3078
3.5 3.27702 4.52774 5.89123 7.78062 9.65142 11.5836 13.6047 15.614 17.8365

Table A11. Execution times in milliseconds on CPU with ring structure for 40,000 time-steps (2.0 s); RV on the Left and
number of cells (length) on the Top.

RV|Length 750 1000 1250 1500 1750 2000 2250 2500 2750

0.5 4.68156 6.24452 7.9821 9.89831 12.0787 14.4919 17.2231 19.4347 21.376
1.0 4.8007 6.49978 8.20022 10.0026 11.9132 14.129 16.423 19.0493 21.7869
1.7 4.1721 6.46022 8.34099 10.1745 12.2067 14.2542 16.4717 18.822 21.3789
2.0 4.19316 6.36998 8.43469 10.4116 12.3426 14.4685 16.5756 19.0607 21.6732
2.2 4.15634 6.23683 8.18774 10.297 12.3056 14.3531 16.5775 18.9224 21.3154
3.0 4.17216 5.62696 7.87179 10.1389 12.3108 14.4984 16.6263 18.9597 21.552
3.5 4.22194 5.78749 7.4671 9.9997 12.4308 14.7216 17.1015 19.5122 22.0179

Table A12. Execution times in milliseconds on GPU with cable structure for 20,000 time-steps (1.0 s); RV on the Left and
number of cells (length) on the Top.

RV|Length 750 1000 1250 1500 1750 2000 2250 2500 2750

0.5 0.848999 0.889333 1.16274 1.16188 1.18538 1.2662 1.31223 1.31198 1.31173
1.0 0.841814 0.871742 1.12612 1.15056 1.21253 1.26207 1.29615 1.27176 1.29431
1.7 0.821817 0.865828 1.11941 1.1427 1.20852 1.24688 1.27963 1.25492 1.2792
2.0 0.81353 0.864334 1.16221 1.14417 1.1649 1.24775 1.27578 1.29729 1.27352
2.2 0.837617 0.863485 1.16083 1.14443 1.16972 1.24371 1.27455 1.29626 1.27503
3.0 0.835224 0.861763 1.16146 1.14268 1.16547 1.23839 1.26714 1.28983 1.26722
3.5 0.838692 0.86005 1.15908 1.13851 1.16179 1.23707 1.26472 1.28604 1.26323
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Table A13. Execution times in milliseconds on GPU with cable structure for 30,000 time-steps (1.5 s); RV on the Left and
number of cells (length) on the Top.

RV|Length 750 1000 1250 1500 1750 2000 2250 2500 2750

0.5 1.25072 1.30991 1.76031 1.72492 1.75575 1.89603 1.95313 1.91431 2.01845
1.0 1.24637 1.29681 1.74341 1.71531 1.74496 1.87123 1.9169 1.88033 1.98441
1.7 1.24701 1.28753 1.73467 1.71499 1.76222 1.85481 1.84959 1.86549 1.96853
2.0 1.21006 1.2876 1.73608 1.73641 1.751 1.84913 1.89863 1.85836 1.89367
2.2 1.19942 1.29034 1.73257 1.70141 1.74062 1.84963 1.89708 1.85949 1.89444
3.0 1.19859 1.28334 1.73439 1.70766 1.7371 1.84559 1.88606 1.85213 1.93722
3.5 1.19992 1.2821 1.73551 1.70365 1.73056 1.84127 1.88406 1.85143 1.95201

Table A14. Execution times in milliseconds on GPU with cable structure for 40,000 time-steps (2.0 s); RV on the Left and
number of cells (length) on the Top.

RV|Lenght 750 1000 1250 1500 1750 2000 2250 2500 2750

0.5 1.67011 1.6729 2.31525 2.37552 2.33679 2.50182 2.56793 2.52347 2.66213
1.0 1.66108 1.6586 2.32068 2.3599 2.32225 2.46985 2.51293 2.52608 2.60121
1.7 1.6577 1.65349 2.31779 2.35987 2.31778 2.46187 2.43051 2.56676 2.60954
2.0 1.65875 1.71481 2.22505 2.35302 2.34389 2.37236 2.50714 2.46658 2.61
2.2 1.65421 1.71005 2.22187 2.35125 2.36354 2.37544 2.50728 2.4606 2.60991
3.0 1.65237 1.69412 2.22313 2.34239 2.31502 2.44709 2.50181 2.46247 2.60179
3.5 1.65479 1.64581 2.21637 2.35296 2.30923 2.43673 2.44566 2.457 2.59723

Table A15. Execution times in milliseconds on GPU with ring structure for 20,000 time-steps (1.0 s); RV on the Left and
number of cells (length) on the Top.

RV|Length 750 1000 1250 1500 1750 2000 2250 2500 2750

0.5 0.824887 0.858292 1.17756 1.2021 1.22642 1.22681 1.26353 1.33139 1.35563
1.0 0.825941 0.867612 1.17605 1.19598 1.21588 1.21514 1.24554 1.31283 1.33772
1.7 0.809318 0.886947 1.17661 1.19286 1.18617 1.21087 1.27585 1.30247 1.32589
2.0 0.837368 0.864277 1.17822 1.19646 1.21667 1.20694 1.23423 1.30222 1.32612
2.2 0.80668 0.859621 1.17954 1.19914 1.21708 1.20913 1.23555 1.30158 1.32694
3.0 0.80394 0.83684 1.15383 1.19679 1.21919 1.2073 1.23838 1.3031 1.32707
3.5 0.802061 0.83134 1.15312 1.19869 1.2175 1.20365 1.23558 1.3025 1.32064

Table A16. Execution times in milliseconds on GPU with ring structure for 30,000 time-steps (1.5 s); RV on the Left and
number of cells (length) on the Top.

RV|Length 750 1000 1250 1500 1750 2000 2250 2500 2750

0.5 1.27212 1.28448 1.67352 1.78668 1.81432 1.82109 1.9449 1.9757 1.94173
1.0 1.23273 1.27832 1.72846 1.78195 1.78786 1.81367 1.9168 1.94522 1.91128
1.7 1.20466 1.28149 1.7647 1.79105 1.74971 1.80354 1.9112 1.94247 1.91323
2.0 1.25088 1.28156 1.70282 1.79137 1.81618 1.80397 1.85009 1.93807 1.92427
2.2 1.24949 1.28851 1.69943 1.79239 1.82037 1.8065 1.91606 1.94038 1.90788
3.0 1.25007 1.24273 1.69035 1.79164 1.82277 1.80618 1.91635 1.94081 1.91116
3.5 1.24632 1.24053 1.63994 1.79321 1.82051 1.80342 1.916 1.94256 1.91027
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Table A17. Execution times in milliseconds on GPU with ring structure for 40,000 time-steps (2.0 s); RV on the Left and
number of cells (length) on the Top.

RV|Length 750 1000 1250 1500 1750 2000 2250 2500 2750

0.5 1.70821 1.76868 2.24855 2.3773 2.42197 2.41253 2.55641 2.51397 2.65875
1.0 1.7082 1.76785 2.25007 2.37585 2.37959 2.40608 2.53577 2.49686 2.63478
1.7 1.66191 1.77 2.25714 2.38252 2.42265 2.40074 2.53953 2.49534 2.62592
2.0 1.60376 1.77124 2.31413 2.29825 2.42199 2.4419 2.50959 2.56467 2.5395
2.2 1.59695 1.77738 2.34387 2.30694 2.42655 2.40352 2.5453 2.5857 2.54421
3.0 1.62956 1.7126 2.33512 2.30269 2.42819 2.40453 2.54706 2.58898 2.54902
3.5 1.65474 1.71035 2.2077 2.35757 2.42943 2.40046 2.54567 2.55726 2.60797

Appendix E. Implementations Additional Material

Appendix E.1. Matlab Simulink Block Examples

Figure A1. Example cell block Matlab Simulink.

Figure A2. Example resistor block Matlab Simulink
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Figure A3. 5 cells grouped Matlab Simulink.

Figure A4. Model block Matlab Simulink.
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