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Abstract: The spot freight rate processes considered in the literature for pricing forward freight
agreements (FFA) and freight options usually have a particular dynamics in order to obtain the prices.
In those cases, the FFA prices are explicitly obtained. However, for jump-diffusion models, an exact
solution is not known for the freight options (Asian-type), in part due to the absence of a suitable
valuation framework. In this paper, we consider a general jump-diffusion process to describe the spot
freight dynamics and we obtain exact solutions of FFA prices for two parametric models. Moreover,
we develop a partial integro-differential equation (PIDE), for pricing freight options for a general
unifactorial jump-diffusion model. When we consider that the spot freight follows a geometric
process with jumps, we obtain a solution of the freight option price in a part of its domain. Finally,
we show the effect of the jumps in the FFA prices by means of numerical simulations.

Keywords: spot freight rates; freight options; stochastic jump-diffusion process; stochastic delay
differential equation; risk-neutral measure; arbitrage arguments; partial integro-differential equations

1. Introduction

From its modest origins, the freight transportation has progressed immeasurably in
terms of size and complexity. Over the years, companies devoted to freight transportation
have grown exponentially, see [1]. In fact, nowadays, the transportation of goods all
over the world has become very important. Moreover, maritime trade is the main source
of international trade and transportation. One of the main reasons is the relatively low
maritime cost, compared to that associated with other modes of transportation, such as
land or air, see [2].

In the international shipping markets, freight derivatives are very useful instruments
to deal with risk, but also of interest to market practitioners as well as to academics.
On the one hand, institutional investors, like hedge funds or investment banks, have an
interest in shipping derivatives as alternative investments. As Grelck et al [3] show,
shipping has a very low correlation with stocks. Then, incorporating shipping assets
to their portfolios means an important source of diversification, although they are also
very sensitive to the global economy, see [4]. In fact, the freight derivative market is
relatively new, and it is an emerging market which can still improve considerably. On the
other hand, the academic interest in shipping finance is very recent, and the volume of
literature on this topic, although increasing, is still considerably lower than the volume of
general finance literature. Then, practitioners are interested in this market to hedge their
risk and/or get higher returns, and academics to develop high-impact research works to
support practitioners.

In freight rate modeling, initially, the considered stochastic processes were very simple
models borrowed from financial economics. In early stages, it was assumed that the
freight rate followed a geometric Brownian motion, see [5–7]. However, the notion of
mean reversion has been always dominant in the maritime economic literature (see, for
instance, [8]). An Ornstein–Uhlenbeck process was taken into account by [9,10]. It is very
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well-known that this process has some deficiencies which as a result can provide negative
freight rates in some cases. Tvedt (1998) [11] established that it could be improved by a
geometric mean-reverting process and, for example, Prokopczuk [12] assumed that the
logarithm of the spot price followed an Ornstein–Uhlenbeck process. More recently, for
example, jumps have been considered to model the spot freight rate as they usually exhibit
relatively large and abrupt upside and downside movements, which can be represented
by jump-diffusion processes. For example, Nomikos et al. [13] added jumps of normal
size to the geometric Brownian motion, and Kyriakou et al. [14] established a generalized
stochastic freight rate in the form of exponential mean reverting process overlaid with
jumps. There is also a recent trend to consider nonparametric techniques in order to
avoid the problems surrounding the identification and estimation of parametric stochastic
models, see [8,15].

Freight markets are highly volatile. Then, it does not seem strange that market
participants rely on FFA contracts and options to manage their freight rate risk exposure.
As shown by Cox and Ross [16] and Harrison and Kreps [17], the no-arbitrage price of a
derivative is given by the risk-neutral expectation of its cash-flows. For the most financial
derivatives, it is possible to obtain a partial differential equation whose solution is the
derivative price, see [18]. However, if the spot freight rate process includes jumps, a
PIDE for pricing freight options is not known. Then, the Monte Carlo method must be
applied to price these options, although it is very expensive and not very accurate from a
computational point of view.

The main contribution of this paper is to offer a new framework for pricing both FFA
contracts and freight options, when the spot freight rate follows a jump-diffusion stochastic
process. We consider a one-factor model which includes the spot processes considered
in freight and commodity models as in [6,19,20]. We provide a PIDE which allows us to
use other different methods to price these derivatives. The original idea of this approach
dates back to [21], but they leave unattainable various modeling processes including, for
example, price discontinuities which are important in freight markets.

Considering that FFA prices can be obtained as the average of the futures prices whose
maturities are the different time levels of the settlement period, we obtain the price for
some of the jump-diffusion processes mostly used in the literature, such as the geometric
Brownian motion and the geometric mean reverting process with jumps. Moreover, if a
closed-form solution for the future price could not be obtained, it would be possible to
apply a numerical method to the futures PIDE pricing equation as a previous step to obtain
an approximation to the FFA price.

As far as freight options are concerned, we provide a novel PIDE which verifies the
freight option price. This equation depends on three independent variables: the spot freight,
its delay and the average of the spot freight over the settlement period (its continuous
version). Therefore, this methodology offers a new approach to price this special kind of
options. In some cases, this PIDE could provide an explicit solution for the freight option
valuation problem and, in other cases, numerical methods could be applied to approximate
the solution. In this paper, we obtain a closed-form solution in a part of its domain for
the geometric Brownian motion with jumps to be added as a boundary condition when
numerical discretization schemes are designed to approximate the price.

Therefore, with this framework, we contribute with a new, fast, and accurate analytical
method for pricing freight derivatives when jumps are considered. Furthermore, the
obtained FFA prices are useful to obtain lower bounds of the freight options which can
provide valuable approximations to the option prices. Numerical simulations illustrate
the results.

The paper is structured as follows. In Section 2, a one-factor jump-diffusion model
is introduced for pricing FFA contracts and freight options. In Section 3, we provide
closed-form solutions for FFA prices when some very well-known assumptions are made
for modeling the spot freight rates: the geometric and the geometric mean reversion with
jumps. In Section 4, we obtain a novel PIDE for pricing FFA options and a partial closed-
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form solution for a particular case. In Section 5, we make some numerical experiments to
show how to implement our approach and analyze the impact of the mean reversion and
jumps in a FFA and option pricing model. Finally, Section 6 presents conclusions.

2. Model Setup

In this section, we introduce the models which we will consider later to price some
freight derivatives: FFA contracts and options. In particular, we consider a general jump-
diffusion model which allows us to take into account extreme movements and discontinu-
ities in the freight rates.

Define (Ω, F , and P) as a probability space equipped with a filtration {F}t≥0 which
satisfies the usual conditions, see [22,23].

We consider that the spot freight rate, under the risk-neutral measure Q, follows the
jump-diffusion process (S is right-continuous (cadlag, see [22]) and we denote the limit
S(t−) = limz↑t S(z). This notation will be added only when necessary to avoid confusion;
otherwise, it will be assumed implied):

S(t) = S(0) +
∫ t

0
µ(S(z))dz +

∫ t

0
σ(S(z))dW(z) +

∫ t

0
γ(S(z−))dJ(z), (1)

where µ(S) and σ(S) are the drift and volatility of the process, respectively, and W is a
Wiener process. The jump term is given by the function γ and the compound Poisson

process, J(t) = ∑
NQ(t)
i=1 Yi, with jump times (τi)i≥1, where NQ(t) represents a Poisson

process with intensity λ(S) and Y1, Y2, . . . is a sequence of independent and identically
distributed random variables with distribution function Π. We suppose that the functions
µ, σ, γ and λ satisfy suitable regularity conditions as follows (see [24,25]). Functions µ, σ,
γ, and λ are twice continuously differentiable. Moreover, they satisfy local Lipschitz and
grow conditions:

Assumption 1. For every compact subset D ⊂ R, there exists a constant CD
1 such that, for all

x, z ∈ R,

|µ(x)− µ(z)|+ |σ(x)− σ(z)|+ λ(x)
∫ ∞

−∞
|(γ(x)− γ(z))y|Π(y)dy ≤ CD

1 |x− z|,

Assumption 2. There exists a constant C2 such that, for all x ∈ R,

|µ(x)|+ |σ(x)|+ λ(x)
∫ ∞

−∞
|γ(x)y|Π(y)dy ≤ C2(1 + |x|).

Assumption 3. For a given α > 2, there exists a constant C3 such that, for any x ∈ R,

λ(x)
∫ ∞

−∞
|γ(x)y|αΠ(y)dy ≤ C3(1 + |x|α).

Assumption 4. λ ≥ 0 on R.

FFAs are forward contracts which trade, at a future date, the arithmetic average of the
spot freight rate during a settlement period [T1, TN ] with T1 < · · · < TN . Then, it verifies
at time t ≤ TN

F(t, S; T1, . . . , TN) = EQ
[

1
N

N

∑
i=1

S(Ti)
∣∣∣S(t) = S

]
, (2)

where EQ represents the conditional expectation under Q-measure, see [6].
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We express the freight call option price at time t, with strike price K and maturity TN ,
as C(t, S; K, T1, . . . , TN). At maturity, its value is

C(TN , S; K, T1, . . . , TN) =

(
1
N

N

∑
i=1

S(Ti)− K

)+

. (3)

We assume the discount factor D(t) = e−rt, where the riskless interest rate r is constant.
If we use the fundamental theorem of asset pricing (see [18]), the price of a freight call
option, at time t, strike price K, and maturity time TN is given by

C(t, S; K, T1, . . . , TN) = e−r(TN−t) EQ

( 1
N

N

∑
i=1

S(Ti)− K

)+∣∣∣S(t) = S

. (4)

This Asian-style option can also be expressed as a European call option on a FFA as
follows (see [6]):

C(t, S; K, T1, . . . , TN) = e−r(TN−t) EQ
[
(F(TN , S; T1, . . . , TN)− K)+

∣∣∣S(t) = S
]
,

where the FFA price at maturity verifies

F(TN , S; T1, . . . , TN) = EQ
[

1
N

N

∑
i=1

S(Ti)
∣∣∣S(TN) = S

]
=

1
N

N

∑
i=1

S(Ti).

3. Forward Freight Agreement Pricing

In this section, we describe several jump-diffusion models for pricing FFA contracts
and calculate their exact solution.

The FFA price can be expressed as the average of futures prices whose maturities are
the times of the settlement period. We show this result in the following proposition.

Proposition 1. Let F(t, S; T1, · · · , TN) be the FFA price defined in (2) and F̃(t, S; Ti) the futures
prices whose maturities are the times Ti (i = 1, . . . , N) of the settlement period. Then, the FFA price
verifies F(t, S; T1, · · · , TN) =

1
N ∑N

i=1 F̃(t, S; Ti).

Proof of Proposition 1. From the definition of the FFA price (2),

F(t, S; T1, · · · , TN) = EQ
[

1
N

N

∑
i=1

S(Ti)
∣∣∣S(t) = S

]

=
1
N

N

∑
i=1

EQ[S(Ti)|S(t) = S]

=
1
N

N

∑
i=1

F̃(t, S; Ti). (5)

Bellow, we consider several processes already used to model the dynamics of different
commodities (see [20,26,27]):

• GJ model: In the process (1), we assume that the freight spot rate follows a geo-
metric process where we introduce a jump term proportional to the spot. In this
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case, we assume that the logarithm of the spot process v(t) = log S(t) follows the
stochastic process

v(t) = v(0) +
∫ t

0
µvdz +

∫ t

0
σdz +

NQ(t)

∑
i=1

Yi, (6)

where the distribution of the jump size is Normal (Yi → N (µJ , σJ)) and the jump
intensity λ is constant. Then, the functions in (1) are µ(S) = µS, σ(S) = σS and
γ(S) = S, where µ and σ are constants and µ = µv +

σ2

2 . The jump term for the

spot freight rate process is ∑
NQ(t)
i=1 S(τi)(eYi − 1), with τi the jump times. Now, the

distribution of the jump size becomes Lognormal.
If we express the FFA price as the average of futures prices as in (5), we must solve
the following PIDE (see [18,28]) with final conditions F̃(Ti, S; Ti) = S, i = 1, · · · , N,

F̃t + µSF̃S +
1
2

σ2S2 F̃SS + λ
∫ ∞

−∞
(F̃(t, S + S(ey − 1); Ti)− F̃(t, S; Ti))Π(y)dy = 0,

where Π is the Normal density function. As a solution of this PIDE, we consider a
function, proportional to S, and we obtain that the futures prices can be expressed as

F̃(t, S; Ti) = SeΓ(Ti−t),

where

Γ = µ + λ(µ∗J − 1), (7)

with µ∗J − 1 = eµJ+σ2
J /2 − 1, the first moment of the Lognormal distribution. Then,

we obtain the FFA price as in [6] (by means of a geometric progression sum, where
we assume that the times on the settlement period are equidistant with range ∆ =
Ti+1 − Ti)

F(t, S; T1, · · · , TN) =
S
N

N

∑
i=1

eΓ(Ti−t) =
SeΓ(TN−t)

N
1− e−ΓN∆

1− e−ΓN . (8)

Remark 1. Note that this FFA price only depends on the first moment, µ∗J − 1, of the jump
size distribution of S. Moreover, if we consider that λ = 0, we obtain a geometric model
without jumps (G model), and the FFA price is also obtained by (8), with Γ = µ.

• LogJ model: In the process (1), we assume that the logarithm of the spot freight rate
follows an Ornstein–Uhlenbeck process with a jump term as follows:

v(t) = v(0) +
∫ t

0
k(µv − v)dz +

∫ t

0
σdz +

NQ(t)

∑
i=1

Yi, (9)

where the distribution of the jump size is Normal (Yi → N (µJ , σJ)). Then, the func-
tions in (1) are µ(S) = k(µ− log S)S, σ(S) = σS, γ(S) = S and µ = µv +

σ2

2k , with
k, µ, σ and the jump intensity λ constants. The jump term for the spot process is

∑
NQ(t)
i=1 S(τi)(eYi − 1), where τi are the jump times. Again, the distribution of the jump

of the process S becomes Lognormal. We will refer to this dynamics of the spot freight
rate as geometric mean reverting.
For this model, the futures price with maturity Ti, F̃(t, S; Ti), must verify the following PIDE:
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F̃t + k(µ− log S)SF̃S +
1
2

σ2S2 F̃SS

+λ
∫ ∞

−∞
(F̃(t, S + S(ey − 1); Ti)− F̃(t, S; Ti))Π(y)dy = 0, (10)

(where Π is the Normal density function) and F̃(Ti, S; Ti) = S.
Thus, as to solve this PIDE, first, we make a change of the time variable τi = Ti − t
in (10). If we assume that its solution has the form F̃(τi, S) = eB1(τi) log S+B2(τi), with B1
and B2 functions of time, we obtain the following system of ordinary differential equa-
tions:

B′1 = −kB1,

B′2 = (kµ− 1
2

σ2)B1 +
1
2

σ2B2
1 + λ(eB1µJ+

B2
1σ2

J
2 − 1),

with the initial conditions B1(0) = 1 and B2(0) = 0. The function B1 can be obtained
explicitly B1(τi) = e−kτi , but the expression for B2(τi) is:

B2(τi) =
kµ− 1

2 σ2

k
(1− e−kτi ) +

σ2

4k
(1− e−2kτi )

+ λ
∫ τi

0

(
exp

(
e−kzµJ +

e−2kzσ2
J

2

)
− 1
)

dz.

In order to calculate B2(τ), we could apply, for example, numerical quadrature meth-
ods to the integral term. Finally, we get the FFA price by means of the relation (5),
where we express the FFA as the average of the futures prices:

F̃(t, S; Ti) = exp

(
e−k(Ti−t) log S +

kµ− 1
2 σ2

k
(1− e−k(Ti−t))

+
σ2

4k
(1− e−2k(Ti−t))

+λ
∫ Ti−t

0

(
exp

(
e−kzµJ +

e−2kzσ2
J

2

)
− 1

)
dz

)
. (11)

4. Partial Integro-Differential Equation for Pricing Freight Options

Freight options are a special kind of Asian-options. A large volume of literature
is devoted to Asian/Bermudan options where different approaches are considered to
approximate its value, see a detailed literature survey on [29] or more recent approaches
such as [27,30] or [31].

In the previous section, we have shown several jump-diffusion models which have a
closed-form solution for the FFA price. However, this fact does not happen when freight
options are priced with those dynamics. In the freight literature, the expectation in (4)
is usually used to approximate these Asian-style options. In particular, the Monte Carlo
method can be applied to price them.

When the freight rate follows a diffusion process, Gómez-Valle et al. [21] provide a
partial differential equation and numerical methods could be developed to discretize it.
However, if we consider a jump-diffusion process to reflect possible abrupt changes of the
spot rate, a valuation equation to obtain freight option prices is not known in the literature.

In order to fill this gap, in this section, we develop a more general PIDE for pricing
freight options assuming that the spot freight rate is given by a jump-diffusion stochastic
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process. We make a similar reasoning as in [21] for a diffusion process, which is based
on pricing standard Asian-style options as in [32], and we extend it to jump-diffusion
processes. Moreover, we obtain a partial solution to this PIDE for the GJ model introduced
in Section 3.

Thus, as to provide a framework for pricing freight options, we consider a settlement
period [T1, TN ] with a fixed time span d = TN − T1, which is usually one month. We
establish a stochastic process A(t) as an approximation to the average of the spot rate with
a continuous version of 1

N ∑n
i=1 S(Ti), as in [21]:

A(t) =


∫ t

0 S(z) dz, if 0 ≤ t ≤ d,∫ t
t−d S(z) dz, if t > d.

(12)

This new stochastic process verifies that dA(t) = (S(t)− S(t− d))dt for t > d. Then,
we consider an additional variable which is the delay of the spot freight rate:

X(t) =


S(0), if 0 ≤ t ≤ d,

S(t− d), if t > d.

This new variable X takes a constant value for 0 ≤ t ≤ d and follows the jump-
diffusion process for t ≥ d

X(t) = X(d) +
∫ t

d
µ(S(z))dz +

∫ t

d
σ(S(z))dW(z− d) +

NQ(t−d)

∑
i=1

γ(S(τi−))Yi,

Then, we write dA(t) as

dA(t) =


S(t) dt, if 0 ≤ t ≤ d,

(S(t)− X(t)) dt, if t > d.

The average value of the spot freight rate in (3) is approximated by (12) in continuous-
time as:

C(TN , S, X, A; K, T1, . . . , TN) =

(
1
d

A(TN)− K
)+

, (13)

and the freight call option in (4) as

C(t, S, X, A; K, T1, . . . , TN) = (14)

e−r(TN−t) EQ
[(

1
d

A(TN)− K
)+∣∣∣S(t) = S, X(t) = X, A(t) = A

]
. (15)

The following results allow us to deal with the freight option valuation problem in
a jump-diffusion setting. We develop a PIDE, which is verified by the freight call option
price (analogously a PIDE for the freight put option can be obtained). In some cases, we
will be able to obtain an exact solution of the valuation PIDE, but, in other cases, we will
have to apply numerical methods in order to approximate it.

Theorem 1. The freight call option price C(t, S, X, A; K, T1, . . . , TN) in Equation (14) verifies the
following PIDE for d < t < TN ,
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Ct + µ(S)CS + µ(X)CX + (S− X)CA

+
1
2

σ2(S)CSS +
1
2

σ2(X)CXX − rC

+ λ
∫ ∞

−∞

(
C(t, S + γ(S)y, X, A; T1, · · · , TN)

−C(t, S, X, A; T1, · · · , TN)
)

Π(y)dy

+ λ
∫ ∞

−∞

(
C(t, S, X + γ(X)y, A; T1, · · · , TN)

−C(t, S, X, A; T1, · · · , TN)
)

Π(y)dy = 0, (16)

S > 0, X > 0, A > 0.

Moreover, when 0 < t < d, the function C in Equation (14) satisfies the PIDE

Ct + µ(S)CS + SCA +
1
2

σ2(S)CSS − rC

+ λ
∫ ∞

−∞

(
C(t, S + γ(S)y, X, A; T1, · · · , TN)

−C(t, S, X, A; T1, · · · , TN)
)

Π(y)dy = 0, (17)

S > 0, X > 0, A > 0.

Proof of Theorem 1. By means of no-arbitrage arguments, the discounted freight option
price, under the risk-neutral measure Q, is a martingale, see [18]. Then, the option price
must verify

EQ[D(TN)C(TN , S(TN), X(TN), A; K, T1, . . . , TN)|S(t) = S, X(t) = X, A(t) = A]

= D(t)C(t, S, X, A; K, T1, . . . , TN).

In this case, if we develop the differential d(D(t)C(t, S, X, A; K, T1, . . . , TN)), then the
dt term must be zero.

From now, Sc and Xc will be denoted as the continuous part (that is, without the jump
term) of the processes S and X, respectively. Then, we note that dScdSc = σ2(S)dt and

dXcdXc =


0, if 0 < t < d,

σ2(X) dt, if t > d.

Moreover, dScdXc = 0 because dW(t)dW(t− d) = 0, and dAdA = dSdA = dXdA = 0.
Applying the Ito Lemma, for d < t < TN , we get
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d(e−rtC) = e−rt
(
− rC + Ct + µ(S)CS + µ(X)CX + (S− X)CA

+
1
2

σ2(S)CSS +
1
2

σ2(X)CXX

+λEy

[
C(t, S + γ(S)y, X, A; T1, · · · , TN)

−C(t, S, X, A; T1, · · · , TN)
]

+λEy

[
C(t, S, X + γ(X)y, A; T1, · · · , TN)

−C(t, S, X, A; T1, · · · , TN)
])

dt

+ e−rt
(

CSσ(S)dW(t) + CXσ(X)dW(t− d)

+
(
C(t, S + γ(S)y, X, A; T1, · · · , TN)

−C(t, S, X, A; T1, · · · , TN)
)
dÑQ(t)

+
(
C(t, S, X + γ(X)y, A; T1, · · · , TN)

−C(t, S, X, A; T1, · · · , TN)
)
dÑQ(t− d)

)
, (18)

where Ey represents the expectation with respect to the jump size, and ÑQ is the compen-
sated Poisson process.

For 0 < t < d,

d(e−rtC) = e−rt
(
− rC + Ct + µ(S)CS + SCA +

1
2

σ2(S)CSS

+λEy

[
C(t, S + γ(S)y, X, A; T1, · · · , TN)

−C(t, S, X, A; T1, · · · , TN)
])

dt

+ e−rt
(

CSσ(S)dW(t)

+
(
C(t, S + γ(S)y, X, A; T1, · · · , TN)

−C(t, S, X, A; T1, · · · , TN)
)
dÑQ(t)

)
. (19)

Finally, we vanish the dt terms in (18) and (19), and this fact leads to (16) and (17),
respectively.

This result provides a final value problem (PIDEs (16) and (17) with the final condition
(13)). These equations can be very complex to solve explicitly. Nevertheless, suitable
numerical methods can be applied to approximate the solution.

In order to illustrate how to implement this approach, we consider a simple stochastic
process commonly used in the freight literature to model the spot freight rate: the GJ model.
In the literature, there exist several techniques to obtain the freight option prices with this
model, such as [33]. In a similar way to [21], but considering jumps, we calculate a solution
to the PIDEs (16)–(17) in Theorem 1 when the average of the spot freight verifies A ≥ dK.

Proposition 2. Let µ(S) = µS, σ(S) = σS, and γ(S) = S be the drift, volatility, and jump size
factor, respectively, of the process (1), λ the jump intensity, and µ∗J − 1 the first moment of the jump
size distribution (Normal distribution), with µ, σ, λ, and µ∗J constants, as in the GJ model. Then,
the following function is a solution to the PIDEs (16)–(17) and verifies the final condition (13) when
A ≥ dK
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C̃(t, S, X, A; K, T1, . . . , TN) =
e−r(TN−t)

((
1
d

A− K
)
+

S(eΓ(TN−t) − 1)− X(eΓ(TN−d) − 1)
dΓ

)
, 0 ≤ t ≤ d,

e−r(TN−t)

((
1
d

A− K
)
+

(S− X)(eΓ(TN−t) − 1)
dΓ

)
, d ≤ t ≤ TN ,

(20)

where Γ is given by (7).

Proof of Proposition 2. We get a new initial value problem if we change the time variable
τ = TN − t and use (13) and (16):

Cτ = µSCS + µXCX + (S− X)CA

+
1
2

σ2S2CSS +
1
2

σ2X2CXX − rC

+ λ
∫ ∞

∞

(
C(τ, S + Sy, X, A; K)

−C(τ, S, X, A; K)
)

Π(y)dy

+ λ
∫ ∞

∞

(
C(τ, S, X + Xy, A; K)

−C(τ, S, X, A; K)
)

Π(y)dy, 0 < τ < TN − d, (21)

C(0, S, X, A; K) =
(

1
d

A− K
)+

. (22)

As in [21], for A ≥ dK, we consider this linear solution to this problem

C(τ, S, X, A; K) =
(

1
d

A− K
)

B1(τ) + (S− X)B2(τ), 0 ≤ τ ≤ TN − d, (23)

where B1 and B2 depend only on the new time variable τ. Replacing (23) in the PIDE (21),
and taking into account that the first integral term in (21) can be expressed as

λ
∫ ∞

−∞
S(ey − 1)B2(τ)Π(y)dy = λ(µ∗J − 1)SB2(τ),

and analogously for the second integral term, we obtain that B1 and B2 verify the following
system of ordinary differential equations

B′1(τ) = −rB1(τ),

B′2(τ) = (Γ− r)B2(τ) +
1
d

B1(τ).

We get, from (22), the initial conditions: B1(0) = 1 and B2(0) = 0. Solving this system,
we obtain the solution to (21)–(22)

C(τ, S, X, A; K) =
(

1
d

A− K
)

e−rτ + (S− X)
e−rτ

dΓ
(eΓτ − 1), 0 ≤ τ ≤ TN − d. (24)

We also make the change of the time variable in (17). Moreover, we use the value
of (24) in TN − d as an initial condition. Then, we obtain the initial value problem
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Cτ = µSCS + SCA +
1
2

σ2S2 − rC

+λ
∫ ∞

−∞

(
C(τ, S + Sy, X, A; K)− C(τ, S, X, A; K)

)
Π(y)dy, (25)

TN − d < τ < TN ,

C(TN − d, S, X, A; K) = e−r(TN−d)

((
1
d

A− K
)
+ (S− X)

eΓ(TN−d) − 1
dΓ

)
. (26)

Again, in this case, we consider this linear solution

C(τ, S, X, A; K) =
(

1
d

A− K
)

A1(τ) + SA2(τ) + XA3(τ), TN − d ≤ τ ≤ TN , (27)

where A1, A2, and A3 are functions of time.
We replace (27) into the PIDE (25) and obtain that A1, A2 and A3 satisfy the following

system of ordinary differential equations:

A′1(τ) = −rA1(τ),

A′2(τ) = (Γ− r)A2(τ) +
1
d

A1(τ), (28)

A′3(τ) = −rA3(τ),

and, from (26), we get the initial conditions in τ = TN − d

A1(TN − d) = e−r(TN−d),

A2(TN − d) =
e−r(TN−d)

dΓ
(eΓ(TN−d) − 1), (29)

A3(TN − d) = −e−r(TN−d)

dΓ
(eΓ(TN−d) − 1).

We solve the problems (28) and (29) and obtain the solution

C(τ, S, X, A; K) =
(

1
d

A− K
)

e−rτ + S
e−rτ

dΓ
(eΓτ − 1)− X

e−rτ

dΓ
(eΓ(TN−d) − 1),

TN − d ≤ τ ≤ TN .

Finally, if we unmake the change of variable t = TN − τ, we get the expression in (20)
for C̃, that is, the call freight option price when A ≥ dK.

Note that the solution in (20) is only valid for A ≥ dK. However, (20) could be used to
obtain some boundary conditions for the Equations (16) and (17), in order to approximate
the complete solution to these PIDEs with numerical methods (in a similar way to [21,32]).

5. Computational Aspects

Through this section, and because of a lack of FFA and freight option observations,
we make some numerical experiments in order to show how to implement our framework
for FFA and freight option low bound valuation. At the same time, we analyze the effect of
considering mean reverting characteristics and jumps in the freight rates, on the FFA and
freight options.

By means of a test problem (an academic model with closed-form solution), we make
some Monte Carlo simulations of the spot freight rates in order to generate observations.
Then, we calculate FFA prices and low bounds for the freight option prices and analyze the
effect of the mean reversion and jumps.
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It is very well known that mean reversion is an interesting characteristic in the mar-
itime economic theory but also the price discontinuities. Then, as a test problem, we
consider that the spot freight rate follows a geometric mean reverting process with jumps
as in (9). This process is highly supported in the literature for modeling commodities in
general, and freights in particular because of its important properties, as we detailed in
Section 1.

Following [34], we generate 5000 simulated paths of the geometric mean reverting
model with jumps, see (9), using parameter values (we have estimated these parameters
using the Baltic Dry Index (BDI) from January 2013 to January 2019 and a log process
(without jumps). Then, we have added reasonable values for the jumps parameters to
make the comparisons. We have also used other parameter values and have obtained
similar conclusions) in Table 1 (first row) and a starting value S0 = 2000. We use these
freight rate observations to obtain FFA prices (for simplicity, we assume that the parameters
are equal under P and Qmeasures) using (11) for a settlement period of one month and
maturities of 1, 2 , 3, 6, and 12 months. All of these data are considered our “market”
observations along this section.

Table 1. Parameter values for models LogJ, Log, and GJ.

Model k µ σ λ µJ σJ

LogJ 0.4041 6.8805 0.3740 1.25 0.5 0.9
Log 0.4044 11.3885 1.9218 - - -

GJ Γ = 0.4592

In order to analyze the impact of the jumps, we compare some FFA prices obtained
with the LogJ model with those obtained with a geometric mean reversion model without
jumps (Log model):

v(t) = v(0) +
∫ t

0
k(µv − v)dz +

∫ t

0
σdz,

where v(t) = log(S(t)) and then the functions in (1) are µ(S) = k(µ− log S)S, σ(S) = σS,
γ(S) = 0 and µ = µv +

σ2

2k , with k, µ, and σ constants. A closed-form solution for the FFA
price can be easily obtained replacing λ = 0 in (11).

Thus, in order to calibrate this model, we rely on standard practices for extracting
parameters, see [14,33]. We minimize the distance between the FFA observations and
the theoretical FFA prices using a standard nonlinear least-squares solver in MATLAB
(MathWorks R2018a). We consider the FFA prices obtained with parameters in Table 1 (first
row) and maturities of 1, 2, 3 , 6, and 12 months and spot freight values S ∈ [2000, 10,000] as
observations. The resulting estimated parameters for the Log model are in Table 1 (second
row). As you can see, the value of the speed of mean reversion nearly changes, but the
volatility and the level of mean reversion do. In fact, we have also changed the parameter
values of the jump term in the simulations with the LogJ model, and we have observed
the following. Whenever we increase one of these parameters (keeping the rest of them
fixed), the estimated speed of mean-reversion of the Log model nearly changes, but its
level of mean-reversion and volatility increase in a similar way. For example, if we double
the mean of the jump size distribution, both increase by about 50%.

In Figure 1, we plot the prices with both models and maturities of 1 and 3 months,
and we see that they have the same behavior. That is, FFA prices increase with the
spot freight rate and with the maturity, and the differences between both models are
nearly undistinguishable for both maturities. Therefore, taking into account the jumps is
interesting, although, for very short maturities, it is not so important. However, we think
that this is because all the parameters are estimated jointly and a highest volatility and
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mean reversion level in the Log model try to compensate the changes of the prices due to
the jumps in the LogJ model.

5000 10000 15000

S

2000

4000

6000

8000

10000

12000

14000

16000

F
F

A

 = 1 month

LogJ
Log
GJ

5000 10000 15000

S

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

F
F

A

 = 3 months

LogJ
Log
GJ

Figure 1. FFA prices with the LogJ, Log, and GJ models for maturities: 1 and 3 months.

In order to analyze the impact of the mean reversion, we estimate the parameters
when the spot freight rate follows the GJ model, see (6). We calibrate this model with the
FFA prices of the LogJ model (our “market”), and we use the standard nonlinear least-
squares solver in Matlab and the FFA price expression (8). The values of the estimated
parameters are in Table 1 (third row). Then, we also price FFA contracts with the GJ model,
S ∈ [2000, 10,000] and maturities: 1 and 3 months and plot them in Figure 1. As you can
see, the behavior of the GJ FFA prices is quite similar to the other models, but the GJ model
underprices FFA contracts with respect to the Log and LogJ models.

For a deeper comparison, we use the following measures of error: the root mean
square error (RMSE), the root mean square percentage error (RMSPE), the mean absolute
error (MAE), and the mean absolute percentage error (MAPE):

RMSEτ =

√√√√ 1
M

M

∑
i=1

(FFALogJ
iτ − FFAθ

iτ)
2,

RMSPEτ =

√√√√ 1
M

M

∑
i=1

(
1−

FFAθ
iτ

FFALogJ
iτ

)2

,

MAEτ =
1
M

M

∑
i=1

∣∣∣FFALogJ
iτ − FFAθ

iτ

∣∣∣,
MAPEτ =

1
M

M

∑
i=1

∣∣∣∣∣1− FFAθ
iτ

FFALogJ
iτ

∣∣∣∣∣,
where FFALogJ

iτ is the price with the LogJ model, FFAθ
iτ the price with the corresponding

estimated model (Log or GJ), τ the maturity and M the number of observations.
We obtain these errors comparing the Log and the GJ model with the LogJ model,

which we assume is the true model as it takes into account the desirable properties of mean
reversion and jumps. We show these errors in Table 2, where we will suppress the maturity
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to show the errors with the all of the considered maturities. Notice that, in all the cases,
the errors are the highest when we use the GJ model, i.e., this process does not look very
suitable to model the behavior of the freight rates. We think that this fact is mainly due to
two reasons. Firstly, the GJ model does not take into account mean reversion, which is a
characteristic of the freight rates highly documented in the literature; see, for instance [8].
Hence, it would be very adequate to use it to model other financial variables, such as
stocks, but not freight rates. Finally, although this geometric Brownian motion has also a
compound poisson process to collect the possible jumps of the spot freight rate, the FFA
price is not affected by the jumps. If we compare this price with the one obtained with a
geometric Brownian motion without the jumps (G model), we see that, in both cases, the
solution has the same expression, and it depends only on a single parameter Γ. Therefore,
if we calibrated both models with FFA prices, we would obtain the same value for the
parameter and, consequently, for the FFA prices. Therefore, it is very important to use a
suitable model that takes into account the properties of the spot freight rate in order to
accurately price FFA contracts.

Table 2. Root mean square, mean absolute, root mean square percentage, and mean absolute percentage errors for Log and
GJ models.

Maturity 1 Month 3 Months 6 Months 12 Months 24 Months Total

RMSE

Log 5.9921 11.7458 10.6176 13.5907 2.4494 9.7705
GJ 1.6597 × 102 4.5397 × 102 6.985 × 102 1.1781 × 103 1.6365 × 103 9.7852 × 102

MAE

Log 5.4710 10.7474 9.7113 −12.8888 1.6455 2.9375
GJ 1.6450 × 102 4.510 × 102 6.9426 × 102 1.1397 × 103 1.4561 × 103 7.8110 × 102

RMSPE

Log 6.1634 × 10−4 1.1269 × 10−3 9.5168 × 10−4 1.1360 × 10−3 1.4368 × 10−4 8.7939 × 10−4

GJ 2.4376 × 10−2 6.3327 × 10−2 9.3780 × 10−2 1.4847 × 10−1 1.7540 × 10−1 1.1507 × 10−1

MAPE

Log 6.1630 × 10−4 1.1267 × 10−3 9.5100 × 10−4 1.1338 × 10−3 1.2656 × 10−4 7.9086 × 10−4

GJ 2.2558 × 10−2 5.8132 × 10−2 8.5078 × 10−2 1.2691 × 10−1 1.3553 × 10−1 8.5640 × 10−2

Obtaining a closed form-solution for the FFA prices also has some other additional
applications. It is very well known that a closed-form solution for a freight option cannot
be obtained. Then, some authors, such as [14], obtain an analytical approximation in the
form of the lower bound. Gómez-Valle et al. [21] showed that it is possible to get a lower
bound using the FFA price:

e−r(TN−t)(F(t, S; T1, . . . , TN)− K)+ ≤ C(t, S; K, T1, . . . , TN).

Therefore, we can use the FFA prices obtained in Section 3 to calculate a lower bound
that can give us an approximation for the freight option price.

In Figure 2, we show the lower bounds for a freight option with different strikes from
70% to 130%, maturities of 1 and 3 months, and S = 2000. In our computations, we use
then a proxy for the risk free interest rate r = 0.005, which is a representative value of
the interest rates around the world nowadays. For both maturities, the GJ lower bounds
are always lower than the Log and LogJ lower bounds, but the differences increase with
the maturity. These differences are even more evident than those between the FFA prices
with these models, see Figure 1. Therefore, as the GJ model shows the lowest FFA prices
and bounds, it is expected that it will also underprice freight options. However, if we
consider the Log model, its lower bounds cannot be nearly distinguished from the LogJ
lower bounds.
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Figure 2. Lower bounds of freight options for S = 2000 and maturities of 1 and 3 months with the
LogJ, Log, and GJ models.

As far as freight option prices are concerned, in order to avoid applying the inaccurate
Monte Carlo method, numerical discretization schemes could be designed to approximate
the solutions to the PIDEs (16) and (17). Notice that, from (13), the freight option price
verifies a pure final value problem which must be solved. Therefore, a bounded domain for
the state variables should be defined by truncation, and then suitable boundary conditions
should be established. For example, some boundary conditions have been proposed to
price European options and bonds like in [35–38], but these conditions are not suitable for
freight options. In this case, the partial solution obtained in Proposition 2 can be used to
design appropriate boundary conditions for these kinds of problems. However, freight
option pricing by means of numerical methods to PIDE problems is beyond the scope of
this study.

6. Discussion and Conclusions

The freight market is very new; however, its importance is increasing considerably
nowadays. Therefore, in this area, additional scientific research is necessary. As in this
market large participants can manipulate prices, the setting is made against the average
of some freight index values. This fact results in derivatives with average-style payoffs,
which are more difficult to value.

Recently, there has been a growing amount of literature on freight derivative valuation,
which, inspired by the general finance literature, uses diffusion processes. However,
considering jump-diffusion processes provides a more realistic behavior of the spot freight
rate, and we try to fill this gap with this paper.

The main contributions of this paper are as follows. Firstly, we obtain a closed-form
solution for the FFA prices when a jump term is added to some very well-known diffusion
spot freight rate processes. More precisely, we incorporate a jump term to the geometric
Brownian motion and the geometric mean reversion model. Additionally, we show how
these prices can also be used to provide lower bounds for freight option prices, which, in
some cases, are used as approximations for these prices.

Secondly, we provide a general framework to obtain a PIDE to price freight options
under the dynamics of a jump-diffusion spot freight rate process. This PIDE has three
variables: the spot freight rate, its delay, and the continuous version of the average of
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the spot rate in the settlement period.The main benefits of this approach are as follows.
It opens the door to developing numerical methods for the PIDE to obtain an accurate
approximation. Furthermore, it allows us to obtain in some cases, such as the geometric
Brownian motion with jumps, a partial closed form solution. This solution can be used for
attaining suitable boundary conditions in order to design a numerical method for the PIDE
in a bounded domain.

Finally, by means of a test problem, we show different facts. For example, if we do not
consider mean reversion in the spot freight rate, the FFAs can be underpriced. However,
the effect of the jump could be compensated by a higher volatility of the process, as the
parameters are globally estimated. We also show that, when the mean reversion and the
jumps are taken into account, the differences between the lower bounds of the freight
options are more remarkable.

As future research, on the one hand, we could improve the model by considering a
more general process for the spot freight rate or adding a new variable such as the stochastic
volatility. In the latest case, the PIDE will depend on another additional independent
variable, and, therefore, its resolution will be considerably more complicated. On the other
hand, inspired by the results of the Feynman–Kac problems shown in [22], a study of the
uniqueness of the solution to the PIDE obtained in this work and its representation as the
conditional expectation of the freight option price at the maturity could be very interesting.
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