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ABSTRACT 
 

Aim: Develop a method to induce PGPB to biosynthesize nitrile compounds that may act as a 
reliable and repeatable means to increase seed germination in plant species. 
Study Design: The germination experiment was conducted in a completely randomized design 
with two replications and 40 pots (80 seedlings) per experimental unit, following a 1x1 factorial 
design for each culture, treated or untreated soil and 1 germination period for both conditions. The 
nitrile hydratase experiment was conducted in a completely randomized design with 3 replications 
and 3 soil samples per experimental unit, following a 1x1 factorial design for each cultivar, induced 
or non-induced soil and 1 cultivation period. 
Place and Duration of Study: Germination work was executed at G & A Innovative Solutions, 
LLC, GA., April - May 2017. Nitrile Hydratase Assay work was executed at Georgia State 
University, Applied Environmental Microbiology Dept., Atlanta, GA. November 2010-August 2011. 
Methodology: Rhodococcus and Bacillus species were induced with short chained-hydrocarbons, 
cobalt, and urea in a triphasic system for 3 d to potentially make nitrile compounds to benefit seed 
germination. Increased NHase activity has been previously correlated to production of these nitrile 
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compounds and an increased ability to affect plant development. NHase activity was measured 
after bacteria were suspended in soil for 6-7 d. 
Results: The induction method sustained and increased NHase activity by 200%, during 
suspension in soil. Induced Bacillus increased germination by 34%, shoot & root length by 67% & 
10%.  
Conclusion: Enhancing biosynthesis of nitriles in PGPB may enhance bacteria ability increase 
seed germination rates.  Measuring NHase activity may indirectly measure efficacy of PGPB in 
soil. The results are preliminary and require additional studies to confirm results. 
 

 
Keywords: Germination; fertilizer; anti-fungal; nitrile hydratase; Rhodococcus; Bacillus. 
 

1. INTRODUCTION 
 
Current agricultural practices must change in 
order to meet the demands of a growing global 
population [1]. New planting and non-tillage 
practices coupled with climate change have seen 
an influx in emergence of resistant fungal 
pathogen and decrease in some seed 
germinations, many farmers are now searching 
for organic non-chemical alternatives to improve 
plant health and increase germination rates 
[2,3,4,5]. Pisum sativum plants are particularly 
sensitive to fungal infections during the early 
stages of germination, infected seeds display 
decreased germination rates [6,7]. Chemical 
fertilizers do not improve germination, excess 
application of fertilizer harm seedlings and 
decrease germination rates [8,9]. 
 
New studies suggest PGPB such as Bacillus, 
Pseudomonas, Rhodococcus, and Azobacter are 
a cost effective, safe, and eco-friendly answer to 
micronutrient depletion without applying harmful 
toxins or excess chemical fertilizers [10,11]. 
PGPB increase phosphate solubilization, 
nitrogen fixation, and production of plant 
hormones to benefit plant growth [12,13,14]. 
PGPB also biosynthesize nitriles like HCN 
(hydrogen cyanide) or IAN (indole-acetonitrile) 
that may increase seed germination and inhibit 
growth of several fungal species 
[15,16,17,18,19,20]. 
 
This study aims to develop a method to induce 
PGPB to biosynthesize natural nitrile compounds 
that provide reliable and repeatable means to 
increase seed germination in Pisum sativus plant 
species. The production of these compounds 
was measured indirectly by assessing NHase 
activity, an enzyme known to degrade these 
nitrile compounds into indole-3-acetic acid in 
bacteria and plants [21]. The study focused on 
Rhodococcus and Bacillus species, both contain 
inducible NHase enzymes [22,23,24,25,26,27]. 
Bacteria were induced with a short-chained 

hydrocarbon, cobalt, and urea for 3 d. under high 
pressure low aeration conditions [28]. NHase 
activity was assessed after initial induction and 
after 7 d of suspension in soil to measure 
prolonged activity.  
 

2. MATERIALS AND METHODS  
 

2.1 Hydrocarbon, Cobalt, and Urea 
Induction Method 

 
Rhodococcus rhodochrous DAP 96253 (ATCC 
55899) and Bacillus licheniformis (ATCC 12759) 
were obtained from American Type Culture 
Collection (ATCC) located in Vienna, VA. Both 
species were cultured on nutrient agar for 3 d, 
scrapped from agar, suspended in 15 ml of (1X) 
PBS buffer (0.8% NaCl, 0.02% KCl, 0.02M PO4, 
and pH 7.2), then transferred to a to a IL flask 
that contained CoCl2 0.201 (g/L), Urea 7.5 (g/L), 
Glucose 5 (g/L), Ethylene 15% (v/v), and 300 ml 
Minimal Media for 3 d at 30°C with shaking at 
120 rpm [28,29,30]. Cells were harvested & re-
suspended to 1.37 10

5
 CFU/ml.  

 

Previous studies showed the induction media 
increased nitrile hydratase (NHase), amidase, 
and potentially a monooxygenase like activity in 
Rhodococcus. Induction method may induce 
prolonged biosynthesis of nitrile compounds like 
indole-3-acetonitrile, acetonitrile, or cyanohydrin 
to inhibit growth of fungal plant pathogens, 
[28,18]. 
 

2.2 Germination Study 
 
Uncoated Pisum sativus seeds were purchased 
from Ferry Morse Co. and stored at 23°C (40% 
RH) until potted. Germination period of 7-14 d 
and required soil pH 5.5- 7.0 [31,32]. Two seeds 
were planted in each peat soil pot 1.3 in. deep. 
The seeds were planted in biodegradable peat 
fiber pots, 80 pots were filled with 50 ml of 
Ecoscraps® (natural + organic) potting mix; 40 
control; 40 experimental pots, then 15 ml of 
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water or 15 ml of liquid biofertilizer were added to 
pots. Open free-standing screened wire mesh 
greenhouse was exposed to typical outdoor 
conditions in April 2017, avg. temp. high =78 ºF, 
low =51 ºF, 15 h sunlight, 8 h darkness, and 
precipitation of 3.39 in. (Southwest GA Regional 
Station).  

 
2.3 Prolonged NHase Activity in Non-

Sterile Soil Conditions 
 

NHase activity was induced in Rhodococcus 
rhodochorus cells using the method described 
previously in Section 2.2. Previous studies 
Rhodococcus cells were induced, washed, and 
then resuspended in a 35 ml of minimal media 
and low amounts of ethylene released from 
ripening fruit placed near the bacteria. After 6 d 
in the aqueous suspension NHase activity 
increased by 153% [33]. In this study 
Rhodococcus cells were induced, washed, and 
then resuspended in 35 ml of minimal media and 
mixed into 5 g of non-sterile peat soil. No 
exogenous ethylene/propylene was introduced to 
cells. NHase activity was assessed on 7

th
 d, test 

was duplicated and averaged. 
 

2.4 NHase/Amidase Enzyme Assay  
 

NHase activity was quantified using 1000 ppm of 
an acrylonitrile solution as substrate described in 
Perry, 2011. Ammonium concentrations were 

determined using a colorimetric assay [34]. 
Absorbances of diluted samples were read using 
a spectrometer (Wallac 1420 Victor, multi well 
plate reader; Waltham, MA) for 10 sec at 620 
nm. One unit of NHase is the conversion of 1 μM 
of AN per min per mg dry weight (units/mg cdw) 
of cells at 30°C, pH 7. 
 

3. RESULTS AND DISCUSSION 
 
A previous study compared the ability of 
Rhodococcus to grow on propylene/ethylene 
hydrocarbons for 3 d in the absence of another 
C-source. Rhodococcus cells cultured on (4 g/L) 
glucose, (200 mg/L) cobalt, and (7.5 g/L) urea, 
final biomass was (77 mg ± 2 mg) ≤0.01% while 
cells cultured without cobalt and urea final 
biomass was (42 mg ± 15 mg) ≤0.01%. 
 
The prior growth on cobalt and urea increased 
biomass by 83% [28]. The data suggested cobalt 
and urea may play a role in improving the 
bacteria ability to metabolize the short-chained 
hydrocarbon into a metabolic product the 
bacteria could use for growth. The previous data 
provided the rational to use cobalt and urea use 
as inducers along with a short-chained 
hydrocarbon. Cobalt may also play a special role 
in inducing NHase [35,36]. Urea may donate a 
cyanate to induce NHase activity [37]. Induction 
increased NHase activity by 200 % after 7 d, see 
Table 1. 

  
Table 1. 1-Statistical analysis performed through T-test (comparing control and sample data); 

n.s. =non significant or *, **, *** =significant at P ≤ 0.05, 0.01 and 0.001, respectively 
 

Parameter Non-Induced Induced  T-Test (Equal Variance) 
Initial Activity (Day 0) 
Mean 1 170 p-Value

1
 *** 3.80 >2.13 

 Stdv. ± 1.26 ± 70.50  T-Stat > T-Crit.1 
Final Activity (Day 7) 
 Mean 0.3 436 p-Value

1
 *** 4.51 > 2.13 

  Stdv ± 1.17 ± 183.87  T-Stat > T-Crit.1 
 

Table 2. 
1
-Statistical analysis performed through T-test (comparing control and sample data); 

n.s. =non significant or *, **, *** =significant at P ≤ 0.05, 0.01 and 0.001, respectively 
 

Parameter Control Pre-Induced Bacillus  T-Test 
(Equal Variance)

 
Early Germination Rate (%) 
   Mean 70.20 94.00 p-Value1 ***  4.65 >1.75 

    Stdv. ± 13.81 ± 4.90  T-Stat > T-Crit.
1
 

Stem Length (cm) 
  Mean 3.05 5.15 p-Value1 *** 10.57 >1.68 

   Stdv ± 0.66 ± 0.56 T-Stat > T-Crit.
1
 

Root Length (cm) 
  Mean 4.93 5.50 p-Value1 n.s. 0.48 < 1.70 

   Stdv. ± 1.73 ± 1.22  T-Stat > T-Crit.
1
 



Fig. 1. (A) 3 Seedlings from Control Group (B) 3 Seedlings 
Seedlings displayed va

Fig. 2. (A) Pre-induced rhodococcus (
bacteria to inhibit growth of certain soil fungal organisms

The pre-induced Bacillus cells displayed an 
ability to increase seed germination by 34%. 
Shoot & root length increased by 67% & 10%, 
respectively, see Table 2. Seedlings grown with 
pre-induced Bacillus appeared healthier and 
more uniform than seedlings cultured in 
controlled conditions, Fig. 1. 
 

4. CONCLUSION 
 
Seed germination is a complex cascade of 
mechanisms controlled by plant hormones (such 
as gibberlins, abscisic acid, indole-
auxins, & cytokinin) produced by plant & soil 
bacteria [38,39]. Unfortunately, in-
are rarely achieved when studies are conducted 
in field [40]. This study suggests PGPB may be 
able to be induced to perform in harsh real
environments. Pre-Induced Rhodococcus may 
also provide an additional benefit. The induced 
bacteria and non-induced bacteria displayed a 
differential ability to control and/or inhibit the 
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(A) 3 Seedlings from Control Group (B) 3 Seedlings from Pre-Induced Bacillus Group

Seedlings displayed varied appearance and root health 
 

 
induced rhodococcus (B) Non-induced rhodococcus. Induction may have enable 

bacteria to inhibit growth of certain soil fungal organisms 
 

cells displayed an 
ability to increase seed germination by 34%. 
Shoot & root length increased by 67% & 10%, 
respectively, see Table 2. Seedlings grown with 

induced Bacillus appeared healthier and 
more uniform than seedlings cultured in 

Seed germination is a complex cascade of 
mechanisms controlled by plant hormones (such 

-3-acetic acid, 
auxins, & cytokinin) produced by plant & soil 

-vitro benefits 
are rarely achieved when studies are conducted 

. This study suggests PGPB may be 
e induced to perform in harsh real-world 

Induced Rhodococcus may 
also provide an additional benefit. The induced 

induced bacteria displayed a 
differential ability to control and/or inhibit the 

growth of some common soil fungi. Induced and 
non-induced were suspended on non
potting soil from the same bag. However, after 7 
d the soil containing the induced bacteria 
displayed growth of a common white mold on the 
surface and the soil containing the non
bacteria displayed growth of a gray fuzzy mold, 
See Fig. 2. 
 
This reliable germination performance may be 
related to nitrile compounds produced by 
bacteria after the induction method
Measuring NHase activity may ensure efficacy of 
cells before use in consumer products as 
biofertilizer and antifungal agents. 
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