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Abstract: To achieve energy-saving production, one critical step is to calculate and analyze the
energy consumption and energy efficiency of machining processes. However, considering the
complexity and uncertainty of discrete manufacturing job shops, it is a significant challenge to conduct
data acquisition and energy consumption data processing of manufacturing systems. Meanwhile,
under the growing trend of personalization, social manufacturing is an emerging technical practice
that allows prosumers to build individualized services with their partners, which produces new
requirements for energy data processing. Thus, a real-time energy consumption characteristic analysis
method in intelligent workshops for social manufacturing is established to realize data processing and
energy efficiency evaluation automatically. First, an energy-conservation production architecture for
intelligent manufacturing processes is introduced, and the configuration of a data acquisition network
is described to create a ubiquitous manufacturing environment. Then, an energy consumption
characteristic analysis method is proposed based on the process time window. Finally, a case study of
coupling-part manufacturing verifies the feasibility and applicability of the proposed method. This
method realizes a combination of social manufacturing and real-time energy characteristic analysis.
Meanwhile, the energy consumption characteristics provide a decision basis for the energy-saving
control of intelligent manufacturing workshops.

Keywords: data acquisition network; real-time energy consumption; characteristic analysis; intelligent
workshops; social manufacturing

1. Introduction

Nowadays, the increasing emissions of carbon dioxide have made a crucial contri-
bution to global warming, especially in industrial fields. With the improvements made
around the awareness of saving energy and the enhancement of environmental concerns,
energy-efficient and low-carbon emissions should be considered as key factors in many
fields, such as transportation facilities [1], manufacturing management [2] and disassembly
sequencing [3]. Owing to the explosive demand for energy worldwide, energy efficiency
in manufacturing processes has become a challenging goal. In the last few years, the
reduction in energy consumption has attracted many researchers. A survey on electric
energy consumption showed that up to 54% of electric energy is used in production pro-
cesses, or more accurately, production machines. Therefore, the energy conservation of
machine tools can significantly reduce carbon emissions in manufacturing. To realize the
energy conservation of machine tools and environmentally friendly production, researchers
have conducted many theoretical and practical studies, which mainly include machining

Machines 2022, 10, 923. https://doi.org/10.3390/machines10100923 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines10100923
https://doi.org/10.3390/machines10100923
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0002-6116-440X
https://doi.org/10.3390/machines10100923
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines10100923?type=check_update&version=2


Machines 2022, 10, 923 2 of 16

parameter optimization [4], the state control of machine tools [5], process planning [6] and
production scheduling [7].

Meanwhile, under the growing trend of personalization and socialization, social man-
ufacturing (SM) is an emerging technical and business practice that allows prosumers to
build personalized products and individualized services with their partners [8]. SM can
realize a customer’s requirements “from mind to products”, and fulfill tangible and intangi-
ble needs of a prosumer, i.e., a producer and consumer at the same time [9]. By establishing
a cyber–physical–social connection via decentralized social media, various communities
can be formed as complex, dynamic, autonomous systems to cocreate customized and
personalized products and services [10]. From the principle of SM, the consumers are acting
as prosumers and participate in the energy production and consumption process over the
Internet [11]. For a manufacturing workshop, its operation state will be focused on by
several prosumers, such as equipment providers, manufacturers and consumers [12]. How
to solve these different demands is a new problem. With the development of the Internet of
Things (IoT) technology, many kinds of data are generated in a manufacturing workshop,
and these data present some characteristics of big data, such as large volume, high variety
and velocity. Thus, it becomes a research focus to acquire and process these data, and
various data analysis methods have been proposed, including fog computing [13], deep-
learning approaches [14] and big-data analytics [2]. Meanwhile, many energy-conservation
models and algorithms have been proposed for single-machine tools [15] or closed-loop
flow-shop plants [16]. However, there are still two research gaps in the recent research.
First, many models and algorithms for data acquisition and analysis have been proposed
to mine knowledge and guide the production process. Most of these studies neglect the
adaptability of manufacturing data network on the shop floor. Since discrete manufacturing
is a manufacturing process that does not follow sequential steps or formulas to develop
products, the production process in discrete manufacturing job shops has stochasticity. The
data of energy and processes that need to be acquired are dynamic and diverse, and so is
the energy data acquisition network. Second, although there are many studies on energy
data analysis and evaluation from different perspectives, most of them focus on the study
of theoretical models. Scant sustainability research has been conducted on SM [17]. It is
still an application difficulty to combine this production information with real-time energy
consumption data in an intelligent workshop for SM.

Considering these two research gaps, a real-time energy consumption characteristic
analysis method for intelligent manufacturing (IM) workshops is established, which in-
volves the manufacturing data acquisition network configuration and energy consumption
characteristic analysis of machining processes. The contributions of the paper include
two aspects. First, the configuration of a data acquisition network is described to create a
ubiquitous manufacturing environment, which can deal with the complexity of discrete
manufacturing processes. Second, an energy consumption characteristic analysis method
is proposed based on the process time window. This method realizes the combination of
production information with real-time energy consumption data. The remainder of this
paper is organized as follows. A literature survey on the data acquisition of IM workshops
and energy consumption data evaluation is reviewed in Section 2. Section 3 introduces an
energy-conservation production architecture for IM processes, and the configuration of a
data acquisition network is described to create a ubiquitous manufacturing environment.
Then, an energy consumption characteristic analysis method is established based on the
process time window in Section 4. A case study on coupling-part manufacturing is pre-
sented to verify the feasibility and applicability of the proposed methods in Section 5. We
conclude with the main contributions and future research directions in Section 6.

2. Literature Review
2.1. Data Acquisition and Analysis of IM Workshops

With the development of sensor network technology, the industry is increasingly
moving towards digitally enabled “smart factories” that utilize the IoT to realize IM [18]. A
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large amount of data is gathered in a manufacturing workshop, and these data, including
on energy consumption, present some characteristics of big data, such as large volume, high
variety and velocity [19]. Thus, the acquisition and processing of these data are research
focuses. With the beginning of the era of big data, an enormous amount of real-time data
was used for the risk analysis of various industrial applications, and Ding et al. proposed a
real-time big-data-gathering algorithm based on an indoor wireless sensor network for the
risk analysis of industrial operations [20]. In this algorithm, sensor nodes can screen the
data collected from the environment and equipment according to the requirements of the
risk analysis. As managing industrial big data has become a challenging task for factories,
designing a generic architecture for implementing cyber–physical systems in manufacturing
is necessary. Thus, Lee et al. proposed a systematic architecture for applying cyber–physical
systems in manufacturing to automate and centralize data processing, health assessments
and prognostics [21].

In addition to data acquisition, an increasing number of researchers have focused on
data analysis and data mining in various applications. Industrial big-data integration and
sharing (IBDIS) is of great significance in managing and providing data for big-data analy-
sis in manufacturing systems; thus, Wang et al. proposed a novel fog-computing-based
IBDIS approach to integrate and share industrial big data with high raw-data security and
low network-traffic loads by moving the integration task from the cloud to the edge of
networks [13]. A deep-learning approach for anomaly detection with industrial time-series
data in a refrigerator manufacturing enterprise was proposed, and was designed to be de-
ployed in a decision support system to assist human operators [14]. Zhong et al. extended
the physical Internet concept to manufacturing shop floors where typical logistics resources
were converted into smart manufacturing objects by using the IoT and wireless technolo-
gies [22]. This study introduced big-data analytics for radio frequency identification device
(RFID) logistics data by defining different behaviors of smart manufacturing objects. Since
current task scheduling is mainly concerned with the availability of machining resources
rather than the potential errors after scheduling, Ji and Wang presented a fault prediction
approach based on big-data analytics for shop-floor scheduling to minimize such errors
in advance [23]. An innovative, big-data-enabled, intelligent immune system has been
developed to monitor, analyze and optimize machining processes over lifecycles in order
to achieve energy-efficient manufacturing [2]. The novelty of this study is that big-data an-
alytics and intelligent immune mechanisms have been integrated systematically to achieve
condition monitoring, analysis and energy-efficient optimization over manufacturing exe-
cution lifecycles. According to the literature, big-data analytics and smart manufacturing
have been individually researched in academia and industry [24]. To provide theoretical
foundations for the research community to further develop scientific insights into apply-
ing big-data analytics to smart manufacturing, a comprehensive overview of big data in
smart manufacturing was conducted, and a conceptual framework was proposed from the
perspective of the product lifecycle. A review of the literature suggests that production
research enabled by data has shifted from analytical models to data-driven models [25].
Ghahramani et al. proposed a dynamic algorithm for gaining useful insights about semi-
conductor manufacturing processes and to address various challenges [26]. White et al.
developed a fault diagnosis tool, which can robustly detect, locate and isolate occurred
faults in an Industry 4.0 context [27]. Ding and Jiang provided an RFID-based production
data analysis method for production control in IoT-enabled smart job shops [28]. Yuan et al.
established an integrated, deep-learning, continuous time network structure that consists
of a sequential encoder, a state decoder and a derivative module to learn the deterministic
state-space model from thickening systems [29].

Based on the current research, data acquisition and data analysis have become re-
search hotspots, and many models and algorithms have been proposed to mine knowledge
and guide production processes in turn. However, this research mainly focused on data
processing and data analysis, especially big-data analysis, and data acquisition network con-
figuration was rarely studied. Meanwhile, the theory research about data mining in an ideal
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manufacturing environment was very deep, which neglected the complexity and dynamics
of an actual production environment. Considering the complexity of manufacturing pro-
cesses, it is still difficult for operators to configure the data acquisition network, especially
when the production processes experience frequent adjustments. Thus, a configuration
method of the sensor network is proposed for dynamic manufacturing tasks.

2.2. Energy consumption Data Processing and Evaluation

After the production data acquisition, energy data processing and evaluation needs to
be conducted to obtain the characteristics and energy efficiency of manufacturing processes.
Many manufacturing energy data processing and evaluation methods have been proposed.
For example, considering that the energy consumption evaluation and analysis of a prod-
uct’s entire life cycle is a key issue for realizing green and sustainable manufacturing, an IoT
and cloud-based novel approach for product energy consumption evaluation and analysis
was proposed, in which the IoT technologies were employed for real-time and dynamic
collection of energy consumption-related data [30]. For a machine process, its energy con-
sumption can be decomposed into two parts: energy consumption of the steady state and
energy consumption of the transient state. Jia et al. proposed a finite-state, machine-based
energy consumption modeling method for the machining transient state [31]. Cai et al.
proposed the use of energy benchmarking to strengthen the evaluation of energy demand
and achieve efficiency improvements for machining systems, in which drivers for energy
benchmarking and their characteristics were analyzed first [32]. Finkbeiner et al. explored
the current status of a life-cycle sustainability assessment for products and processes [33].
Saxena et al. considered the sustainability metrics in tandem with other traditional manu-
facturing metrics such as time, flexibility and quality, and presented a novel framework that
integrates information and requirements from computer-aided technology systems [34].
Swarnakar et al. identified and prioritized experts’ consensus on the structured set of
triple-bottom-line indicators through an open-ended questionnaire [35]. However, these
evaluation methods cannot realize the real-time evaluation of manufacturing processes,
and they neglect data acquisition and the processing process. Wang et al. presented a
real-time energy efficiency optimization method for energy-intensive manufacturing enter-
prises [36]. In this study, a multilevel event model and complex event processing were used
to obtain real-time, energy-related, key performance indicators that extend the production
performance indicators to the energy efficiency area. Owing to the complicated energy flow
and dynamic energy changes of the machining workshop, Chen et al. proposed an energy
efficiency monitoring and management system with the support of the newly emerging
IoT technology, in which the energy characteristics and energy efficiency indicators of
the machining workshop were analyzed and defined [37]. To improve the generalization
ability, Xiao et al. combined the machining parameters and configuration parameters into
energy efficiency models, for which machine-learning algorithms were used to consider
the lack of theoretical formulas [38]. Considering the complexity of discrete manufacturing
workshops, a big-data-analysis approach for the real-time carbon efficiency evaluation
of discrete manufacturing workshops was proposed in an IoT-enabled ubiquitous envi-
ronment [39]. Based on advanced technologies such as cloud manufacturing, IoT, and
cyber–physical systems, an energy–cyber–physical-system-enabled green manufacturing
model for future smart factories was proposed, in which qualitative and quantitative syn-
ergetic models based on an energy–cyber–physical system were developed for cleaner
manufacturing [40]. Along with the advent of globalization in the industrial sector, the
distributed manufacturing systems became an important production process since they
enable the efficient collaboration of multiple factories; thus, the stochastic, multiobjective
modeling and optimization of an energy-conscious distributed-permutation flow-shop
scheduling problem was proposed [41]. To ensure the fastest production and least energy
consumption of steelmaking-continuous casting, a mixed-integer mathematical program-
ming model was presented with the objectives of minimizing the maximum completion
time, idle time penalties, and energy consumption penalties related to waiting time [42].
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Li et al. proposed a modified dynamic programming algorithm for the optimization of
total energy consumption in flexible manufacturing systems [43]. In addition, Diaz et al.
outlined and discussed most of the resent research regarding the technologies and strategies
to improve energy efficiency in manufacturing systems [44].

From these studies, it can be seen that there are many studies on energy data analysis
and evaluation from different perspectives. However, most of them mainly focused on the
study of theoretical models, and neglected the correlation between energy consumption
data and manufacturing processes. Since the ultimate realization of energy savings and
emission reductions is closely related to manufacturing processes, the practical application
value of the current studies is limited. It is still difficult to combine production information
with real-time energy consumption data in IM workshops.

3. Energy-Conservation Production Architecture and Data Acquisition
Network Configuration
3.1. Energy-Conservation Production Architecture for IM Processes

To implement energy-aware production, an energy-conservation production architec-
ture in an intelligent workshop for SM is established, as shown in Figure 1. The architecture
provides a step-by-step guide for controlling computer numerical control (CNC) machine
tools and discrete manufacturing processes. The architecture is established mainly from
the perspective of data processing, that is, data acquisition, data filtering, data integration,
data conversion, data reduction and knowledge analysis. It consists of three modules: the
data acquisition network module, energy characteristic analysis and energy-conservation
control module, and energy consumption service module. Since the data of different man-
ufacturing processes are disparate, the data acquisition network module is carried out
on the basis of discrete manufacturing processes. Then, the gathered data from the data
sensor network can be analyzed through the data mining and analysis module, which
cannot be divorced from manufacturing processes. The energy-saving strategies gener-
ated by the energy-conservation control module must be finally implemented in discrete
manufacturing processes.
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3.1.1. Data Acquisition Network Module

As the basic layer of the architecture, discrete manufacturing processes reflect the
physical resource configuration of a workshop, including facility layout, selection of ma-
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chine and tools, setting of processing parameters and process planning. In the process
flow, there are three types of flows: energy flow, raw material flow and operation flow.
The inputs of the process flow are raw materials, energy and supporting materials. The
outputs are semifinished or end products, and waste materials or effluent. In each step of
the process flow, the emissions from the energy and supporting materials occur at all times.
Based on manufacturing processes, an energy-acquisition sensor network is established to
gather the relative data for realizing energy-saving production, for example, on the energy
consumption of machine tools, the state of the work-in-process (WIP) and machine tools.
Initially, each machine may be configured with different sensors that contain energy sensors,
position sensors and testing sensors. However, for different production tasks, disparate
sensors are integrated into a sensor network involved in real production. Therefore, the
data acquisition network varies constantly from time to time, as discussed in Section 3.2.

3.1.2. Energy Characteristic Analysis and Energy-Conservation Control Module

For the gathered data from the data sensor network, data processing needs to be
implemented first, which includes data filtering, data integration, data conversion and
data interaction [45]. As the first step, the data filter needs to be adopted to remove useless
data because many data are continuous and abundant. Then, data integration needs to be
used to deal with each single data point for comparison and analysis. Data conversion and
interaction must be adopted for the entire manufacturing system. Then, the data need to
be converted into information on the state of machine tools and WIPs. Using the above
information, the energy characteristics can be analyzed, which will be used to support the
energy-conservation control of CNC machine tools.

To realize energy-aware production, the energy-conservation control model is based on
an artificial intelligence algorithm. The input of this model is the above energy characteristic
values (that can reflect the machining state and energy efficiency), and the output is the
selection of energy-conservation strategies.

3.1.3. Energy Consumption Service Module

Through the above energy consumption analysis, energy characteristics of different
layers in a workshop can be obtained, which include the machine tool layer, workshop
layer and workpiece layer. Different SM participants can put forward the personalized
manufacturing and service needs through the social network. Meanwhile, different data
and services will be provided to them.

3.2. Configuration of Manufacturing Data Acquisition Network

Here, the manufacturing data acquisition network is aimed at energy-conservation
manufacturing, and the acquired data include energy consumption, state of the machine
tools, and WIPs. Considering the real production processes, the configuration of the sensor
network contains two parts: the static and the dynamic network constructions. The static
network configuration is realized after the design of a manufacturing system, which is a
part of the physical configuration process of the manufacturing system. On the other hand,
the dynamic sensor network is mainly applied to one or several certain production tasks
after production planning and scheduling. After the dynamic network construction, the
required data can be acquired and the usage effectiveness of the sensors will be improved.

3.2.1. The Static Sensor Network Configuration

This configuration process uses a rule-based inference engine to realize the intelligent
configuration of the data acquisition network of machine tools, as shown in Figure 2. The
configuration process consists of three parts: establishment of a configuration knowledge
base, construction of rules and the case base, and realization of the reasoning engine.

The configuration knowledge base is the extraction and description of the related
knowledge based on ontology, including feature description information, precision in-
formation, key parameters, etc. The rule and instance base is a configuration case that
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contains expert experience and the actual case, and the ontology rule base is generated
based on this case. The reasoning engine is a combination of case-based reasoning and
ontology-based reasoning approaches. First, case-based reasoning is performed based on
similarity matching. If the configuration does not meet the requirements, ontology rules are
used to determine a new configuration scheme. The process of ontology rule matching is
an iterative process that may not meet the requirements one time. The new data acquisition
network configuration plan will be stored in the instance library for later use. The input of
the configuration process includes the demand information of the machining features, and
the output is a viable data acquisition network for the machine tool.
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3.2.2. Dynamic Network Construction for a Certain Production Task

To improve the efficiency of configuration reasoning, case-based reasoning (CBR) is
used to configure the data acquisition subnetwork, which is used to search for similar
cases based on the matching of the above-mentioned processing-task attributes. The
matching steps of CBR are described as follows: (1) define the processing task, including its
characteristics or attributes; (2) search the instance database and find the highest similarity
instance in the sample database according to the processing task’s characteristic data;
(3) constitute a data acquisition network configuration scheme for the processing tasks to
serve as a new paradigm; and (4) save the valuable new configuration examples obtained in
the instance database for future energy data acquisition subnetwork configuration reference.
Owing to the different attribute categories of machining tasks, the machining type is text
data, the machining size is continuous numerical data and the machining accuracy is
discrete numerical data. Therefore, the similarity (SIMi,j) calculation is an integration of
the similarities of different types of data as follows:

SIMi,j = ∏a Sima
i,j·∑b wb·Simb

i,j (1)

Sima
i,j =

{
1, i f mtaa

i is the same to mtaa
j

0, otherwise
(2)

Simb
i,j = 1−

√(
mtab

i −mtab
j

)2

√(
max

i
mtab

i −min
j

mtab
j

)2
(3)
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∑b wb = 1 (4)

where SIMi,j denotes the total similarity of the ith and jth manufacturing tasks. Sima
i,j

and Simb
i,j represent the similarity of the text-type property and the value-type property,

respectively, and a and b represent the indexes of these two similarities. mtaa
i and mtaa

j
represent the ath text-type property of the ith and jth manufacturing tasks, respectively.
mtab

i and mtab
j represent the bth value-type property of the ith and jth manufacturing tasks,

respectively. wb denotes the weight of the bth value-type property.

4. Energy Consumption Characteristic Analysis Based on Process Time Window
4.1. Data Modeling of Discrete Manufacturing Processes

Different kinds of data can be obtained after the manufacturing data acquisition
network configuration. To realize data processing and data storage, date modeling is
conducted first. The discrete manufacturing processes mainly include three types of data
related to energy conservation: process data, energy consumption data and supporting-
material data.

Process data model:
The process data involve the information of each machining process, for example, the

process name, machine tool and process time. Because all the manufacturing activities are
carried out according to process planning, process data are the core data for the discrete
manufacturing workshop. The process data are modeled in Equation (5), and these data
can be obtained from process planning and the WIP state.

PD = < PDID, WID, PID, PName, MID, STime, ETime > (5)

where PDID is the index of the process data, and WID, PID and MID are the indexes of
the workpiece, process and machine tool, respectively. PName denotes the process name.
STime and ETime represent the starting and ending time of the process, respectively.

Energy consumption data model:
For a manufacturing workshop, the energy consumption mainly comes from machine

tools; thus, the energy consumption data can be modeled by Equation (6).

ECD = < ECDID, MID, EData, T > (6)

where ECDID is the index of the energy consumption data, and EData represents the
real-time power of a machine tool at time T.

Supporting-material data model
In addition to the energy consumption, a machining process also consumes some

supporting materials that may be related to energy consumption, such as compressed air
and cooling liquid. Thus, the supporting-material data can be expressed by Equation (7).

SMD = < SMDID, MID, SType, SMData, T > (7)

where SMDID is the index of the supporting-material data, and SType represents the type
of supporting material. SMData is the real-time usage amount of the supporting material.

4.2. Energy Consumption Data-Partition Method Based on Process Time Window

For a manufacturing process, the process data are discrete, whereas the data on energy
consumption are continuous. To relate the energy consumption data with process data, the
former needs to be divided according to machining processes or feeds. Thus, an energy
consumption data-partition method is proposed based on the process time window. The
time window method can divide time series into segments, and has been used in many
applications [46]. Because the traditional time window moves forward in succession over a
fixed or variable time, it is not suitable for discrete manufacturing processes. The concept of
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the process time window is defined, which means that the interval time of the time window
is determined on the basis of the processing stages, as shown in Figure 3.

For a single process, the time window can be obtained from the enterprise resource
planning system, that is, the starting and ending times of the process. However, this process
may contain several steps. For example, a turning process may include cylindrical turning,
face cutting and internal cylindrical turning. Meanwhile, a step contains different states,
such as standby, idle, air cutting and cutting, as shown in Figure 3. The power of different
processes and states shows a high variation due to different cutting parameters [47,48].
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To analyze the energy characteristics of different steps or cutting states, the continuous
energy data belonging to different steps are divided based on the process time window. The
power of the air-cutting state is used to judge whether a machine tool is in a cutting state,
and the power of the cutting state is for identifying different processes or cutting steps.
Here, ten real-time energy data are analyzed every time, that is, Pt =

{
pt

i
}

, i = 1 . . . 10.
Then, the maximum and minimum values of these data are deleted to exclude the influence
of chance factors. The average value of the remaining data Pt′ =

{
pt′

i

}
, i = 1 . . . 8 is used

as the judgment standard, as denoted in Equation (8).

MeanCEt =
1
8 ∑8

i=1 pt’
i (8)

The algorithm flow of the entire energy data-partition method based on the process
time window is shown in Algorithm 1.

4.3. Real-Time Energy Consumption Characteristic Analysis

For a machining process, the original energy consumption data cannot be directly
used to evaluate or optimize the machining processes. Important characteristic values
must be derived. In this study, these characteristic values mainly fall into two categories:
instantaneous and cumulative.

The instantaneous characteristics mainly reflect the variation law of cutting power,
such as the maximum, minimum and mean power of a process or feed, as follows:

MaxPi = max
t∈[si ,ei ]

pt (9)

MinPi = min
t∈[si ,ei ]

pt (10)

MeanPi =
1
Ni

∑t∈[si ,ei ]
pt (11)
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where pt denotes the power at time t, and MaxPi, MinPi and MeanPi represent the maxi-
mum, minimum and mean of the energy consumption values, respectively. si and ei denote
the starting and ending times of a process time window, respectively. Ni is the number of
cutting-power data points during the process time window.

Algorithm 1: Energy Data Partition Method

Input: the power of air cutting Paricutting
Output: the time window node of each steps si,j and ei,j
Algorithm flow:
1. According to process planning, obtain the starting time si and ending time ei
2. For each process
3. For each energy data of this process
4. The starting time of the first step is si, obtain the mean value MeanCEt =

1
8 ∑8

i=1 pt′
i

5. If MeanCEt−Paricutting
Paricutting

> 0.05

6. The step is in cutting state, and obtain the mean power value P1
cutting

7. Else
8. Obtain the time point ei,1
9. End if

10. If

∣∣∣P2
cutting−P1

cutting

∣∣∣
P1

cutting
> 0.05

11. This is the next step, and the above ei,1 is the starting time of the next step si,2
12. End if
13. End For
14. End For
15. Return si,j and ei,j

These instantaneous characteristics can reflect the operating state of a manufacturing
system and have been used to detect recessive production anomalies [49].

On the other hand, the cumulative characteristics mainly show the overall energy
consumption and energy efficiency of a process. These characteristics can be obtained
as follows:

TotalEi = ∑t∈[si ,ei ]
pt ∗ ∆t (12)

EnergyE f fi =
∑t∈[si ,ei ]∩[msi ,mei ]

pt ∗ ∆t
TotalEi

(13)

ProcessE f fi =
Vi

TotalEi
(14)

where TotalEi denotes the total energy consumption during the process time window.
∆t is the energy consumption data-sampling interval. EnergyE f fi denotes the energy
efficiency, which is the ratio of the material-removal energy consumption to the total energy
consumption during the process time window. ProcessE f fi is the material-removal volume
of each energy consumption. Vi denotes the material-removal volume during this process
time window. msi and mei mean the starting time and ending time of the material-removal
process.

The cumulative characteristic values can reveal the energy consumption feature at the
process level, which can support process improvement and parameter optimization.

5. Case Study
5.1. Case Description

To verify the proposed method, a case of a discrete manufacturing workshop that
mainly produces coupling parts for different customers is studied. This workshop contains
three types of machine tools from different equipment providers: a CNC lathe, milling
center and drilling machine. There are four machining processes for a coupling part:
cylindrical lathe cutting, milling flat, drilling hole and tapping. The relationship between
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the machining processes and machine tools is presented in Table 1. The power of the
air-cutting state of each machine tool is also listed in the table.

Table 1. The machining processes of a coupling part.

No. Processes Machine Tool Machine No. Power of Air Cutting (W)

1 Cylindrical lathe cutting CNC lathe M1 2411
2 Milling flat Milling center M2 29413 Drilling hole
4 Tapping Drilling machine M3 2182

To realize the monitoring of machining states, a static data acquisition network is
first configured for each machining system in the manufacturing workshop, as shown in
Figure 4a. The processing characteristics, accuracy, optional sensing-equipment set and
measuring-equipment set of the machining system are input to build the rule-reasoning
library. A feasible sensing-equipment recommended list is obtained according to the specific
process system information. Then, the appropriate configuration instances for a specific
processing task are retrieved from the instance database through similarity calculation.
According to a specific instance, the operator selects and modifies sensing devices from the
static data acquisition network, and then a dynamic data acquisition subnetwork is formed
for the current task, as shown in Figure 4b.
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5.2. Energy Consumption Monitoring and Characteristic Analysis

Based on the above data acquisition network, the machining state and energy con-
sumption data are obtained. Meanwhile, a prototype system of energy consumption
monitoring and characteristic analysis is developed, as shown in Figure 5. This system is
designed based on the browser/server (B/S) architecture. On the server side, the Java web-
programming language is adopted, whereas HTML5/CSS/JavaScript is used to develop
the browser side. This system can be conveniently visited by networked computers or
remote handheld terminals. The prototype system mainly contains two functions: energy
consumption monitoring and energy characteristic analysis. Figure 5a shows the real-time
energy consumption monitoring module, which contains the machine tool, the current
process and real-time energy. Figure 5b shows the energy consumption characteristic
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analysis module, which includes the mean energy consumption value, energy efficiency
and material-removal volume of each energy consumption.
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To analyze the accuracy of the proposed energy data-partition method, three tests with
different machining times and sample sizes are chosen for comparison, as shown in Table 2.
The sample sizes are 2700, 5400 and 8100. The partition accuracy is calculated by the ratio
of properly segmented data and total energy consumption data. The results show that the
partition accuracies of these three tests are all more than 98%, and it reaches 99.5% for Test
No. 1. Moreover, clustering approaches were often used in the data-partition process [50].
In order to evaluate the validity of the proposed method, the clustering approach is used
as a contrast in Table 2. The results show that the accuracy of the clustering approach
for Test No. 1 is 98.7%, and the results for the other two tests are 97.8% and 97.1%. In
summary, the proposed method has a high partition precision for manufacturing energy
consumption data. The partitioned energy consumption data can then be used to analyze
the characteristics of energy efficiency.
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Table 2. The accuracy of the energy data-partition method.

Test No. 1 2 3

Machining time (min) 15 30 45
Sample size 2700 5400 8100

Partition accuracy (%) 99.5 98.6 98.4
Accuracy of clustering approach (%) 98.7 97.8 97.1

According to the proposed energy analysis method, some energy characteristic values
of each process and machine tool can be obtained. The instantaneous energy characteristics
of different processes are shown in Figure 6. It can be seen that the total energy of the
four processes is descending, and the cylindrical lathe-cutting process consumes the most
energy, which reaches 2.41 kWh. Therefore, this lathe process needs more attention, and
some adjustment strategies can be implemented by equipment providers to realize energy
conservation, such as process route modification or process parameter optimization. More-
over, the maximum power and mean power of the cutting state of the different processes
are consistent. The power of the drilling hole on M2 is the highest, which is 4097 kW.
The differentiation of mean power over time can be used to detect abnormal production
conditions, for example, machine tool performance degradation and cutting tool wear.
Additionally, the whole energy consumption of coupling parts can be obtained, which can
be used by customers to optimize their product design.
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Figure 6. The energy characteristic analysis of different processes.

The energy characteristic values of different machine tools are shown in Figure 7. This
shows that the energy efficiency of M3 is the highest, reaching 0.62, which means that
most of the energy consumption of M3 is used to conduct the material-removal process.
That of M2 is the lowest, and more energy is wasted in standby or air-cutting states. For
this problem, the NC code on M2 can be improved to increase its energy efficiency. For
the process efficiency, M1 is the best, whereas M3 has the lowest process efficiency. This
characteristic value can be used by manufacturers to select the appropriate machine tool
with the highest processing efficiency, especially for roughing processes.
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6. Conclusions and Future Work

To realize energy conservation and carbon emission reduction of manufacturing pro-
cesses, one important step is to calculate and analyze the energy consumption and energy
efficiency of machining processes. In this paper, a real-time energy consumption charac-
teristic analysis method for IM workshops is established. First, an energy-conservation
production architecture for IM processes is introduced, and the configuration of the data ac-
quisition network is described to create a ubiquitous manufacturing environment. After the
dynamic network construction, the required data can be acquired and the usage effective-
ness of the sensor network can be improved. Then, an energy consumption data-partition
and characteristic analysis method is proposed based on the process time window. The
results show that the partition accuracies of these three tests are all more than 98%. Thus,
the proposed method has a high partition precision for manufacturing energy consumption
data. The energy characteristic values of different processes and machine tools can be
obtained, which can be used by manufacturers to select the appropriate machine tool
with the highest processing efficiency. The obtained energy characteristics can be used by
different SM participants. This method realizes a combination of SM and real-time energy
characteristic analysis.

In addition, there are also some limitations in the proposed methods which need to
be researched in future works. First, in this study, only the energy consumption data of
machine tools are analyzed, and many other important production data are neglected,
such as energy consumption data of logistic processes and the workshop environment,
the production capacity, and the utilization rate of equipment. Thus, more aggregative
indicators are necessary for the overall assessment of manufacturing processes. Second,
the actual manufacturing processes may be more complex, and include machine fault and
cutting tool wear. Manufacturing data are dynamic and present uncertainties, and an
intelligent processing method for complex data is required. Third, an energy consumption
characteristic analysis cannot directly reduce the energy consumption of manufacturing
systems. It is necessary to combine the energy characteristic analysis with some energy-
saving strategies, such as multicriteria decision making about the selection of appropriate
machine tools, process planning and production scheduling.
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