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Abstract: Power line segmentation is very important to ensure the safe and stable operation of
unmanned aerial vehicles in intelligent power line inspection. Although the power line segmentation
algorithm based on deep learning has made some progress, it is still quite difficult to achieve accurate
power line segmentation due to the complex and changeable background of aerial power line images
and the small power line targets, and the existing segmentation models is too large and not suitable
for edge deployment. This paper proposes a lightweight power line segmentation algorithm—G-
UNets. The algorithm uses the improved U-Net of Lei Yang et al. (2022) as the basic network
(Y-UNet). The encoder part combines traditional convolution with Ghost bottleneck to extract
features and adopts a multi-scale input fusion strategy to reduce information loss. While ensuring the
segmentation accuracy, the amount of Y-UNet parameters is significantly reduced; Shuffle Attention
(SA) with fewer parameters is introduced in the decoding stage to improve the model segmentation
accuracy; at the same time, in order to further alleviate the impact of the imbalanced distribution
of positive and negative samples on the segmentation accuracy, a weighted hybrid loss function
fused with Focal loss and Dice loss is constructed. The experimental results show that the number of
parameters of the G-UNets algorithm is only about 26.55% of that of Y-UNet, and the F1-Score and IoU
values both surpass those of Y-UNet, reaching 89.24% and 82.98%, respectively. G-UNets can greatly
reduce the number of network parameters while ensuring the accuracy of the model, providing an
effective way for the power line segmentation algorithm to be applied to resource-constrained edge
devices such as drones.

Keywords: attention mechanism; lightweight; power line; semantic segmentation

1. Introduction

Regular inspection of power lines is an important measure to ensure the safe and
stable operation of the power grid. Traditional manual inspections have problems of low
efficiency and high safety risks. In recent years, UAV (unmanned aerial vehicle) intelligent
inspections have gradually begun to replace manual inspections, and have become a
research hotspot in current transmission line inspections [1,2]. Power line segmentation is a
key technology in the process of UAV intelligent power line inspection. Accurate extraction
of power lines can provide an effective basis for UAV navigation and obstacle avoidance [3].

Aerial power line images often have complex and changeable backgrounds [4], and
power lines are quite different from conventional targets with a certain area such as build-
ings, animals, plants, and people. A large number of linear structures such as roof ridges
and road edges in the image background have similar features, and it is challenging to
accurately extract them.

The existing power line extraction algorithms are mainly divided into two categories:
traditional digital image processing methods and deep learning-based algorithms.
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In the traditional digital image processing method, the target line segment is selected
and extracted mainly according to the edge characteristics of the image combined with
the surrounding environment of the power line; the power line usually presents a straight
line amongst other characteristics [5–8]. In general, it is difficult to maintain the good
performance of the algorithm in the face of different scene changes when using traditional
digital image processing methods to extract power lines.

The deep learning algorithm has become a research hotspot of power line segmen-
tation algorithms due to its strong feature expression ability. Reference [9] uses CNN
(Convolutional Neural Networks) to determine whether the image contains power lines,
but it only stays at the classification level, and cannot directly locate the power lines in the
image accurately; the reference [10] uses the proposed line segment detector to extract line
segments in the image, create a line segment candidate pool, and establish an improved
Markov random field model, automatically dividing the line segments in the candidate
pool into different categories, and then the envelope-based fitting is used to select the
power lines, which can completely extract the power lines. However, the use of context
information lacks a certain rationality and the modeling process is complicated; the power
line detection algorithm of the weak supervision method proposed in the literature [11]
reduces the labeling cost of data set generation, but uses FCN (Fully Convolutional Net-
works) to segment the power line, and the result of the segmentation is not fine enough;
the reference [12] uses the dual-branch Resnet50 as the backbone of the feature extraction
network to build a multi-line feature enhancement network so that the false breakpoints
in the power line detection image are suppressed, but the network model is large; the
reference [13] uses the proposed joint saliency index to sparse and regularize the network,
and uses network pruning to lighten the power line segmentation network of the improved
U-Net [14,15], reducing the number of parameters of the model. The number of parameters
of the model is reduced, but heavy training is required, and the workload is large; the
improved U-Net segmentation network proposed in the literature [16] has higher segmen-
tation accuracy in power line extraction, but the improved network model is still large,
which creates challenges for edge devices such as drones, with limited storage space.

The introduction and application of inspection drones have brought light to the in-
novation of power inspection technology; however, the oversized network model is not
conducive to deployment on portable devices. In this paper, the improved U-Net segmenta-
tion network in the literature [16] is used as the basic network (referred to as Y-Unet in this
paper), and the model is lightened and the accuracy of model segmentation is improved to
build a lightweight power line segmentation algorithm-A. The main improvements are as
follows:

(1) GhostNet [17] proposed by Han et al. is an efficient lightweight network whose
main component is the Ghost bottleneck. Therefore, we proposed using a lightweight
structure combining traditional convolution with the Ghost bottleneck as the encoder
of the model G-UNets to extract power line features. At the same time, in the encoder
stage of G-UNets, a multi-scale input fusion strategy was adopted to reduce the loss
of context information, which significantly reduces the amount of Y-UNet parameters
while ensuring segmentation accuracy.

(2) The spatial attention module in the upsampling process of Y-UNet was replaced by
permutation attention that effectively combines spatial and channel attention, and the
feature map was enhanced from the channel and space dimensions to improve the
model segmentation accuracy.

(3) In order to solve the problem of the distribution of positive and negative samples not
being balanced and affecting the performance of the model, a weighted hybrid loss
function fused by Focal loss [18] and Dice loss [19] was constructed.
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2. Basic Principle of Y-UNet

U-Net has become one of the basic architectures in the field of semantic segmentation
due to its good network performance, and its various variants are widely used in medicine,
remote sensing, e-commerce, and other fields [20–23]. The basic network (Y-UNet) used
in this paper is a segmentation network proposed by Lei Yang et al. in 2022, combining
the characteristics of transmission lines and based on U-Net improvements. The Y-UNet
structure is composed of two parts, the main network branch composed of the encoder
and the decoder, and the fusion network branch, as shown in Figure 1. The encoder
extracts image features through a series of convolutional and pooling layers. The decoder is
composed of a series of convolutional layers, upsampling and spatial attention modules. For
the class imbalance problem of power lines, an attention block(AM) is embedded to make
the segmentation network more accurately locate the target area in the power line image.
The structure of the spatial attention module used in the decoder part is shown in Figure 2.
A skip connection is used between the encoder and the decoder to reduce information
loss. The fusion network branch fuses the feature maps of different scales with different
representation capabilities acquired by the decoder through upsampling, convolution, and
splicing, and then introduces SENet [24] (squeeze-and-excitation Networks) to the fused
feature maps. Channel attention reconstruction is performed, and the reconstructed feature
map is passed into two convolutional layers and a convolutional layer containing the
sigmoid activation function to achieve multi-scale feature fusion and effectively improve
the network’s segmentation effect on power lines.
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3. G-UNets
3.1. Overall Structure of G-UNets

The power line extracted by Y-UNet has high accuracy, but the network parameters
are large, and the practicability needs to be improved. To reduce the number of parameters
of Y-UNet under the premise of ensuring segmentation accuracy and making the network
more practical, this paper constructs a lightweight segmentation network (G-Unets) based
on an attention mechanism to achieve pixel-level multi-scene power line segmentation.
The overall structure of G-UNets is shown in Figure 3.
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3.2. Encoder Structure

To make the model easy for embedded deployment, G-UNets draws on the lightweight
network GhostNet in the encoder structure and selects the traditional convolution module
(Conv2d-M) and Ghost bottleneck (G-bneck) to extract power line features to reduce
the number of model parameters. Among them, the traditional convolution module
(Conv2d-M) is to add BN (Batch Normalization) and ReLU after convolution to improve
the network generalization performance. At the same time, G-Units adopt a multi-scale
input fusion strategy in the encoder structure. The implementation method is: in each
feature extraction layer, the small-size features of the corresponding size generated by
the traditional convolution module are fused with the features generated by the Ghost
bottleneck to obtain the fused features, and the fused features are used as the input features
of the next feature extraction layer. The multi-scale input fusion strategy is to obtain
the multi-scale information of the image by effectively fusing the features of different
scales, improving the network feature extraction ability, and making the power line image
segmentation results more accurate.

The network parameters of the encoder structure are shown in Table 1. The 2nd, 3rd,
and 4th rows of Table 1, respectively, generate the sizes of 256 × 256 × 16, 128 × 128 × 24,
and 64 × 64 × 40 after the initial input image of size 512 × 512 × 3 is generated by the
traditional convolution module. The add operation in lines 7 and 8, is to fuse the small-size
feature generated by the traditional convolution module in the second line with the feature
generated by the Ghost bottleneck in the fifth line to obtain the feature. The output features
of the extraction layer are the same as the two add operations on lines 11 and 12 and lines
15 and 16.
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Table 1. Encoder structure network parameters.

Input Operator Expansion Output SE Stride

5122 × 3 Conv2d-M - 5122 × 8 - 1
5122 × 3 Conv2d-M - 2562 × 16 - 2
5122 × 3 Conv2d-M - 1282 × 24 - 4
5122 × 3 Conv2d-M - 642 × 40 - 8
5122 × 8 Conv2d-M - 5122 × 16 - 2

2562 × 16 G-bneck 16 2562 × 16 - 1
2562 × 16

Add - 2562 × 16 - -
2562 × 16
2562 × 16 G-bneck 48 2562 × 24 - 2
1282 × 24 G-bneck 72 1282 × 24 - 1
1282 × 24

Add - 1282 × 24 - -
1282 × 24
1282 × 24 G-bneck 72 1282 × 40 1 2
642 × 40 G-bneck 120 642 × 40 1 1
642 × 40

Add - 642 × 40 - -
642 × 40
642 × 40 G-bneck 240 642 × 80 - 2
322 × 80 G-bneck 200 322 × 80 - 1
322 × 80 G-bneck 184 322 × 80 - 1
322 × 80 G-bneck 184 322 × 80 - 1
322 × 80 G-bneck 480 322 × 112 1 1

322 × 112 G-bneck 672 322 × 112 1 1

The Ghost bottleneck used in the G-UNets encoder structure is built based on the
Ghost module. The Ghost module generation diagram is shown in Figure 4. For the input
feature map H ×W × C, the Ghost module first uses traditional convolution to generate a
partial feature map H′ ×W ′ ×M, then performs a simple linear operation Φ on the feature
map generated in the previous step to generate redundant feature maps, and finally splices
the feature maps generated in the two steps to get Output feature map H′ ×W ′ × N.

Machines 2022, 10, 881 5 of 14 
 

 

The network parameters of the encoder structure are shown in Table 1. The 2nd, 3rd, 
and 4th rows of Table 1, respectively, generate the sizes of 256 × 256 × 16, 128 × 128 × 24, 
and 64 × 64 × 40 after the initial input image of size 512 × 512 × 3 is generated by the 
traditional convolution module. The add operation in lines 7 and 8, is to fuse the small-
size feature generated by the traditional convolution module in the second line with the 
feature generated by the Ghost bottleneck in the fifth line to obtain the feature. The output 
features of the extraction layer are the same as the two add operations on lines 11 and 12 
and lines 15 and 16. 

Table 1. Encoder structure network parameters. 

Input Operator Expansion Output SE Stride 
5122 × 3 Conv2d-M - 5122 × 8 - 1 
5122 × 3 Conv2d-M - 2562 × 16 - 2 
5122 × 3 Conv2d-M - 1282 × 24 - 4 
5122 × 3 Conv2d-M - 642 × 40 - 8 
5122 × 8 Conv2d-M - 5122 × 16 - 2 
2562 × 16 G-bneck 16 2562 × 16 - 1 
2562 × 16 Add - 2562 × 16 - - 2562 × 16 
2562 × 16 G-bneck 48 2562 × 24 - 2 
1282 × 24 G-bneck 72 1282 × 24 - 1 
1282 × 24 Add - 1282 × 24 - - 
1282 × 24 
1282 × 24 G-bneck 72 1282 × 40 1 2 
642 × 40 G-bneck 120 642 × 40 1 1 
642 × 40 

Add - 642 × 40 - - 642 × 40 
642 × 40 G-bneck 240 642 × 80 - 2 
322 × 80 G-bneck 200 322 × 80 - 1 
322 × 80 G-bneck 184 322 × 80 - 1 
322 × 80 G-bneck 184 322 × 80 - 1 
322 × 80 G-bneck 480 322 × 112 1 1 
322 × 112 G-bneck 672 322 × 112 1 1 

The Ghost bottleneck used in the G-UNets encoder structure is built based on the Ghost 
module. The Ghost module generation diagram is shown in Figure 4. For the input feature 
map H W C× × , the Ghost module first uses traditional convolution to generate a partial fea-
ture map H W M′ ′× × , then performs a simple linear operation Φ  on the feature map gen-
erated in the previous step to generate redundant feature maps, and finally splices the feature 
maps generated in the two steps to get Output feature map H W N′ ′× × . 

 
Figure 4. Ghost module. Φ represents the cheap operation. Figure 4. Ghost module. Φ represents the cheap operation.

Assuming that the number of linear transformations is s, s� C, when the size of the
traditional convolution kernel is p× p, and the size of the depthwise separable convolution
kernel is d× d, the traditional convolution parameters are:

Ct = N × C× p× p (1)

The parameters of the Ghost module are:

Cg =
N
s
× C× p× p + (s− 1)× N

s
× C× d× d (2)

Then the parameter compression ratio of traditional convolution and Ghost module is:
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RC =
Ct

Cg
≈ s (3)

It can be seen from the analysis of Equations (1)–(3) that compared with the traditional
convolution, using the Ghost module can greatly reduce the number of network parameters.

As shown in Figure 5, Ghost bottleneck is divided into two categories according to
the step size. Its essence is a bottleneck structure composed of two stacked Ghost modules.
The first is used for channel number expansion, and the second is used for channel number
compression. The number matches the shortcut path. The Ghost bottleneck with Strides = 2
inserts a depthwise separable convolution with a step size of 2, which reduces the feature
dimension and network scale while performing feature extraction. Compared with Y-UNet,
which uses pooling to adjust the feature size, the method of adjusting the output size
with a depthwise separable convolution with a stride of 2 reduces the loss of small object
information loss.
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3.3. Shuffle Attention

The encoder part of Y-UNet adopts the spatial attention module (AM), which aims to
improve the feature extraction ability of the network, but it only emphasizes key informa-
tion or suppresses invalid information in the spatial dimension; without considering the
importance of the information contained in the features in the channel, it is easy to ignore
the information interaction in the channel.

Shuffle Attention (SA) [25] is a lightweight and comprehensive module that effectively
integrates the spatial attention mechanism and channel attention mechanism, and its
network structure is shown in Figure 6.

Shuffle Attention divides the input features into G groups according to the channel
dimension, and divides each group of features into Tg1 and Tg2 according to the channel.
Attention features are learned from two branches, and one branch uses the relationship
between feature channels to generate a channel attention map. Another branch exploits the
spatial relationship between features to generate spatial attention maps.

For the channel attention branch, the feature Tg1 is first subjected to global average
pooling to generate channel statistics S1 to embed global information, then the linear
transformation Fc is used to scale and translate S1 along the spatial dimension, and finally,
it is activated by the sigmoid function and then multiplied by the feature Tg1 to obtain
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the final output T′g1 of the channel attention branch. This process can be expressed by
Formula (4):

T′g1 = σ
(

Fc
(

Fgp
(
Tg1

)))
· Tg1 = σ(W1 · S1 + b1) · Tg1 (4)

In Formula (4): A represents global average pooling, and W1 and b1 are linear transfor-
mation parameters used for scaling and translation S1.

For the spatial attention branch, first, use Group Norm (GN) to process the feature Tg2
to obtain spatial statistics, then use linear transformation to enhance the feature, and finally
activate by the sigmoid function and then multiply by the feature Tg2 to obtain the final
output T′g2 of the spatial attention branch. This process can be expressed by Formula (5):

T′g2 = σ
(
W2 · GN

(
Tg2

)
+ b2

)
· Tg2 (5)

In Formula (5): W2 and b2 are linear transformation parameters.
Then, the outputs T′g1 and T′g2 of the two branches are fused by Concat to obtain the

output features of the group. Finally, the channel replacement operation is used to ensure
the information interaction between the sub-features of each group, and the final attention
map with the same size as the input feature is output.
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shuffle is used to realize the information interaction between different sub-features.

3.4. Loss Function

In the power line segmentation task, the power line target is small, and the number
of power lines and background pixels in the aerial image is seriously unbalanced. For the
unbalanced distribution of positive and negative samples, the two loss functions often used
in semantic segmentation tasks are Dice loss and Focal loss.

Dice loss [19] is not easily affected by the imbalance of positive and negative samples,
and it focuses more on mining the foreground during the training process, but the loss will
oscillate violently when small targets are used as positive samples. The definition formula
of Dice loss is shown in Formula (6):

LDice = 1−
2

N
∑

i=1
pi p′ i

N
∑

i=1
pi +

N
∑

i=1
p′ i

(6)

In Formula (6): pi and p′ i are the actual value and predicted value of the ith pixel,
respectively, and N is the total number of pixels.

Based on Cross-Entropy loss, Focal loss [18] adds a balance factor α to suppress the
problem of sample imbalance, and at the same time, adds a regulation factor γ to reduce the
weight of easy-to-classify samples and increase the attention to difficult and misclassified
samples. The definition formula is shown in Formula (7):
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LFocal =

{
−α× (1− q)γ × log q, p = 1

−(1− α)× qγ × log(1− q), p = 0
(7)

In Formula (7): p represents the true value of the label category, and q represents the
probability value that the sample is positive.

In view of the extremely unbalanced problem of positive and negative samples of
power line data, this paper combines the characteristics of Focal loss and Dice loss, scales
the two to the same order of magnitude, and constructs a weighted mixed loss function,
whose definition is shown in Formula (8):

L = (1− a) · LFocal − a · ln(1− LDice) (8)

In Formula (8): LFocal and LDice represent Focal loss and Dice loss respectively, a is
a weighting coefficient; it is found by experiments that a is optimal when set to 0.1 in
this model.

The weighted hybrid loss function that combines Focal loss and Dice loss can com-
bines the advantages of the two, which enables the network to strengthen the mining
of foreground regions, and at the same time pay more attention to difficult and difficult
samples, which can effectively solve the problem of the imbalance between the number of
power line pixels and the number of background pixels when segmenting the power lines
in the aerial image, and improve the semantic segmentation performance of the network
for aerial power line data.

4. Experiment and Result Analysis
4.1. Experimental Environment Configuration and Data

The deep learning framework used in the experiment is based on the PyTorch1.9.0
environment, Ubuntu18.08 system, Python 3.7.6, CUDA = 11.2, and the training graphics
card is configured as one RTX A6000/48G graphics card.

The dataset is derived from images of power lines taken by drones provided by power
grid companies. A total of 1040 power line images were screened out, and the resolution of
each image was 3840× 2160 pixels. Labelme was used to label the images, and the data
were enhanced and expanded by rotation, flip, brightness, and contrast transformation.
The sample images of power lines in the dataset are shown in Figure 7, in which the power
line itself has a relatively small target, has a variety of different angles, and its background
is diverse, including examples where the power lines have low contrast to the background,
and the background has a shape similar to the power lines. The dataset is divided into
training set, validation set, and test set according to 8:1:1, and the image size is fixed to
512× 512 pixels before finally being input to the network for training.
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4.2. Evaluation Indicators

In this paper, F1-Score, IoU (Intersection over Union) [26], and parameter quantity
(Params) are used as evaluation indicators of network performance. F1-Score and IoU are
the evaluation of network segmentation performance. The larger the value, the better the
segmentation effect. The parameter quantity is a measure of the model’s lightweight quality.
The larger the parameter quantity, the higher the memory requirement of the model on the
running platform. The calculation formulas of F1-Score and IoU are shown in Formula (9)
and Formula (10), respectively:

F1− Score =
2 × TP

2 × TP + FP + FN
(9)

IoU =
TP

TP + FN + FP
(10)

In Equations (9) and (10), TP represents the number of power line pixels that are
correctly classified; FP represents the number of background pixels that are wrongly
classified as power line pixels; FN represents the number of power line pixels that are
wrongly classified as background pixels.

4.3. G-UNets Model Training

The initial learning rate during model training is set to 1× 10−4, the batch size is
set to 4, and the total number of epochs is 80. The change curve of the loss value during
training and testing of the G-UNets model is shown in Figure 8. As can be seen from
Figure 8, the training loss of the model is not much different from the validation loss curve.
With the increase of epoch, the change of the model loss curve drops sharply to flatten,
and the loss value drops sharply in the first 10 epochs. Then it gradually becomes stable.
After 55 epochs, the loss curve has remained stable, indicating that the model has reached
a good convergence state.
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4.4. Exploring the Effectiveness of G-UNets

To verify the effectiveness of the G-UNets network design, an improvement and
comparison experiment was gradually carried out on the power line dataset with Y-UNet
as the benchmark, and finally the fusion improvement result, that is, the G-UNets network,
was tested. Y-UNet_L adopted the network structure of Y-UNet and used a weighted
mixed loss function as the model loss. Improvement 1 used the traditional convolution
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module combined with Ghost bottleneck to realize the feature extraction of the coding
part on the structure of Y-UNet, making the network lightweight, and used the weighted
hybrid loss function at the same time. Improvement 2 adopted a multi-scale input fusion
strategy based on improvement 1. Improvement 3 replaced the attention block(AM) in the
decoding stage with Shuffle Attention (SA) based on improvement 1. In addition, the above
experimental methods can be compared with the lightweight network DeeplabV3+ [27]
with excellent comprehensive performance. The experimental comparison data are shown
in Table 2.

Table 2. Network model performance and parameter comparison.

Method Conv2d-M & G-Bneck Multi-In AM SA WH-
Loss

F1-Score
(%)

IoU
(%)

Params
(M)

Speed
(s)

Y-UNet
√

87.05 80.13 25.638 3.9726
Y-UNet_L

√ √
88.17 81.44 25.638 3.9287

Improvement 1
√ √ √

88.12 81.33 6.796 3.0625
Improvement 2

√ √ √
88.51 81.87 6.808 3.1838

Improvement 3
√ √ √

88.73 82.28 6.796 3.0550
DeeplabV3+ [27] 56.41 53.04 5.831 0.0167

G-UNets
√ √ √ √

89.24 82.98 6.808 2.9983

Conv2d-M & G-bneck: traditional convolution module combined with Ghost bottleneck; Multi-In: multi-scale
input fusion strategy; AM: the attention block adopted by Y-UNet; SA: Shuffle Attention; WH-Loss: weighted
hybrid-loss. The position of “

√
” in the table indicates that the improved algorithm adopts the corresponding

strategy.

It can be seen from the experimental results in Table 2 that:

(1) Comparing the experimental results of Y-UNet and Y-UNet_L, the F1-Score and IoU of
Y-UNet_L using the weighted mixed loss function are improved by 1.12% and 1.31%,
respectively.

(2) Compared with Y-UNet_L, after improvement 1 selects a lightweight structure to
extract power line features in the coding stage, its F1-Score and IoU are only slightly
reduced, but the amount of network parameters is greatly reduced. This is due to the
use of depthwise separable convolutions in the Ghost bottleneck structure, which can
trade a small loss of accuracy for a large memory reduction.

(3) Compared with Y-UNet, the improved methods 1–3 proposed have a certain im-
provement in F1-Score and IoU evaluation indicators, and compared with the Y-UNet
parameter amount reduced by about 73%, indicating that the lightweight feature
extraction method combined with the traditional convolution module and Ghost
bottleneck, the multi-scale input fusion strategy, the replacement of the attention
replacement AM module, and the weighted hybrid loss function is effective in this pa-
per. The proposed improvement method can improve the network. The segmentation
accuracy greatly reduces the number of network parameters.

(4) From the perspective of F1-Score and IoU evaluation indicators, compared with Y-
UNet, the improved method and the DeeplabV3+ network, the G-UNets proposed
in this paper are the best in both F1-Score and IoU indicators. They reach 89.24%
and 82.98%, respectively, which are 2.19% and 2.85% higher than Y-UNet, and far
surpass the DeeplabV3+ network. In terms of parameter quantity, G-Unets is 6.808M,
which is about 26.55% of Y-UNet and is only slightly larger than the DeeplabV3+
network. To test the model segmentation speed on the power line test set, G-UNets
saves about 25% of the time to segment a graph compared to Y-UNet. It can be seen
that while improving the accuracy of the model, G-UNets further improves the speed
of segmentation, and can efficiently segment power lines in aerial images.

4.5. Comparison of Power Line Splitting Effects

We arbitrarily selected two power line images in the test set, to compare the seg-
mentation effects of different improved models in Table 2 and Y-UNet. The segmentation
comparison diagram is shown in Figure 9. Figure 9a is the input power line image, and
Figure 9b is the real label image(ground truth). Figure 9c–g are the segmentation results of
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the input image by Y-UNet, Improvement 1, Improvement 2, Improvement 3 and G-UNets,
respectively. Comparing the segmentation results, it can be found that there are obvious
missed detections, false detections and power line breaks in the Y-UNet segmentation
results. The segmentation results of the improved model are better than the Y-UNet seg-
mentation results, and the missed detection, false detection and breakage of power lines are
improved. The G-UNets segmentation effect is the best, with a small gap with the labeled
image, showing that it can segment the power line more accurately.
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5. Conclusions

In this paper, a lightweight power line segmentation algorithm (G-UNets) is pro-
posed. Based on the improved segmentation network based on U-Net by Lei Yang et al.,
the amount of network parameters is reduced by combining traditional convolution with
Ghost bottleneck to extract features, and the multi-scale input fusion strategy is used to
make the model capture richer features. In addition, by changing to Shuffle Attention in
the decoding stage and using a weighted mixed loss function that combines Focal loss and
Dice loss, the model pays more attention to the power line area and improves the model
segmentation performance. The comparative experiments show that G-UNets can achieve
a large compression of the parameters, and at the same time can ensure the accuracy of the
model, which verifies its high efficiency.

Although the lightweight G-UNets network proposed in this paper has improved the
power line segmentation effect, when the power lines overlap or have a high similarity
with the background, the segmentation accuracy still needs to be further improved. How
to improve the segmentation accuracy and make the model more lightweight will be the
focus of follow-up research.
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