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Abstract 
 
Broadband wireless channels are often time dispersive and become strongly frequency selective in delay 
spread domain. Commonly, these channels are composed of a few dominant coefficients and a large part of 
coefficients are approximately zero or under noise floor. To exploit sparsity of multi-path channels (MPCs), 
there are various methods have been proposed. They are, namely, greedy algorithms, iterative algorithms, 
and convex program. The former two algorithms are easy to be implemented but not stable; on the other 
hand, the last method is stable but difficult to be implemented as practical channel estimation problems be-
cause of computational complexity. In this paper, we introduce a novel channel estimation strategy using 
smooth L0 (SL0) algorithm which combines stable and low complexity. Computer simulations confirm the 
effectiveness of the introduced algorithm. We also give various simulations to verify the sensing training 
signal method. 
 
Keywords: Smooth L0 Algorithm, Restricted Isometry Property, Sparse Channel Estimation, Compressed 

Sensing 

1. Introduction 
 
Coherent detection in broadband wireless communica-
tion systems often requires accurate channel state infor-
mation (CSI) at a receiver. The study of channel estima-
tion for the purposes of channel equalization has a long 
history. In many previous studies, they assume that the 
channel impulse responses (CIRs) in time domain are 
distributed densely. Under this assumption, it is neces-
sary to use a redundant training sequence to probe the 
CSI. In addition, the linear channel estimation methods, 
such as least square (LS) algorithm and minimum mean 
square error (MMSE), always lead to lower spectral effi-
ciency due to utilizing more training source in transmit-
ted data block. It is very interesting to develop an effec-
tive channel estimation method to save training sequence 

and to improve spectral efficiency.  
Recently, the compressive sensing (CS) has been de-

veloped as a novel technique. It is regarded as an effi-
cient signal acquisition framework for signals character-
ized as sparse or compressible in time or frequency do-
main. One of applications of the CS technique is on 
compressive channel estimation. If the channel impulse 
response follows sparse distribution, we can apply the 
CS technique. As a result, the training sequence can be 
reduced compared with the linear estimation methods. 
Recent channel measurements show that the sparse or 
approximate sparse distribution assumption is reasonable 
[1,2]. In other words, the wireless channels in real 
propagation environments are characterized as sparse or 
sparse clustered; these sparse or clustered channels are 
frequently termed as a sparse multi-path channel (SMPC). 
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An example of SMPC impulse response channel is 
shown in Figure 1. Recently, the study on SMPC has 
drawn a lot of attentions and concerning results can be 
found in literature [3-5]. Correspondingly, sparse chan-
nel estimation technique has also received considerable 
interest for its advantages in high bit rate transmissions 
over multipath channel [6]. 

Exploiting the sparse property of SMPC, orthogonal 
matching pursuit (OMP) algorithm [7,8] and convex 
program algorithm [9] have been proposed. OMP algo-
rithm is fast and easy to be implemented. However, the 
stability of OMP for sparse signal recovery has not been 
well understood yet. To mitigate the unstability, Needell 
and Tropp have presented a compressive sampling 
matching pursuit (CoSaMP) algorithm for sparse signal 
recovery in [10]. After that, Gui et al. [11] have intro-
duced the algorithm to SPMC channel estimation and 
acquired robust channel estimator [12]. However, as the 
increasing of number of channel dominant taps, accurate 
channel estimator is hard to obtain due to unavoidable 
correlation between columns of the training sequence, 
thus the instability of the CoSaMP algorithm easily leads 
to weak channel estimation. Convex program method 
can resolve the instability of Greedy algorithm. Convex 
program algorithm, such as Dantzig Selector (DS) [13], 
is based on linear programming. The main advantage of 
convex program method is its stability and high estima-
tion accuracy. The convex problem method can work 
correctly as long as the RIC conditions of training se-
quences are satisfied. However, this method is computa-
tionally complex and difficult to be implemented in real 
applications [14].  

In this paper, we introduce a novel SMPC estimation 
method using smooth L0 (SL0) algorithm [15]. It has 
both the advantages of the greedy algorithm and the  
 

 

Figure 1. An example of SMPC where the channel sampling 
length is 80 while its number of dominant taps is 4. 

convex program. In other words, SL0 algorithm com-
bines low computational complexity and robustness on 
practical channel estimation, especially in high sig-
nal-noise-ratio (SNR) environment. The study in [15] 
focused on mathematical description on SL0 algorithm 
for sparse or approximate sparse signal recovery problem. 
The perfect CSI was assumed while practical channel 
estimation has not considered. In this paper, we intro-
duce the SL0 algorithm to deal with the practical sparse 
channel estimation problems that via exploiting channel 
sparsity. 

The rest of the paper is organized as follows. Sparse 
multipath channel model is presented in Section 2. Sec-
tion 3 will describe the existing SL0 algorithm and pro-
pose a CS-based SMPC estimation method by using the 
SL0 algorithm. In Section 4, we compare the perform-
ance of the proposed method with the existing methods by 
simulations. Finally, conclusions are drawn in Section 5. 
 
2. Sparse Multipath Channel Model 
 
At first, the symbols used in this paper are described as 
follows. The superscript H stands for Hermite transposi-
tion Bolded capital letters denote a matrix where bolded 
lowercase letters represent a vector. Notation   stands 
for the absolute value. Norm operator 

0
 denotes 0  

vector norm, i.e., the number of non-zero entries of the 
vector; 

 

1
 denotes 1  vector norm, which is the sum 

of the absolute values of the vector entries. 
 

2
 denotes 

L2 norm.  and  indicate estimate channel vector 
and actual channel vector, respectively.  





h h

We consider single-antenna broadband communica-
tion systems, which are often equivalent to frequency- 
selective baseband channel model. Hence, the transmit-
ted and received signal are related by 

       max

0
y t h x t d z t


    ,      (1) 

where  x t  and  y t  denotes the transmitted and 
received waveforms, respectively, and max  is defined 
as the maximum possible dominant taps delay spread 
introduced by the channel. And  is a zero-mean, 
circularly symmetric, complex additive white Gaussian 
noise (AWGN). The equivalent baseband transmitted 

 z t

X  
d received signals y given by an  is N

y Xh z  ,               (2) 

where X  is a complex training signal with Toeplitz 
structure of N L  dimensions.  s the z 1N   com-
plex additive white Gaussian noise (AWGN) with zero 
mean and variance 2 .  is an  unknown de-
terministic channel vector which is given by 

h 1L

     1

0
exp

L

i ii
h h j i    


  ,       (3) 
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where  expi ih j  are complex channel 
and 

coefficients 
  is a sampling rate and hence maxL     is 

defined el length.  as the chann  # 0,iS h i L    de-
notes  number of dominant taps of th ere 
S L . Suppose that there are S  taps 
distributed uniform randomly over the channel. Hence, 

te estimate the dominant coefficients in the chan-
nel is necessary for signal detection and demodulation at 
the receiver. 
 
3. CS-Base

 the e SMPC wh
dominant channel

accura

d Sparse Channel Estimation 

attracted great 
ttentions in sparse channel estimation. We review the 

3.1.1. Sparse Representation 
onsider a signal vector  that can be repre-

 
3.1. Review of Compressed Sensing 
 
Compressed sensing (CS) [16,17] has 
a
CS theorem on channel estimation by two aspects: 1) 
sparse approximation, 2) incoherence property of train-
ing sequence (sensing matrix). We rewrite the above 
system model (2) as 

y g z h z      .            (4) 

 

C  1Ng 
sented in an arbitrary basis,  , 1, ,kg k N , with the 
weighting coefficients kg . S he coefficients into a 
vector,

tacking t
g , the relationship with g  is obviously through 

the transform g h  here , w 1 2, , , N      is a 
full rank N  matrix. Let us take n example of 
sparse channel estimation problem quency 

ly, we sample xample from a 
finite length, discrete channel vector that one could rep-
resent as discrete sinusoids in a limited bandwidth. T  
matrix  (sometimes is termed as dictionary) would 
then be the discrete Fourier transform (DFT) matrix.  

In CS one is particula y interested in any basis that 
allows a sparse representation of received signal y , i.e., 
a basis 

N

om

a
 in the time-fre

 edomai

he

rl

n. C mon N

1 2, , , N      such that mo  st coefficients

k  are zero. Obviously if one knows h g , one could al-
ways choose some basis for which g h   fo some 

0k ; then
r 

 all kg , 0kg g

 re esentatio

, would be zero. This trivial 
e is not of interest; instead one is in ested in a pre-

determined basis that will render a s r approxi-
tely sparse pr n of any y  that belongs to 

some class of signals. In (4), 

cas

ma

ter
parse o

  denotes random meas-
urement matrix for reconstruct sparse signal. In the fol-
lowing section, we will discuss the restricted isometry 
property of measurement matri  .  
 
3.1.2. Restricted Isometry Property 
In the theory of CS, restricted i metr

x 

so y property (RIP) 
as become a standard tool for studying how efficiently a 

about sparse and 
h
sensing matrix acquires information 

compressible signals. If the sensing matrix with small 
restricted isometry constants (RIC), many proposed CS 
algorithms can reconstruct unknown sparse signal suc-
cessfully. Let’s give an example in the sparse channel 
estimation. We can utilize a small number of training 
sequence robust capture all the information in a sparse 
channel. Furthermore, we estimate the sparse channel 
from these training sequence using efficient CS algo-
rithms. We give a definition of restricted isometry prop-
erty (RIP) [18] on sensing matrix. 

Definition 1 (RIP [18]). For each integer  
1,2, ,K N  , define the restricted isometry constant 

(RIC) for all K  of a sensing ma X  trix as the small-
est number such that  

  2 2 2

2 2 2
1 1K Kh Xh h    ,       (5) 

holds for all S -sparse signal vector h . ue to simplify, 
we termed as 



 D
 : , KX RIC K   . 1

 

 this paper, we consider the complex Rayleigh prob-
cal channel impulse 

sponse, which is defined as 

3.2. Sparse Channel Estimator 
 
In
ability density distribution for practi
re

 
 2 2 22 2

2 2 2 2
exp exp

2 2

R IR I h hh hh h

 
(6) 

where 

f h    

   
     

    
 

h , Rh  and Ih
 of 

 represent the amplitude, real
and imagin  parts channel vector

 
ary  Lh . From 

above (6), we can find the complex channel amplit  ude 
2 2
R Ih h h   where its real part  2~ 0,Rh I and  

imaginary part  2~ 0,Ih I  are two independent 
normal distributions, where I  repre ma-

cided by channel len sed 
sents identity 

trix which de gth. On CS-ba
n, the optimalchannel estimatio  sparse estimators are 

given by [16] 
2

2 0
ˆ arg min -opt

h
h y Xh h  .        (7) 

However, direct compute the -norm is a high com- 
putational cost problem [16] hence
channel estimator cannot obt unately, there 
lo

0
 and 

ain. Fort
tho

 the optimal 
have 

t of sparse approximation me ds (e.g., Lasso [16] 
and CoSaMP [19]) to obtain sub-optimal channel esti-
mators. In this part, we introduce a fast algorithm for 
CS-based sparse channel estimation. At first, we define 
i -th ( 0, , 1i L  ) taps of channel satisfies the follow 
function 

   
0

lim 1 1 limi i

 
 

0

0

1 0 0  

R I
i i

R I
i i i

f h f h  
    

0

h h

h h or h

 

   
  

0 ,       (8) 
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as a sparse measure function which related as channel 
variance  . And the approximate norm function is 
given by

0  
 

    010 0i
lim 1 lim

L

iF h f h L h  
      .   (9) 

  

That is to say, 

 0
h L F h  .            (10) 

The channel variance   specifies a tradeoff b
accuracy and smoothness of the sparse channel estima-
tio

etween 

n: the smaller  , the better estimation performance, 
and vice verse. Fr  (5 inimizat
is equivalent xim zation of

 
), m
i

om
to ma

ion of the 0  norm 
 F  for sufficiently 

small   are described b ollowing theorem [15].  
Theorem 1 Sparse channel approximation problem: 

 max       

y f

F h subejct to y Xh         (11) 

where    , is the minimum 2  rm channel esti- 
mator t t is,  -1H Hh X XX y  and 0

no
ha   , is the mi- 

nimum 0  norm estimator of system model y Xh z  . 
Ba

timation with SL0 algorithm [15], the deta
p s. 
parse channel estimation 

 Train

sed on the above Theorem 1, on sparse channel es-
il of channel 

estimation ste s is given as follow
CS-based s
Input: ing sequence X , received signal vector y , 

decreasing channel variance  1, , M    . C
th

s with function 

hoose 
e initial channel estimator 0h  by LS. 
Output: Sparse channel estimator ĥ  

for 1, ,m M   
1) Find the support set of dominant tap
 F h  

Initialization 1mh   
for j = 1, ,K 
 Let 

   2 22 2 

 

1 1exp 2 , , exp 2m L L mh h h h h   
 

  

j mh h



1 h    (where   is small step length) 

 Compute  †
m j jh h X Xh y    

End 
2) ĥ  mh  

end 
 

Lower

To uate the MSE performance of channel estimators, 
it is very m ningful compare their achievements with 

formance bound in practical broadband 
ommunication systems, then they are approximate op-

-
ossible. This motivates the development of lower 

3.3.  Bound of Channel Estimators 
 

 eval
ea

theoretical per
c
timal and further improvements in these systems are im
p
bounds on the MSE of estimators in the sparse channel 
estimation. Since the channel vector to be estimated is 

deterministic, and then we can give a lower bound as for 
the baseline of MSE. Suppose we know the location set 

 # 0iT h i T    of dominant channel taps. Thus, 
the oracle estimator given by 

  1
,ˆ

0, elsewhere

H H
T T T T

oracle

X X X y T
h

 


,    (12) 

TX  is the 
gnal

where partial training signal constructed 
from columns of training si  X  corresponding to 
the do  taps of SMPC vecto . Hence, the refer-
ence lower bound (RLB) of sparse channel est
given by 

minant r h
imator are 

   2

2

ˆ ˆ
oracleRLB h h h   .         (13) 

 
4. Simulation Results and Discussions 
 
The parameters used in the simulation are listed
1. To illustrate the performance of propo

gorithm, Figure 2 shows the mean square error 
, SL0. 

 (MSE) 
aluation criterion can be defined as: 

 in Table 
sed method with 

SL0 al
(MSE) of dominant taps by employing LS, Lasso
The estimation error using mean square error
ev

 2

2

ˆ- mMSE h h .             (14) 

 
4.1. CDF Versus MSE 
 
To compare the MSE performance of estimation methods, 
the cumulative density function (C
Figures 2, 3. It can be clearly observed that the CDF 

rve of the proposed method by using SL0 algorithm is 
d better than the performance  

DF) is compared in 

cu
very close to the LASSO an
 

Table 1. Simulation condition. 

Linear algorithm LS 

LASSO 

CoSaMP 
Estimation methods  Convex  

optimization 

SL0 

Channel fading  e block ng Frequency-Selectiv  fadi

Power delay profile Uniform 

0 

No. of dominant coefficients -16 

Tr
Complex Toeplitz random 

Length of X 40 

Channel length L 6

8

aining sequence X 
Structure 
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Figure 2. MSE of the overall coefficients at SNR = 10 dB. 
 

 

Figure 3. MSE of the dominant coefficients at SNR = 10 dB. 
 
of other estimation methods when comparing with esti-
mation performance on either taps or dominant taps. 
 
4.2. MSE Versus SNR 
 

 
e 

nce shorter than estimation 
he MSE performance of LS- 

t measure of complexity, it can give us a 
ugh estimation of computational complexity. Our si- 

AB 2007 environ-
ent using a 2.40 GHz Intel Core-2 processor with 2GB 

 

As is shown in Figure 4, the proposed estimation me- 
od has a better MSE performance than LASSO and th

CoSaMP. It was worth noting that LS-based linear esti-
mation has a bad MSE performance which invariant with

NR due to undetermined system, that is to say, thS
length of training seque
hannel length. Hence, tc

based channel estimators is invariant whatever the SNR 
changes.  
 
4.3. Computational Complexity 
 
To study the computational complexity (CC) of the in-

troduced algorithm, we have evaluated the CPU time in 
second to complete the channel estimation for SNR = 10 
dB. It is worth mentioning that although the CPU time is 
not an exac
ro
mulations are performance in MATL
m
of memory and under Microsoft XP 2003 operating sys-
tem.  

The comparison of computational complexity between 
LS, LASSO, CoSaMP and SL0 algorithms is shown in 
Figure 5. It is seen that the computing time of proposed 
method is close to 0.02 second, while the computing time 
of the LASSO algorithm is more than 0.4 seconds. As for 
the CoSaMP algorithm, the compute complexity is in-
creasing as the number of dominant taps increasing. Thus, 
 

 

Figure 4. MSE versus SNR. 
 

 

Figure 5. Compute complexity with different number of 
domiant taps. 
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CS-based sparse channel estimation with SL0 algorithm 
is lower complexity method and hence easy implement at 
receiver on practical communications system. 
 
5. Conclusion 
 
In this paper, we have proposed a novel sparse channel
estimation method with SL0 algorithm which combines 
stable and fast. Thus this method has both advantage
the greedy algorithm and convex program algorithm
has been shown that, when compared with the existing
algorithms, our introduced method is both bandwidth and 
computationally efficient. In our future work, we
continue introduce the algorithm to sparse channel esti-
mation problem in the multiple antennas systems and 
cooperative networks.  
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