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Abstract 

 
A factoriangular number is a sum of a factorial and its corresponding triangular number. This paper presents 

some forms of the generalization of factoriangular numbers. One generalization is the 
( )mn -factoriangular 

number which is of the form (n!)
m
 + Sm(n), where (n!)

m
 is the mth power of the factorial of n and Sm(n) is the 

sum of the m-powers of n. This generalized form is explored for the different values of the natural number m. 

The investigation results to some interesting proofs of theorems related thereto. Two important formulas were 

generated for 
( )mn -factoriangular number: 
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       for odd m = 2k + 1. 

 

 
Keywords: Factoriangular numbers; generalized factoriangular numbers; factorial; triangular numbers; sums 

of powers; Faulhaber’s sums; integer sequences; number theory. 

 

1 Introduction  

 
Studies on factorials, triangular numbers, and other numbers associated with them abound the literature and 

have a long history of research in number theory. A survey on factorials, triangular numbers, and factoriangular 

numbers is provided in a recent article [1]. While factorials and triangular numbers have long been studied, 
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factoriangular numbers have been studied only in the past few years. In 2004, a sequence of numbers of the 

form a(n) = n! + Sum_{i=1..n} i was introduced in Sloane’s The Online Encyclopedia of Integer Sequences 

(OEIS) [2]. In 2015, this number was named factoriangular, a contraction of the terms factorial and triangular 

[3]. A factoriangular number is a sum of a factorial and its corresponding triangular number and some recent 

studies were conducted on this relatively new sequence of numbers [3-12].  

 

The first study on factoriangular numbers presents its characteristics as regards parity, compositeness, number 

and sum of its positive divisors, abundancy and deficiency, Zeckendorf’s decomposition, end digits, and digital 

roots [3]. The second study presents the runsum representations of factoriangular numbers and as difference of 

two triangular numbers, as well as its trapezoidal arrangements and politeness [4]. A study presents 

factoriangular numbers that are sums of two triangular numbers or sums of two squares [5] while another study 

gives some recurrence relations and exponential generating functions of the sequence of factoriangular numbers 

[6].  

 

Ruiz and Luca [7] prove that 2, 5, and 34 are the only Fibonacci factoriangular numbers, which confirms the 

conjecture of Castillo [3]. Luca, Odjoumani and Togbe [8] show that the only Pell factoriangular numbers are 2, 

5, and 12 while Kafle, Luca and Togbe [9] show that the only Lucas factoriangular numbers are 1 and 2. In 

addition, Rayaguru, Odjoumani and Panda [10] prove that there is no factoriangular number in the sequence of 

balancing numbers, as well as in the sequence of Lucas-balancing numbers.   

 

Two recent studies present generalizations of factoriangular numbers. In one study, a factoriangular number (as 

being a sum of corresponding factorial and triangular number) is generalized as a sum of any factorial and any 

triangular number [11]. In another study, the factoriangular number is generalized as sum of a power of factorial 

and its corresponding power sum, which is dubbed multiple factoriangular numbers [12]. This paper aims to 

explore this second generalization, named here as 
( )mn -factoriangular numbers. In particular, the generalized 

factoriangular numbers in the form of (n!)
m
 + Sm(n), where (n!)

m
 is the mth power of the factorial of n and Sm(n) 

is the sum of the m-powers of n, are examined for the different values of m ≥ 1. 

 

The different forms of the generalized factoriangular numbers are presented in the next section. The third 

section presents the different cases for the 
( )mn -factoriangular numbers and the proofs of some theorems related 

thereto. Conclusion is given in the last section.  

 

2 Generalization of Factoriangular Numbers 

 
A factoriangular number is a sum of the corresponding factorial and triangular number. The definitions of 

factorial and triangular number are given as follows:  

 

Definition 2.1.  For natural number n, the factorial of n is given by  

 

! 1 2 3n n    . 

 

Definition 2.2.  For natural number n, the nth triangular number is given by  

 

1 2 3 ... ( 1) / 2nT n n n       . 

 

The first few factoriangular numbers, denoted by nFt  [3], are {2, 5, 12, 34, 135, 741, 5068, 40356, 362925, 

3628855, …}. This sequence is included in OEIS as sequence A101292 in 2004, but in 2016, 1 was added as the 

first term [2].  

 

Definition 2.3.  The nth factoriangular number is given by the formula 

 

!  n nFt n T  .  

 

Here, numbers of this form will be called n-factoriangular numbers.  
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In the sequence of factoriangular numbers,  nFt , each entry is given by  

 

(1 2 3 ) (1 2 3 ... )nFt n n          

 

for natural number 1n  . This sequence can be generalized in several ways. One generalization [11] is the 

sequence  ,n kFt  where each entry is given by 

 

, (1 2 3 ) (1 2 3 ... )n kFt n k          

 

for natural numbers , 1n k  . Clearly, when n k , 
,n k nFt Ft . Numbers of this form will be called (n, k)-

factoriangular numbers.    

 

Definition 2.4. The ( , )n k -factoriangular number is defined by the formula 

 

, !  n k kFt n T  .  

 

Another generalization is the sequence ( )mn
Ft , where, for natural numbers , 1n m  , 

 

( ) (1 2 3 ) (1 2 3 ... )m

m m m m m m m m

n
Ft n n         . 

 

It is also clear that when 1m  , ( )m nn
Ft Ft .  Here, numbers of this form will be called n

(m)
-factoriangular 

numbers.  

 

Definition 2.5. The 
( )mn -factoriangular number is defined by the formula 

 

( ) ( !) ( )m

m

mn
Ft n S n   

 

where ( !) 1 2 3m m m m mn n     and ( ) 1 2 3 ...m m m m

mS n n      for natural numbers , 1n m  . 

 

These n
(m)

-factoriangular numbers are similar to the multiple factoriangular numbers [12] given as  

 

( , ) ( !)   k k

tF n k n n    

 

where ( )k

nn T k . 

 

Further generalization of factoriangular numbers is the sequence  ( ) ( ),m mn k
Ft , where, for natural numbers 

, , 1n k m  , 

 

( ) ( ),
(1 2 3 ) (1 2 3 ... )m m

m m m m m m m m

n k
Ft n k         .  

 

Notice also that when n k  and 1m  , ( ) ( ),m m nn k
Ft Ft .  Numbers of this form will be called (n

(m)
,k

(m)
)-

factoriangular numbers.  

 

Definition 2.6. The 
( ) ( )( , )m mn k -factoriangular number is defined by the formula 
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( ) ( ),
( !) ( )m m

m

mn k
Ft n S k   

 

where ( !) 1 2 3m m m m mn n     and ( ) 1 2 3 ...m m m m

mS k k      for natural numbers , , 1n k m  . 

 

Still another generalization is the sequence  ( ) ( ),a bn k
Ft , where, for natural numbers , , , 1n k a b  , 

 

( ) ( ),
(1 2 3 ) (1 2 3 ... )a b

a a a a b b b b

n k
Ft n k         . 

 

If n k  and 1a b  , then ( ) ( ),a b nn k
Ft Ft . Numbers of this form will be called (n

(a)
,k

(b)
)-factoriangular 

numbers.  

 

Definition 2.7. The 
( ) ( )( , )a bn k -factoriangular number is defined by the formula 

 

( ) ( ),
( !) ( )a b

a

bn k
Ft n S k   

 

where ( !) 1 2 3a a a a an n     and ( ) 1 2 3 ...b b b b

bS k k      for natural numbers , , , 1n k a b  . 

 

As given above, the n-factoriangular numbers can be generalized in several ways. This paper, however, focuses 

only on the 
( )mn -factoriangular numbers as presented in the next section.  

 

3 The n
(m)

-Factoriangular Numbers 

 

The 
( )mn -factoriangular number is a generalization of the n-factoriangular number. The symbol ( )mn

Ft is used 

here to denote 
( )mn -factoriangular number and it should be cautiously noted that this is different from 

m

nFt  (the 

mth power of the n-factoriangular number) and from mn
Ft (the n-factoriangular of the mth power of n). Recall 

that the 
( )mn -factoriangular number is given by the formula 

 

( ) ( !) ( )m

m

mn
Ft n S n   

 

where ( !) 1 2 3m m m m mn n     and ( ) 1 2 3 ...m m m m

mS n n      for natural numbers , 1n m  . Here, 

several cases in connection with the value of m are analyzed.  

 

3.1 The First Four Cases 

 

Case 1.  When 1m  ,  

 

(1) 1!  ( ) (1 2 3 ) (1 2 3 ... ) nn
Ft n S n n n Ft            , 

 

which is the n-factoriangular number. 

 

Case 2.   When 2m  ,  

 

(2)

2

2( !) ( )
n

Ft n S n   

  (2)

2 2 2 2 2 2 2 2(1 2 3 ) (1 2 3 ... )
n

Ft n n         . 
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Theorem 3.1. For natural number 1n  , the 
(2)n -factoriangular number is given by the formula 

 

(2)

2 1
( !) (2 1)

3
nn

Ft n n T   .  

 

Proof. It is a well-known fact that  

 

2 2 2 2 ( 1)(2 1)
1 2 3 ...

6

n n n
n

 
     , 

 

which can be proven easily through mathematical induction. However, instead of proving by induction, the 

following discussion shows how this identity was derived. 

 

For ease of writing, let the sum of powers of natural numbers be denoted by mS  instead of ( )mS n .  If 0m   

is included then, 

 
0 0 0 0

0 1 2 3 ... 1 1 1 ... 1 1S n n n             . 

 

If 1m  , 

 

1 1 2 3 ... ( 1) / 2 nS n n n T        , 

 

the triangular number. This formula for 1S  or nT  can also be proven easily through induction but the derivation 

is more interesting here.  An easy derivation is through the addition of 1S  to itself.  In particular, 

 

1

1

    1       2     +      3       ...  

    ( 1)  ( 2)  ...  1,

S n

S n n n

   

       
 

 

which results to 

 

12 ( 1) ( 1) ( 1) ... ( 1) ( 1)S n n n n n n            

  1

( 1)

2

n n
S


 . 

 

A more complex derivation is also presented below and this will be more useful later in the derivation of 

formulas for sum of higher powers of natural numbers. For any positive integer r, 
 

2 2 2 2( 1) 2 1 2 1r r r r r r        . 

 

Then, for 1,2,3,...,r n , 

 
2 2

2 2

2 2

2 2

        2 1 2(1) 1

        3 2 2(2) 1

        4 3 2(3) 1

                    

( 1) 2( ) 1.n n n

  

  

  

   

 

Adding the corresponding members of the above equations through a technique called telescoping and 

simplifying, results to 
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2( 1) 1 2(1 2 3 ... ) (1 1 1 ... 1)n n             

 

  
2

12 1 1 2n n S n      

 

  1

( 1)

2

n n
S


 . 

 

This technique was actually already known to Pascal who had shown how to use the binomial coefficients to 

find the sum of the kth powers of the first (n-1) positive integers if the formulas for the sums of the powers less 

than k are known [13].  

 

Similarly, for any positive integer r, 

 
3 3 3 2 3 2( 1) 3 3 1 3 3 1r r r r r r r r          . 

 

Then, for 1,2,3,...,r n , 

 
3 3 2

3 3 2

3 3 2

3 3 2

        2 1 3(1 ) 3(1) 1

        3 2 3(2 ) 3(2) 1

        4 3 3(3 ) 3(3) 1

                    

( 1) 3( ) 3( ) 1.n n n n

   

   

   

    

 

 

Adding the corresponding members of these equations and simplifying, results to 

 
3 2 2 2 2( 1) 1 3(1 2 3 ... ) 3(1 2 3 ... ) (1 1 1 ... 1)n n n                  

 

  
3 2

2 13 3 1 1 3 3n n n S S n       . 

 

Hence, 

 

3 2

2

( 1)
3 3 3 3

2

n n
S n n n n

 
     

 
 

 

  
3 2

26 2 3S n n n    

 

  2

( 1)(2 1)

6

n n n
S

 
 . 

 

Thus, 

 

2 2 2 2 ( 1)(2 1)
1 2 3 ...

6

n n n
n

 
     , 

which can also be written as 
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2 2 2 2 1
1 2 3 ... (2 1)

3
nn n T      . 

 

Hence, 

(2)

2 1
( !) (2 1)

3
nn

Ft n n T    

 

and the theorem was proven.  

 

With this formula, the entries in the sequence of 
(2)n -factoriangular numbers can be computed and the sequence 

is given as follows: 

 

   (2) 2,9,50,606,14455,...
n

Ft  . 

 

Note again that ( 2)n
Ft is different from 

2

nFt  and from 2n
Ft .  For instance, if 2n  , 

 

(2)

2

2

1
(2!) [2(2) 1](3) 9

3
Ft      or (2)

2 2 2 2

2
(1 2 ) (1 2 ) 9Ft       

 

while  
2 2

2 [(1 2) (1 2)] 25Ft       and 2 42
4!  4(4+1)/2 34Ft Ft    .  

 

Case 3.  When 3m  , 

 

(3)

3

3( !) ( )
n

Ft n S n   

 

  (3)

3 3 3 3 3 3 3 3(1 2 3 ) (1 2 3 ... )
n

Ft n n          

  

Theorem 3.2. For natural number 1n  , the 
(3)n -factoriangular number is given by the formula 

 

(3)

3 2( !) nn
Ft n T  . 

 

Proof. For any positive integer r, 

 
4 4 4 3 2 4 3 2( 1) 4 6 4 1 4 6 4 1r r r r r r r r r r            . 

 

Then, for 1,2,3,...,r n , 

 
4 4 3 2

4 4 3 2

4 4 3 2

4 4 3 2

        2 1 4(1 ) 6(1 ) 4(1) 1

        3 2 4(2 ) 6(2 ) 4(2) 1

        4 3 4(3 ) 6(3 ) 4(3) 1

                    

( 1) 4( ) 6( ) 4( ) 1.n n n n n

    

    

    

     

 

 

Adding the corresponding members of these equations and simplifying, results to 

 



 

 
 

 

Castillo; ARJOM, 18(5): 1-21, 2022; Article no.ARJOM.86060 
 

 

 
8 

 

4 3 3 3 3 2 2 2 2( 1) 1 4(1 2 3 ... ) 6(1 2 3 ... )

                    4(1 2 3 ... ) (1 1 1 ... 1)

n n n

n

           

         
 

 

  
4 3 2

3 2 14 6 4 1 1 4 6 4n n n n S S S n         . 

 

It follows that, 

 

4 3 2

3

( 1)(2 1) ( 1)
4 4 6 4 6 4

6 2

n n n n n
S n n n n n

     
         

   
 

 

  
4 3 2

34 2S n n n    

 

  

2 2

3

( 1)

4

n n
S


 . 

 

With this,  

 
2 2

3 3 3 3 ( 1)
1 2 3 ...

4

n n
n


     , 

 

which can also be written as 

 
3 3 3 3 21 2 3 ... nn T     . 

 

Hence, 

 

(3)

3 2( !) nn
Ft n T   

 

and the theorem was proven. 

 

With this formula, the sequence of 
(3)n -factoriangular numbers is as follows: 

 

   (3) 2,17,252,13924,1728225,...
n

Ft  . 

 

Case 4.  When 4m  , 

 

(4)

4

4( !) ( )
n

Ft n S n   

 

  (4)

4 4 4 4 4 4 4 4(1 2 3 ) (1 2 3 ... )
n

Ft n n          

  

Theorem 3.3. For natural number 1n  , the 
(4)n -factoriangular number is given by the formula 

 

(4)

4 3 21
( !) (6 9 1)

15
nn

Ft n n n n T     . 

Proof. For any positive integer r, 
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5 5 5 4 3 2 5 4 3 2( 1) 5 10 10 5 1 5 10 10 5 1r r r r r r r r r r r r              . 

 

Then, similar to the previous cases, it can be shown that 

 
5

4 3 2 1( 1) 1 5 10 10 5n S S S S n        

 

and solving for 4S , results to 

 
5 4 3 3 2

4

6 15 10 ( 1)(6 9 1)

30 30

n n n n n n n n n
S

      
  . 

 

Thus, 

 
3 2

4 4 4 4 ( 1)(6 9 1)
1 2 3 ...

30

n n n n n
n

   
     , 

 

which can also be written as 

 

4 4 4 4 3 21
1 2 3 ... (6 9 1)

15
nn n n n T        . 

 

Hence, 

 

(4)

4 3 21
( !) (6 9 1)

15
nn

Ft n n n n T      

 

and the theorem was proven.  

 

The sequence of 
(4)n -factoriangular numbers is now given as follows: 

 

   (4) 2,33,1394,332130,207360979,...
n

Ft  . 

 

Summarizing the results for the first four cases regarding the sums of powers of positive integers, mS , for 

1m  : 

 
2

1

( 1)

2 2
n

n n n n
S T

 
   ; 

 
3 2

2

2 3 ( 1)(2 1) 1
(2 1)

6 6 3
n

n n n n n n
S n T

   
    ; 

 
4 3 2 2 2

2

3

2 ( 1)

4 4
n

n n n n n
S T

  
   ; and 

 
5 4 3 3 2

3 2

4

6 15 10 ( 1)(6 9 1) 1
(6 9 1)

30 30 15
n

n n n n n n n n n
S n n n T

      
      . 



 

 
 

 

Castillo; ARJOM, 18(5): 1-21, 2022; Article no.ARJOM.86060 
 

 

 
10 

 

 

Notice that the triangular number, nT , is a factor in mS . This shows the recursive nature of the sums of powers 

of positive integers. Similar to these results are the Faulhaber’s formulas for sums of odd powers expressing 

each sum of odd powers from 1 to 17 as a polynomial in N  where 
2( ) / 2N n n   [14]. The first five cases 

of Faulhaber’s results are as follows: 

 
1 1 11 2 ... n N    ; 
3 3 3 21 2 ... n N    ; 
5 5 5 3 21 2 ... (4 ) / 3n N N     ; 

7 7 7 4 3 21 2 ... (12 8 2 ) / 6n N N N      ; and 

9 9 9 5 4 3 21 2 ... (16 20 12 3 ) / 5n N N N N       . 

 

3.2 The Next Few Higher Cases 
 

When 5,6,7,8,9m  , 

 

(5)

5 5 5 5 5 5 5 5 5

5( !) ( ) (1 2 3 ) (1 2 3 ... )
n

Ft n S n n n           ; 

(6)

6 6 6 6 6 6 6 6 6

6( !) ( ) (1 2 3 ) (1 2 3 ... )
n

Ft n S n n n           ; 

(7)

7 7 7 7 7 7 7 7 7

7( !) ( ) (1 2 3 ) (1 2 3 ... )
n

Ft n S n n n           ; 

(8)

8 8 8 8 8 5 8 8 8

8( !) ( ) (1 2 3 ) (1 2 3 ... )
n

Ft n S n n n           ; and 

(9)

9 9 9 9 9 9 9 9 9

9( !) ( ) (1 2 3 ) (1 2 3 ... )
n

Ft n S n n n           , 

 

respectively. 

 

Theorem 3.4. For natural number 1n  , then 
(5)n , 

(6)n , 
(7)n , 

(8)n  and 
(9)n -factoriangular numbers are, 

respectively, given by the formulas 

 

(5)

5 2 21
( !) (2 2 1)

3
nn

Ft n n n T    ; 

(6)

6 5 4 3 21
( !) (6 15 6 6 1)

21
nn

Ft n n n n n n T       ; 

(7)

7 4 3 2 21
( !) (3 6 4 2)

6
nn

Ft n n n n n T      ; 

(8)

8 7 6 5 4 3 21
( !) (10 35 25 25 17 17 3 3)

45
nn

Ft n n n n n n n n T         ; and 

(9)

9 6 5 4 3 2 21
( !) (2 6 8 6 3)

5
nn

Ft n n n n n n n T        . 

 

Proof. As in the first four lower cases for sums of powers of positive integers, it can be shown that for any 

positive integer r, 

 
6 6 5 4 3 2( 1) 6 15 20 15 6 1r r r r r r r            

6

5 4 3 2 1( 1) 1 6 15 20 15 6n S S S S S n        ; 
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7 7 6 5 4 3 2( 1) 7 21 35 35 21 7 1r r r r r r r r             

7

6 5 4 3 2 1( 1) 1 7 21 35 35 21 7n S S S S S S n         ; 

8 8 7 6 5 4 3 2( 1) 8 28 56 70 56 28 8 1r r r r r r r r r              

8

7 6 5 4 3 2 1( 1) 1 8 28 56 70 56 28 8n S S S S S S S n          ; 

9 9 8 7 6 5 4 3 2( 1) 9 36 84 126 126 85 36 9 1r r r r r r r r r r               

9

8 7 6 5 4 3 2 1( 1) 1 9 36 84 126 126 84 36 9n S S S S S S S S n           ; and 

10 10 9 8 7 6 5 4 3 2( 1) 10 45 120 210 252 210 120 45 10 1r r r r r r r r r r r              

  
10

9 8 7 6 5 4 3 2 1( 1) 1 10 45 120 210 252 210 120 45 10n S S S S S S S S S n            . 

 

Solving for 5S , 6S , 7S , 8S  and 9S  successively, using previously derived formulas for sums of lower 

powers, results to 

 

2 2

5

1
(2 2 1)

3
nS n n T   ; 

5 4 3 2

6

1
(6 15 6 6 1)

21
nS n n n n n T      ; 

4 3 2 2

7

1
(3 6 4 2)

6
nS n n n n T     ; 

7 6 5 4 3 2

8

1
(10 35 25 25 17 17 3 3)

45
nS n n n n n n n T        ; and 

6 5 4 3 2 2

9

1
(2 6 8 6 3)

5
nS n n n n n n T       .  

 

Hence,  

 

(5)

5 2 21
( !) (2 2 1)

3
nn

Ft n n n T    ; 

(6)

6 5 4 3 21
( !) (6 15 6 6 1)

21
nn

Ft n n n n n n T       ; 

(7)

7 4 3 2 21
( !) (3 6 4 2)

6
nn

Ft n n n n n T      ; 

(8)

8 7 6 5 4 3 21
( !) (10 35 25 25 17 17 3 3)

45
nn

Ft n n n n n n n n T         ; and 

(9)

9 6 5 4 3 2 21
( !) (2 6 8 6 3)

5
nn

Ft n n n n n n n T        ; 

 

and the theorem was proven. 

 

Notice that for odd 3m  , 
2

nT  is a factor of mS .  Further explorations on these resulted to the following: 

For 5m  , 

5       S 2 21
(2 2 1)

3
nT n n    



 

 
 

 

Castillo; ARJOM, 18(5): 1-21, 2022; Article no.ARJOM.86060 
 

 

 
12 

 

2 21
[2( ) 1]

3
nT n n    

2
21 4( )

1
3 2

n

n n
T

 
  

 
 

21
(4 1)

3
n nT T   

3 21
(4 )

3
n nT T  ; 

 

for 7m  , 

 

7       S  
2 4 3 21
(3 6 4 2)

6
nT n n n n      

2 4 3 2 21
[(3 6 3 ) (4 4 ) 2]

6
nT n n n n n       

2 2 2 21
[3( ) 4( ) 2]

6
nT n n n n      

2 2 2
21 12( ) 8( )

2
6 4 2

n

n n n n
T

  
   

 
 

2 21
(12 8 2)

6
n n nT T T    

4 3 21
(12 8 2 )

6
n n nT T T   ;  

 

and for 9m  , 

 

9       S  
2 6 5 4 3 21
(2 6 8 6 3)

5
nT n n n n n n        

2 6 5 4 3 4 3 2 21
[(2 6 6 2 ) (5 10 5 ) (6 6 ) 3]

5
nT n n n n n n n n n           

2 2 3 2 2 21
[2( ) 5( ) 6( ) 3]

5
nT n n n n n n        

2 3 2 2 2
21 16( ) 20( ) 12( )

3
5 8 4 2

n

n n n n n n
T

   
    

 
 

2 3 21
(16 20 12 3)

5
n n n nT T T T     

5 4 3 21
(16 20 12 3 )

5
n n n nT T T T    ;  

 

which are clearly seen now as exactly the same as Faulhaber’s sums of odd powers mentioned earlier. 

 

Similarly, the sums of even powers for 2m   were further explored and the results are as follows: 

For 4m  , 
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4       S  
3 21

(6 9 1)
15

nn n n T     

21
(2 1)(3 3 1)

15
nn n n T     

21 6( )
(2 1) 1

15 2
n

n n
n T

 
   

 
 

21
(2 1)(6 )

15
n nn T T   ; 

 

for 6m   

 

6       S  
5 4 3 21

(6 15 6 6 1)
21

nn n n n n T       

4 31
(2 1)(3 6 3 1)

21
nn n n n T      

4 3 2 21
(2 1)[(3 6 3 ) (3 3 ) 1)]

21
nn n n n n n T        

2 2 21
(2 1)[3( ) 3( ) 1)]

21
nn n n n n T       

2 2 21 12( ) 6( )
(2 1) 1

21 4 2
n

n n n n
n T

  
    

 
 

21
(2 1)(12 6 1)

21
n n nn T T T     

3 21
(2 1)(12 6 )

21
n n nn T T T    ; 

 

and for 8m  , 

 

8       S 7 6 5 4 3 21
(10 35 25 25 17 17 3 3)

45
nn n n n n n n T         

6 5 4 3 21
(2 1)(5 15 5 15 9 3)

45
nn n n n n n n T         

6 5 4 3 4 3 2 21
(2 1)[(5 15 15 5 ) (10 20 10 ) (9 9 ) 3)]

45
nn n n n n n n n n n T            

2 3 2 2 21
(2 1)[5( ) 10( ) 9( ) 3)]

45
nn n n n n n n T         

2 3 2 2 21 40( ) 40( ) 18( )
(2 1) 3

45 8 4 2
n

n n n n n n
n T

   
     

 
 

3 21
(2 1)(40 40 18 3)

45
n n n nn T T T T      
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4 3 21
(2 1)(40 40 18 3 )

45
n n n nn T T T T     . 

 

Since 

 

 2

1
(2 1)

3
nS n T  , 

 

it follows that 

 

4 2

1 1
(2 1)(6 1) (6 1)

15 5
n n nS n T T T S     ; 

2 2

6 2

1 1
(2 1)(12 6 1) (12 6 1)

21 7
n n n n nS n T T T T T S       ; and  

3 2 3 2

8 2

1 1
(2 1)(40 40 18 3) (40 40 18 3)

45 15
n n n n n n nS n T T T T T T T S         ; 

 

which shows that for even 2m  , 2S  divides mS and the quotient is a polynomial in nT as also noted and 

proven in a previous study [15].  

 

3.3 The General Case 

 
When m  is any positive integer, 

 

( ) ( !) ( ) (1 2 3 ) (1 2 3 ... )m

m m m m m m m m m

mn
Ft n S n n n            

 

of which the formula for the second term (the sum of mth power of positive integers) is to be determined in a 

way similar to the previous specific cases. 

 

Theorem 3.5. For natural numbers , 1n m  , the 
( )mn -factoriangular numbers can be determined by the 

formula  

 

( )

1

1

11
( !) ( 1)[( 1) 1] ( )

1
m

m
m m

in
i

m
Ft n n n S n

im





   
       

   
  

 

where n! is the factorial of n and ( ) 1 2 3 ...i i i i

iS n n     . 

 

Proof. From the previous cases, it is not difficult to see that  

 

 
1

1 2 1

1 1 1 1
( 1) 1 ...

1 2 1

m

m m m

m m m m
n S S S S n

m m m



 

          
              

        
 

 

or 

1

1 2 1

1 1 1
( 1) ( 1) ( 1) ...

1 2 1

m

m m

m m m
n n m S S S S

m





       
             

     
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and then, 

 

1

1

11
( 1)[( 1) 1]

1

m
m

m i

i

m
S n n S

im





   
      

   
 . 

 

Hence,  

 

( )

1

1

11
( !) ( 1)[( 1) 1] ( )

1
m

m
m m

in
i

m
Ft n n n S n

im





   
       

   
  

 

and the theorem was proven. 

 

What remains to be shown is the general expression of 
( )mn -factoriangular numbers in terms of the factorial 

and the triangular number as in the previous specific cases for 2,3,...,9m  .  

 

Theorem 3.6. The 
( )mn -factoriangular number, for even 2m k , is given by the formula  

 

( ) (2 )

2 2 2 2 32 1
( !) ( )

2 1
m k

k k k

nn n

n
Ft Ft n n P n T

k

 
     

 

 

and for odd 2 1m k  , is given by the formula 

 

( ) (2 1)

2 1 2 2 2 3( 1)
( !) ( )

1
m k

k k k

nn n

n n
Ft Ft n n P n T

k


  
     

 

 

where n! is the factorial of n, Tn is the nth triangular number, and 
2 3( )kP n 

 is a polynomial in n  of degree 

2 3k  , for natural numbers , 1n k  .  

 

Proof. Further explorations on sums of powers of positive integers are needed and this time, consider separating 

the sums of even powers from the sums of odd powers. 

 

Consider first the sum of even powers of integers 1n  , that is for natural numbers k , consider 2 ( )kS n . 

Again, for ease of writing, mS  is used in lieu of ( )mS n . Using the previous results for some specific cases, it 

can be shown that: 

 

For 1k  , 

 

2(1) 2

2 1
       

3
n

n
S S T


  ; 

 

for 2k  , 

 

2

2(2) 4

2 1
       (3 3 1)

15
n

n
S S n n T


     

 

2 1
3

2 1
[3( )]

15
n

n
n n T


    
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2 1
3

2 1
[ ( )]

5
n

n
n n T


   ; 

 

for 3k  , 

 

4 3

2(3) 6

2 1
       (3 6 3 1)

21
n

n
S S n n n T


      

4 3 1
3

2 1
[3( 2 )]

21
n

n
n n n T


     

4 3 1
3

2 1
[ (2 )]

7
n

n
n n n T


    ; 

 

and for 4k  , 

 

6 5 4 3 2

2(4) 8

2 1
       (5 15 5 15 9 3)

45
n

n
S S n n n n n n T


         

6 5 4 3 2 9 31
5 5 5

2 1
[5( 3 3 )]

45
n

n
n n n n n n T


        

6 5 4 3 2 9 31
5 5 5

2 1
[ (3 3 )]

9
n

n
n n n n n n T


       . 

 

These results can be generalized into: 

 

2 2 2 3

2

2 1
( )

2 1

k k

k n

n
S n P n T

k

 
   

 

 

where the second term in the bracket is a polynomial in n  of degree 2 3k  . 

Hence, for 2m k  

 

( ) (2 )

2 2 2 2 32 1
( !) ( )

2 1
m k

k k k

nn n

n
Ft Ft n n P n T

k

 
     

 

 

which proves the first part of the theorem.  

 

Consider next the sum of odd powers of integers 1n  , that is for natural numbers k , consider 2 1( )kS n . 

From the previous results, but in this case using the factor nT  instead of 
2

nT , it can be further shown that:  

 

For 1k  , 

 

2(1) 1 3

( 1)
      

2
n

n n
S S T


  ; 

for 2k  , 

 

2

2(2) 1 5

( 1)
      (2 2 1)

6
n

n n
S S n n T


     
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2 1
2

( 1)
[2( )]

6
n

n n
n n T


    

2 1
2

( 1)
[ ( )]

3
n

n n
n n T


   ; 

 

for 3k  , 

 

4 3 2

2(3) 1 7

( 1)
      (3 6 4 2)

12
n

n n
S S n n n n T


       

4 3 21 4 2
3 3 3

( 1)
[3( 2 )]

12
n

n n
n n n n T


      

4 3 21 4 2
3 3 3

( 1)
[ (2 )]

4
n

n n
n n n n T


     ; 

 

and for 4k  , 

 

6 5 4 3 2

2(4) 1 9

( 1)
      (2 6 8 6 3)

10
n

n n
S S n n n n n n T


         

6 5 4 3 2 31 1
2 2 2

( 1)
[2( 3 4 3 )]

10
n

n n
n n n n n n T


        

6 5 4 3 2 31 1
2 2 2

( 1)
[ (3 4 3 )]

5
n

n n
n n n n n n T


       . 

 

These results can be generalized into: 

 

2 2 2 3

2 1

( 1)
( )

1

k k

k n

n n
S n P n T

k

 




   

 

 

where the second term in the bracket is a polynomial in n  of degree 2 3k  . 

Hence, for 2 1m k   

 

( ) (2 1)

2 1 2 2 2 3( 1)
( !) ( )

1
m k

k k k

nn n

n n
Ft Ft n n P n T

k


  
     

 

 

which proves the second part and completes the proof of the theorem. 

 

A previous study presented similar formulas as the above but without any explanation, proof or derivation [16].  

 

Another set of formulas is stated in the following theorem. 

 

Theorem 3.7. The 
( )mn -factoriangular number, for even 2m k , is given by the formula  

 

( ) (2 )

2 2 2 2 3

2

3
( !) ( ) ( )

2 1
m k

k k k

n n
Ft Ft n n P n S n

k

      
 

 

and for odd 2 1m k  , is given by the formula 
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( ) (2 1)

2 1 2 2 2 3

3

2
( !) ( ) ( )

1
m k

k k k

n n
Ft Ft n n P n S n

k


       
 

 

where n! is the factorial of n, 2( ) ( 1)(2 1) / 6S n n n n   , 
2 2

3( ) ( 1) / 4S n n n  , and 
2 3( )kP n 

 is a 

polynomial in n  of degree 2 3k  , for natural numbers 1n  and 1k  . 

 

Proof. With the identities  

 

2

2 1

3
n

n
S T


  and 

2

3 nS T  

 

and using the previous results that the sums of even powers of positive integers can be expressed in terms of 2S  

while the sums of odd powers of positive integers can be expressed in terms of 
2

nT  or 3S , it can be further 

shown that for sums of even powers: 

 

For 2k  , 

 

2

2(2) 4 2

1
       (3 3 1)

5
S S n n S     

2 1
23

1
[3( )]

5
n n S    

2 1
23

3
[ ( )]

5
n n S   ; 

 

for 3k  , 

 

4 3

2(3) 6 2

1
       (3 6 3 1)

7
S S n n n S      

4 3 1
23

1
[3( 2 )]

7
n n n S     

4 3 1
23

3
[ (2 )]

7
n n n S    ; 

 

and for 4k  , 

 

6 5 4 3 2

2(4) 8 2

1
       (5 15 5 15 9 3)

15
S S n n n n n n S         

6 5 4 3 2 9 31
25 5 5

1
[5( 3 3 )]

15
n n n n n n S        

6 5 4 3 2 9 31
25 5 5

3
[ (3 3 )]

9
n n n n n n S       . 

These results can be generalized into: 

 

2 2 2 3

2 2

3
( )

2 1

k k

kS n P n S
k

    
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where the second term in the bracket is a polynomial in n  of degree 2 3k  . 

 

Hence, for 2m k  

 

( ) (2 )

2 2 2 2 3

2

3
( !) ( ) ( )

2 1
m k

k k k

n n
Ft Ft n n P n S n

k

      
 

 

which proves the first part of the theorem. 

 

Similarly for sums of odd powers: 

 

For 2k  , 

 

2

2(2) 1 5 3

1
      (2 2 1)

3
S S n n S      

2 1
32

1
[2( )]

3
n n S    

2 1
32

2
[ ( )]

3
n n S   ; 

 

for 3k  , 

 

4 3 2

2(3) 1 7 3

1
      (3 6 4 2)

6
S S n n n n S        

4 3 21 4 2
33 3 3

1
[3( 2 )]

6
n n n n S      

4 3 21 4 2
33 3 3

2
[ (2 )]

4
n n n n S     ; 

 

and for 4k  , 

 

6 5 4 3 2

2(4) 1 9 3

1
      (2 6 8 6 3)

5
S S n n n n n n S          

6 5 4 3 2 31 1
32 2 2

1
[2( 3 4 3 )]

5
n n n n n n S        

6 5 4 3 2 31 1
32 2 2

2
[ (3 4 3 )]

5
n n n n n n S       . 

 

These results can be generalized into: 

 

2 2 2 3

2 1 3

2
( )

1

k k

kS n P n S
k

 


   

 

where the second term in the bracket is a polynomial in n  of degree 2 3k  .   

 

Hence, for 2 1m k   

( ) (2 1)

2 1 2 2 2 3

3

2
( !) ( ) ( )

1
m k

k k k

n n
Ft Ft n n P n S n

k


       
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which proves the second part and completes the proof of the theorem. 

 

The next question is how to determine the polynomial 
2 3( )kP n 

given in Theorems 3.6 and 3.7. The following 

is for further investigation: 

 

Open Question. Is there an explicit formula or method to determine the polynomial 
2 3( )kP n 

as stated in 

Theorems 3.6 and 3.7?  

 

4 Conclusion 
 
The sequence of factoriangular numbers is a relatively new topic of research in number theory. A factoriangular 

number can be simply defined as a sum of a factorial and its corresponding triangular number. In this study 

some forms of the generalization of factoriangular numbers are presented. One particular generalization of 

factoriangular numbers of the form (n!)
m
 + Sm(n) is explored for the different values of the natural 

number m and this results to some interesting proofs of theorems related thereto. 

 

Competing Interests 
 
Author has declared that no competing interests exist. 

 

References 

 
[1] Castillo RC. A survey on triangular number, factorial and some associated numbers. Indian Journal of 

Science and Technology. 2016;9(41):1-7.  

Available:  https://doi.org/10.17485/ijst/2016/v9i41/85182.     

 

[2] Sloane NJA. The On-Line Encyclopedia of Integer Sequences. Sequence A101292.  

Available: https://oeis.org/A101292.     

 

[3] Castillo RC. On the sum of corresponding factorials and triangular numbers: some preliminary results. 

Asia Pacific Journal of Multidisciplinary Research. 2015;3(4-1):5-11. 

 

[4] Castillo RC. On the sum of corresponding factorials and triangular numbers: runsums, trapezoids and 

politeness. Asia Pacific Journal of Multidisciplinary Research. 2015;3(4-2):95-101.   

 

[5] Castillo RC. Sums of two triangulars and of two squares associated with the sum of corresponding 

factorial and triangular number. Asia Pacific Journal of Multidisciplinary Research. 2015;3(4-3):28-36.  

 

[6] Castillo RC. Recurrence relations and generating functions of the sequence of sums of corresponding 

factorials and triangular numbers. Asia Pacific Journal of Multidisciplinary Research. 2015;3(4-3):165-

169.  

 

[7] Gomez-Ruiz CA, Luca F. Fibonacci factoriangular numbers. Indagationes Mathematicae. 

2017;28(4):796-804.  

Available:  https://doi.org/10.1016/j.indag.2017.05.002.   

 

[8] Luca F, Odjoumani J, Togbe A. Pell factoriangular numbers. Publications de L’Institut Mathematique. 

2019;105(119):93-100.  

Available:  https://doi.org/10.2298/PIM1919093L.  

 

[9] Kafle B, Luca F, Togbe A. Lucas factoriangular numbers. Mathematica Bohemica. 2020;145(1):33-43. 

Available:  https://doi.org/10.21136/MB.2018.0021-18.   
 

https://doi.org/10.17485/ijst/2016/v9i41/85182
https://oeis.org/A101292
https://doi.org/10.1016/j.indag.2017.05.002
https://doi.org/10.2298/PIM1919093L
https://doi.org/10.21136/MB.2018.0021-18


 

 
 

 

Castillo; ARJOM, 18(5): 1-21, 2022; Article no.ARJOM.86060 
 

 

 
21 

 

[10] Rayaguru SG, Odjoumani J, Panda GK. Factoriangular numbers in balancing and Lucas-balancing 

sequence. Boletin de la Sociedad Matematica Mexicana. 2020;26:865-878.  

Available: https://doi.org/10.1007/s40590-020-00303-1.   

 

[11] Castillo RC. Generalized factoriangular numbers and factoriangular triangles. International Journal of 

Advanced Research and Publications. 2017;1(5):413-415.  

 

[12] Bisht S, Uniyal AS. Representation & nature of multiple factoriangular numbers. International Journal of 

Advanced Research. 2018;6(9):448-451.   

Available:  https://doi.org/10.21474/ijar01/7694.   

 

[13] Rike T. Sums of powers and Bernoulli numbers; 2008.  

Available:  https://sanjosemathcircle.org/handouts/2008-2009/20081112.pdf   

 

[14] Knuth DE. Johann Faulhaber and sums of powers. Mathematics of Computation. 1993;61(203):277-294.  

Available: https://doi.org/10.1090/S0025-5718-1993-1197512-7.  

 

[15] Beardon AF. Sums of powers of integers. American Mathematical Monthly. 1996;103(3):201-213.  

Available: https://doi.org/10.1080/00029890.1996.12004725.  

 

[16] Abramovich S, Sugden SJ. Revisiting Polya’s summation techniques using a spreadsheet: from addition 

tables to Bernoulli polynomials. Spreadsheets in Education. 2008;2(3):299-315.  
 
__________________________________________________________________________________________ 
© 2022 Castillo; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the 

original work is properly cited. 

 
 

 

Peer-review history: 

The peer review history for this paper can be accessed here (Please copy paste the total link in your 
browser address bar) 

https://www.sdiarticle5.com/review-history/86060 

https://doi.org/10.1007/s40590-020-00303-1
https://doi.org/10.21474/ijar01/7694
https://sanjosemathcircle.org/handouts/2008-2009/20081112.pdf
https://doi.org/10.1090/S0025-5718-1993-1197512-7
https://doi.org/10.1080/00029890.1996.12004725
http://creativecommons.org/licenses/by/3.0

