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Abstract 

 
By using the properties of Euler function, an upper bound of solutions of Euler function equation φ(𝑥) = 2s 

is given, where s is a positive integer. By using the classification discussion and the upper bound we obtained, 

all positive integer solutions of the generalized Euler function equation φ
2

(𝑛 − φ
2

(𝑛)) = 2𝜔(𝑛) are given, 

where 𝜔(𝑛) is the number of distinct prime factors of n. 
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1 Introduction 

 
Euler function φ(𝑛) is a relatively important content in elementary number theory, and Euler function is the 

number of positive integers not greater than 𝑛 and prime to 𝑛. According to the definition, 𝜑(1) = 1. If 𝑛 > 1, 

let canonical form of 𝑛 be 𝑛 = 𝑝1
𝛼1𝑝2

𝛼2 ⋯ 𝑝𝑘
𝛼𝑘，where 𝑝𝑖  is a prime and 𝛼𝑖 is a positive integer, then  

 

𝜑(𝑛) = ∑ 𝑝𝑖
𝛼𝑖−1(𝑝𝑖 − 1)𝑘

𝑖=1 . 

 

Lv Zhihong [1,2] get the solutions of  𝜑(𝑛) = 2𝜔(𝑛)  and  𝜑(𝜑(𝑛)) = 2𝜔(𝑛) , where𝜔(𝑛)  is the number of 

distinct prime factors of 𝑛 . Li Yijun [3] calculated the solutions of  𝜑 (𝜑(𝜑(𝑛))) = 2𝜔(𝑛) , and studied the 

properties of (𝜑(𝜑(𝑛))) . 

 

For positive integer 𝑛, the generalized Euler function [4] 𝜑𝑒(𝑛) is defined as the number of  positive integers not 

exceeding [
𝑛

𝑒
] and prime to 𝑛 , namely 

 

𝜑𝑒(𝑛) = ∑ 1,

[
𝑛

𝑒
]

𝑖=1,gcd(𝑖,𝑛)=1

 

 

where [𝑥] is the greatest integer not greater than 𝑥. 

 

In particular, when 𝑒 =  2, the generalized Euler function  𝜑2(1) = 0, 𝜑2(2) = 1. When 𝑛 ≥  3, then 𝜑2(𝑛) =
1

2
𝜑(𝑛). 

 

Ding [5] introduced the generalized Euler function 𝜑𝑒(𝑛) and its properties in detail. Cai [6,7] et. studied the 

parity of φe(𝑛) for  𝑒 =  2, 3, 4 and 6. Zhang [8] solved the generalized Euler function φ2(𝑥 − φ2(𝑥)) = 2 and 

φ2(φ2(𝑥 − 𝜑2(𝑥))) = 2. At the same time, when 𝑒 =  6 was selected in Reference [9], the equation  φ6(𝑛) =

2𝜔(𝑛) was solved.  

 

Yu and Shen [10] extended 𝜑(𝜑(𝑛)) = 2𝜔(𝑛)  to the generalized Euler function, and obtained the positive 

integer solutions φ2(𝑛) = 2𝜔(𝑛)and φ2(φ2(𝑛)) = 2𝜔(𝑛) . Jin and Shen [11] changed 𝜔 (𝑛) into 𝛺(𝑛) on the 

basis of [10], and calculated the positive integer solutions of  φ2(𝑛) = 2Ω(𝑛)  and φ2(φ2(𝑛)) = 2Ω(𝑛)  , 

where 𝛺(𝑛) is the number of prime factors of 𝑛, counting repetitions.  

 

In this paper, we consider the equation  φ2(𝑛 − φ2(𝑛)) = 2𝜔(𝑛), and obtain the following theorem. 

 

Theorem 1.1 All positive integer solutions of the equation 

 

φ2(𝑛 − φ2(𝑛)) = 2𝜔(𝑛) 

 

are 𝑛 =  18, 19, 20, 21, 23, 24, 26, 36. 
 

2 Lemmas 

 
In order to prove Theorem 1.1, we need to use the following lemmas. 

 

Lemma 2.1 Let 𝑡𝑖 (1 ≤ 𝑖 ≤ 𝑘) be distinct positive integers, then 

 

∏ (22𝑡𝑖 + 1) ≤ 2∑ 2𝑡𝑖+1𝑘
𝑖=1𝑘

𝑖=1 . 
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Proof  Set 𝑛 ≥ 𝑚𝑎𝑥{𝑡1, 𝑡2, ⋯ , 𝑡𝑘}, then 

 

 ∏ (22𝑖
+ 1) = (220

+ 1)(221
+ 1) ⋯ (22𝑛

+ 1)

𝑛

𝑖=0

 

 

                             = (220
− 1)(220

+ 1)(221
+ 1) ⋯ (22𝑛

+ 1) 

 

                                        = 22𝑛+1
− 1 

 

                           = 2∑ 2𝑖+1𝑛
𝑖=0 − 1 

 

  ≤ 2∑ 2𝑖+1𝑛
𝑖=0 . 

 

Hence 

 

∏ (22𝑡𝑖 + 1) =
∏ (22𝑖

+1)𝑛
𝑖=0

∏ (22𝑖
+1)𝑛

𝑖=0,𝑖≠𝑡𝑖

≤
2

∑ 2𝑖+1𝑛
𝑖=0

∏ 22𝑖𝑛
𝑖=0,𝑖≠𝑡𝑖

𝑘
𝑖=1 = 2∑ 2𝑡𝑖+1𝑘

𝑖=1 ， 

 

This completes the proof of Lemma 2.1. 

 

Lemma 2.2 Let 𝑠 be a positive integer, then the equation 𝜑(𝑥) = 2𝑠 has at most one odd solution.  

 

Proof  Let  𝑥 = ∏ 𝑝𝑖
𝛼𝑖𝑘

𝑖=1  be an odd solution of φ(𝑥) = 2𝑠, then  

 

∏ 𝑝𝑖
𝛼𝑖−1(𝑝𝑖 − 1) = 2𝑠𝑘

𝑖=1 , 

 

Hence, 𝛼𝑖 = 1(1 ≤ 𝑖 ≤ 𝑘),𝑝𝑖 − 1 = 2𝑠𝑖 ,∑ 𝑠𝑖 = 𝑠𝑘
𝑖=1 . If 𝑝𝑖 = 2𝑠𝑖 + 1 is a prime, then there is 𝑡𝑖  such that 𝑠𝑖 =

2𝑡𝑖. According to binary representation, there are unique  𝑡𝑖 (1 ≤ 𝑖 ≤ 𝑘) such that  

 

𝑠 = ∑ 𝑠𝑖 = ∑ 2𝑡𝑖𝑘
𝑖=1

𝑘
𝑖=1 . 

 

Therefore if there is an odd solution  𝑥 such that 𝜑(𝑥) = 2𝑠, then the expression is unique. If 22𝑡𝑖 + 1 is not a 

prime, then the equation 𝜑(𝑥) = 2𝑠  has no solution. Hence, the equation 𝜑(𝑥) = 2𝑠  has at most one odd 

solution.  

 

 This completes the proof of Lemma 2.2. 

 

Lemma 2.3 Let 𝑠 be a positive integer, and  𝑥 be a solution to equation  
 

𝜑(𝑥) = 2𝑠.  

 

Then   

 

𝑥 ≤ 2𝑠+2. 

 

Proof For 𝑠 = 1，then 𝑥 = 3,4 𝑜𝑟 6 ≤ 21+2, the proposition holds.  

 

Assume that the proposition is true for 𝑠, and we attempt to prove the validity of the proposition for 𝑠 +  1. 

 

(1) If 𝑥 is an odd solution of 𝜑(𝑥) = 2𝑠+1, it can be seen from the proof of Lemma 2.2 that there are unique 

positive integers 𝑡𝑖 (1 ≤ 𝑖 ≤ 𝑘)which distinct, such that ∑ 2𝑡𝑖𝑘
𝑖=1 =𝑠+1, and 𝑥 = ∏ (22𝑡𝑖 + 1)𝑘

𝑖=1 . By Lemma 2.1 

we have  
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𝑥 = ∏ (22𝑡𝑖 + 1) ≤ 2∑ 2𝑡𝑖+1𝑘
𝑖=1 = 2𝑠+2𝑘

𝑖=1 ≤ 2𝑠+3. 

 

(2) If 𝑥(2||𝑥) is an even solution to equation 𝜑(𝑥) = 2𝑠+1, then 
𝑥

2
 is exactly the unique odd solution of 𝜑(𝑥) =

2𝑠+1. We can obtain 
𝑥

2
≤ 2𝑠+2 by case (1), therefore 

 

𝑥 ≤ 2𝑠+3 = 2(𝑠+1)+2. 

 

(3) If 𝑥(4|𝑥) is an even solution of 𝜑(𝑥) = 2𝑠+1, then 
𝑥

2
 is also an even solution of 𝜑(𝑥) = 2𝑠, then we know 

𝑥

2
≤ 2𝑠+2by assumption, then we have  

 

𝑥 ≤ 2𝑠+3 = 2(𝑠+1)+2. 

 

This completes the proof of Lemma 2.3. 

 

Lemma 2.4 When 𝜔(𝑛) = 2, all positive integer solutions of φ2(𝑛 − φ2(𝑛)) = 2𝜔(𝑛) are  

 

𝑛 = 18,20,21,24,26,36. 

 

Proof When 𝜔(𝑛) = 2, the equation 

 

 φ2(𝑛 − φ2(𝑛)) = 2𝜔(𝑛)  

 

is  

 

φ2(𝑛 − φ2(𝑛)) = 4.                
          

By Lemma 4 of [10], we obtain 𝑛 − 𝜑2(𝑛) = 15,16,20,24 𝑜𝑟 30, i.e., 

 

2𝑛 − 𝜑(𝑛) = 30,32,40,48 𝑜𝑟 60.                                                                                                           (1) 

 

Set the standard decomposition formula of 𝑛 as 𝑛 = 2𝛽𝑝1
𝛼1𝑝2

𝛼2 ⋯ 𝑝𝑘
𝛼𝑘, where 𝑝𝑖  is prime and 3 ≤ 𝑝1 < 𝑝2 <

⋯ < 𝑝𝑘. 

 

Since 𝜔(𝑛) = 2, if 𝛽 = 0，then 𝑘 = 2, (1) is equivalent to 

 

2𝑝1
𝛼1𝑝2

𝛼2 − 𝑝1
𝛼1−1𝑝2

𝛼2−1(𝑝1 − 1)(𝑝2 − 1) = 30,32,40,48 𝑜𝑟 60. 

 

We can obtain 2𝑝1
𝛼1𝑝2

𝛼2 − 𝑝1
𝛼1−1𝑝2

𝛼2−1(𝑝1 − 1)(𝑝2 − 1) ≡ 2  (mod 4), thus we only need to solve the 

equation 2𝑝1
𝛼1𝑝2

𝛼2 − 𝑝1
𝛼1−1𝑝2

𝛼2−1(𝑝1 − 1)(𝑝2 − 1) = 30.That is 𝑝1
𝛼1−1𝑝2

𝛼2−1[(𝑝1 + 1)(𝑝2 + 1) − 2] = 30, 

we have 𝛼1 = 𝛼2 = 1, 𝑝1 = 3, 𝑝2 = 7, 𝑛 = 21. 

 

If 𝛽 ≥ 1，then 𝑘 = 1, (1) can be simplified to 

 

2𝛽+1𝑝1
𝛼1 − 2𝛽−1𝑝1

𝛼1−1(𝑝1 − 1) = 30,32,40,48 𝑜𝑟 60. 
 

After simplification, we get 

 

2𝛽−1𝑝1
𝛼1−1(3𝑝1 + 1) = 30,32,40,48 𝑜𝑟 60.        

 

If 2𝛽−1𝑝1
𝛼1−1(3𝑝1 + 1) = 30, then 3𝑝1 + 1 ≤ 30 and (3𝑝1 + 1)|30, we can get 𝑝1 = 3, 𝛼1 = 2, 𝛽 = 1, then  

 

 𝑛 = 2 × 32 = 18. 
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If 2𝛽−1𝑝1
𝛼1−1(3𝑝1 + 1) = 32, then 3𝑝1 + 1 ≤ 32 and (3𝑝1 + 1)|32, we can get  𝑝1 = 5, 𝛼1 = 1, 𝛽 = 2, then 

 

 𝑛 = 22 × 5 = 20. 

 

If 2𝛽−1𝑝1
𝛼1−1(3𝑝1 + 1) = 40, then 3𝑝1 + 1 ≤ 40 and (3𝑝1 + 1)|40, we can get  𝑝1 = 3, 𝛼1 = 1, 𝛽 = 3,   

 

𝑛 = 23 × 3 = 24,  

 

or  

 

𝑝1 = 13, 𝛼1 = 1, 𝛽 = 1,  

 

𝑛 = 2 × 13 = 26. 

 

If 2𝛽−1𝑝1
𝛼1−1(3𝑝1 + 1) = 48, then 3𝑝1 + 1 ≤ 48 and (3𝑝1 + 1)|48, we know there is no solution in this case.  

 

If 2𝛽−1𝑝1
𝛼1−1(3𝑝1 + 1) = 60, then 3𝑝1 + 1 ≤ 60 and (3𝑝1 + 1)|60, we can get 𝑝1 = 3, 𝛼1 = 2, 𝛽 = 2,   

 

𝑛 = 22 × 32 = 36. 

 

In summary, when 𝜔(𝑛) = 2, the solutions of equation φ2(𝑛 − φ2(𝑛)) = 2𝜔(𝑛) are 𝑛 = 18,20,21,24,26,36. 

 

This completes the proof of Lemma 2.4. 

 

Lemma 2.5 When 𝜔(𝑛) = 3，the equation φ2(𝑛 − φ2(𝑛)) = 2𝜔(𝑛) has no solution. 

 

Proof  When 𝜔(𝑛) = 3，equation φ2(𝑛 − φ2(𝑛)) = 2𝜔(𝑛) is 

 

φ2(𝑛 − φ2(𝑛)) = 8. 
 

 By Lemma 5 of [10], we can get 𝑛 − 𝜑2(𝑛) = 17,32,34,40,48,60，then 

 

2𝑛 − 𝜑(𝑛) = 34,64,68,80,96 𝑜𝑟 120.                                                                                                   (2) 

 

Set the standard decomposition formula of 𝑛 as 𝑛 = 2𝛽𝑝1
𝛼1𝑝2

𝛼2 ⋯ 𝑝𝑘
𝛼𝑘, where 𝑝𝑖  is prime and 3 ≤ 𝑝1 < 𝑝2 <

⋯ < 𝑝𝑘. 

 

Since 𝜔(𝑛) = 3, if 𝛽 = 0，then 𝑘 = 3，we can get (2) to  

 

2𝑝1
𝛼1𝑝2

𝛼2𝑝3
𝛼3 − 𝑝1

𝛼1−1𝑝2
𝛼2−1𝑝3

𝛼3−1(𝑝1 − 1)(𝑝2 − 1)(𝑝3 − 1) = 34,64,68,80,96 𝑜𝑟 120，                   

    

Since  

 

2𝑝1
𝛼1𝑝2

𝛼2𝑝3
𝛼3 − 𝑝1

𝛼1−1𝑝2
𝛼2−1𝑝3

𝛼3−1(𝑝1 − 1)(𝑝2 − 1)(𝑝3 − 1) ≡ 2(𝑚𝑜𝑑4)， 

 

thus we only need to solve the equation  

 

2𝑝1
𝛼1𝑝2

𝛼2𝑝3
𝛼3 − 𝑝1

𝛼1−1𝑝2
𝛼2−1𝑝3

𝛼3−1(𝑝1 − 1)(𝑝2 − 1)(𝑝3 − 1)=34. 

 

By calculation, there is no solution.  

 

When 𝛽 ≥ 1，𝑘 = 2，(2) is equivalent to 

2𝛽+1𝑝1
𝛼1𝑝2

𝛼2 − 2𝛽−1𝑝1
𝛼1−1𝑝2

𝛼2−1(𝑝1 − 1)(𝑝2 − 1) = 34,64,68,80,96 𝑜𝑟 120.  
 

Since 2𝛽+1𝑝1
𝛼1𝑝2

𝛼2 − 2𝛽−1𝑝1
𝛼1−1𝑝2

𝛼2−1(𝑝1 − 1)(𝑝2 − 1) ≡ 0  (mod 4), we only need to consider the 
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equations 

 

2𝛽+1𝑝1
𝛼1𝑝2

𝛼2 − 2𝛽−1𝑝1
𝛼1−1𝑝2

𝛼2−1(𝑝1 − 1)(𝑝2 − 1) = 64,68,80,96 𝑜𝑟 120.  
 

After simplification we get  

 

2𝛽−1𝑝1
𝛼1−1𝑝2

𝛼2−1(3𝑝1𝑝2 + 𝑝1 + 𝑝2 − 1) = 64,68,80,96,120.          
 

By calculation, there is no corresponding odd primes 𝑝1, 𝑝2 such that 

 

(3𝑝1𝑝2 + 𝑝1 + 𝑝2 − 1)|64,68,80,96 𝑜𝑟 120. 
 

Therefore there is no solution. 

 

This completes the proof of Lemma 2.5. 

 

Lemma 2.6 When 𝜔(𝑛) = 4，equation φ2(𝑛 − φ2(𝑛)) = 2𝜔(𝑛) has no solution. 

 

Proof When 𝜔(𝑛) = 4，equation φ2(𝑛 − φ2(𝑛)) = 2𝜔(𝑛) is 

 

φ2(𝑛 − φ2(𝑛)) = 16. 
 

By Lemma 6 of [10], we can get 𝑛 − 𝜑2(𝑛) = 51,64,68,80,96,102,120, then 

 

2𝑛 − 𝜑(𝑛) = 102,128,136,160,192,204 𝑜𝑟 240.                                                                                  (3)          

 

Set the standard decomposition formula of 𝑛 as 𝑛 = 2𝛽𝑝1
𝛼1𝑝2

𝛼2 ⋯ 𝑝𝑘
𝛼𝑘, where 𝑝𝑖  is prime and 3 ≤ 𝑝1 < 𝑝2 <

⋯ < 𝑝𝑘. 

 

Since 𝜔(𝑛) = 4, if  𝛽 = 0，then 𝑘 = 4, (3) is equivalent to 

 

2 ∏ 𝑝𝑖
𝛼𝑖4

𝑖=1 − ∏ 𝑝𝑖
𝛼𝑖−14

𝑖=1 (𝑝𝑖 − 1) = 102,128,136,160,192,204 𝑜𝑟 240.            

 

However,  
 

2 ∏ 𝑝𝑖
𝛼𝑖4

𝑖=1 − ∏ 𝑝𝑖
𝛼𝑖−14

𝑖=1 (𝑝𝑖 − 1) > ∏ 𝑝𝑖
𝛼𝑖4

𝑖=1 > 3 × 5 × 7 × 11 = 1155, 

 

therefore, when 𝛽 =  0, 𝑘 =  4,  equations (3) have no solution.  

 

If 𝛽 ≥ 1，then 𝑘 = 3，(3) is equivalent to 

 

2𝛽+1𝑝1
𝛼1𝑝2

𝛼2𝑝3
𝛼3 − 2𝛽−1𝑝1

𝛼1−1𝑝2
𝛼2−1𝑝3

𝛼3−1(𝑝1 − 1)(𝑝2 − 1)(𝑝3 − 1) 

 = 102,128,136,160,192,204,240.   
 

However, 

 

2𝛽+1𝑝1
𝛼1𝑝2

𝛼2𝑝3
𝛼3 − 2𝛽−1𝑝1

𝛼1−1𝑝2
𝛼2−1𝑝3

𝛼3−1(𝑝1 − 1)(𝑝2 − 1)(𝑝3 − 1) 

 

= 2𝛽−1𝑝1
𝛼1−1𝑝2

𝛼2−1𝑝3
𝛼3−1[4𝑝1𝑝2𝑝3 − (𝑝1 − 1)(𝑝2 − 1)(𝑝3 − 1)] 

 

≥ 2𝛽−1 × 3𝑝1
𝛼1𝑝2

𝛼2𝑝3
𝛼3 ≥ 3 × 3 × 5 × 7 = 315. 

Hence when 𝛽 ≥ 1，𝑘 = 3，(3) has no solution. 

 

This completes the proof of Lemma 2.6. 
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3 Proof of Theorems 

 
Proof of Theorem1.1 When 𝑛 = 1, we can know that the left side of the original formula 𝜑2(1 − 𝜑2(1)) =

𝜑2(1 − 0) = 𝜑2(1) = 0 , and the right side of the original formula 20 = 1 . The original equation has no 

solution.  

 

When 𝜔 ( 𝑛 )  =  1, the equation can be reduced to  φ2(𝑛 − φ2(𝑛)) = 2. In [9], five solutions of this formula 

have been obtained 𝑛 =  6,10,12,19,23 to  φ2(𝑛 − φ2(𝑛)) = 2, of which 𝑛 =  19,23 satisfies the condition of 

𝜔 ( 𝑛 )  =  1. 
 

When 𝜔(𝑛) ≥ 5，equation φ2(𝑛 − φ2(𝑛)) = 2𝜔(𝑛) can be transformed to φ(𝑛 − φ2(𝑛)) = 2𝜔(𝑛)+1. 
 

By lemma 2.3, we can know 𝑛 − 𝜑2(𝑛) ≤ 2𝜔(𝑛)+3，then 

 

𝑛 ≤ 2𝑛 − 𝜑(𝑛) ≤ 2𝜔(𝑛)+4.                                                                                                                      (4) 

 

However, when 𝜔(𝑛) ≥ 5， 

 

𝑛 = 𝑝1
𝛼1𝑝2

𝛼2𝑝3
𝛼3𝑝4

𝛼4𝑝5
𝛼5 ⋯ 𝑝𝜔(𝑛)

𝛼𝜔(𝑛) 

 

≥ 2 × 3 × 5 × 7 × 11 × ⋯ × 𝑝𝜔(𝑛) 

 

= 2310 × ⋯ × 𝑝𝜔(𝑛) > 29 × 2𝜔(𝑛)−5 = 2𝜔(𝑛)+4. 

 

This contradicts (4)，therefore when 𝜔(𝑛) ≥ 5，equation φ2(𝑛 − φ2(𝑛)) = 2𝜔(𝑛) has no solution. 

 

Together with Lemma 2.4 – 2.6, all positive integer solutions of equation φ2(𝑛 − φ2(𝑛)) = 2𝜔(𝑛) are 

 

𝑛 = 18,19,20,21,23,24,26,36. 

 

This completes the proof of Theorem 1.1. 

 

Acknowledgements 

 
This work is supported by the Natural Science Foundation of Zhejiang Province, Project (No. LY18A010016) 

and the National Natural Science Foundation of China, Project (No. 12071421). 

 

Competing Interests 

 
Authors have declared that no competing interests exist. 

 

References 

 
[1] Lv Zhihong. An equation involving the Euler function [J](Chinese). Journal of Northwest University 

(Natural Science Edition). 2006;(01):17-20.  

 

[2] Lv Zhihong. Two functions of number theory and the equations [J](Chinese). Pure and Applied 

Mathematices. 2006;(03):303-306.  

 

[3] Li Yijun. Properties of some kind of number theoretic function [J](Chinese). Journal of Shangqiu 

Teachers College. 2007;(09):20-22.  

 



 

 
 

 

Yifan and Zhongyan; JAMCS, 36(4): 15-22, 2021; Article no.JAMCS.67775 
 

 

 
22 

 

[4] Cai TX, Fu XD, Zhou X. A congruence involving the quotients of Euler and its application (Ⅱ), Acta 

Arithmetic. 2007;130(3):203-214. 

 

[5] Ding Yu. Generalized Euler function and its properties [D]. Zhejiang University; 2008. 

 

[6] Tianxin Cai, Zhongyan Shen, Mengjun Hu. On the Parity of the Generalized Euler Function [J]. 

Advances in Mathematics. 2013;42(04):505-510. 

 

[7] Shen Zhongyan, CAI Tianxin, HU Mengjun. On the Parity of the Generalized Euler Function (II), 

Advances in Mathematics (China). 2016;45(4):509-519. 

 

[8] Zhang Sibao, Adim·Yoldax. Two Equation of Generalized Euler Function 𝜑2(𝑛)[J] (Chinese). Journal 

of Northeast Normal University (Natural Science Edition). 2019;51(02):7-12. 

 

[9] Zhang Sibao. Solutions of Equationφ6(𝑛) = 2𝜔(𝑛)on Generalized Euler function[J] (Chinese). Journal of 

Southwest China Normal University (Natural Science Edition). 2018;43(02):36-41. 

 

[10] Yu Honglin, Shen Zhongyan. The Equations Related with Generalized Euler Function [J](Chinese). 

Journal of Zhejiang International Studies University. 2012;(03):91-97.  

 

[11] Jin Mingyan, Shen Zhongyan. Solvability of Equations φ2(𝑛) = 2Ω(𝑛) and φ2(φ2(𝑛)) = 2Ω(𝑛) [J] 

(Chinese). Journal of Zhejiang International Studies University. 2013;(04):47-52.  

_______________________________________________________________________________________ 
© 2021 Yifan and Zhongyan; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the 

original work is properly cited. 

 

 

 
 

Peer-review history: 
The peer review history for this paper can be accessed here (Please copy paste the total link in your 

browser address bar) 

http://www.sdiarticle4.com/review-history/67775 

http://creativecommons.org/licenses/by/3.0

