

Journal of Advances in Mathematics and Computer Science

36(4): 15-22, 2021; Article no.JAMCS.67775 *ISSN: 2456-9968 (Past name: British Journal of Mathematics & Computer Science, Past ISSN: 2231-0851)*

The Solutions of Generalized Euler Function Equation $\varphi_2(n \varphi_2(n)$ = 2^{$\omega(n)$}

Xu Yifan¹ and Shen Zhongyan1*

¹Department of Mathematics, Zhejiang International Studies University, Hangzhou 310023, P.R. China.

Authors' contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JAMCS/2021/v36i430353 *Editor(s):* (1) Prof. Jinyun Yuan, Federal University of Parana, Brazil. (2) Dr. Francisco Welington de Sousa Lima, Universidade Federal do Piauí, Brazil. (3) Dr. Paul Bracken, The University of Texas RGV, USA. *Reviewers:* (1) Farheen Ibraheem, Forman Christian College-A Chartered University, Pakistan. (2) Ugur Duran, Iskenderun Technical University, Turkey. Complete Peer review History: http://www.sdiarticle4.com/review-history/67775

Original Research Article

Received 15 February 2021 Accepted 25 April 2021 Published 29 April 2021

Abstract

By using the properties of Euler function, an upper bound of solutions of Euler function equation $\varphi(x) = 2^s$ is given, where s is a positive integer. By using the classification discussion and the upper bound we obtained, all positive integer solutions of the generalized Euler function equation $\varphi_2(n - \varphi_2(n)) = 2^{\omega(n)}$ are given, where $\omega(n)$ is the number of distinct prime factors of n.

__

Keywords: Euler functions; generalized Euler functions; solutions.

__

^{}Corresponding author: Email: huanchenszyan@163.com;*

1 Introduction

Euler function $\varphi(n)$ is a relatively important content in elementary number theory, and Euler function is the number of positive integers not greater than *n* and prime to *n*. According to the definition, $\varphi(1) = 1$. If $n > 1$, let canonical form of *n* be $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, where p_i is a prime and α_i is a positive integer, then

$$
\varphi(n) = \sum_{i=1}^k p_i^{\alpha_{i-1}}(p_i - 1).
$$

Lv Zhihong [1,2] get the solutions of $\varphi(n) = 2^{\omega(n)}$ and $\varphi(\varphi(n)) = 2^{\omega(n)}$, where $\omega(n)$ is the number of distinct prime factors of *n*. Li Yijun^[3] calculated the solutions of $\varphi(\varphi(\varphi(n))) = 2^{\omega(n)}$, and studied the properties of $(\varphi(\varphi(n)))$.

For positive integer *n*, the generalized Euler function [4] $\varphi_e(n)$ is defined as the number of positive integers not exceeding $\left[\frac{n}{2}\right]$ $\frac{n}{e}$ and prime to *n*, namely

$$
\varphi_e(n) = \sum_{i=1, \gcd(i,n)=1}^{\left[\frac{n}{e}\right]} 1,
$$

where $[x]$ is the greatest integer not greater than x.

In particular, when $e = 2$, the generalized Euler function $\varphi_2(1) = 0$, $\varphi_2(2) = 1$. When $n \ge 3$, then $\varphi_2(n) =$ 1 $\frac{1}{2}\varphi(n).$

Ding [5] introduced the generalized Euler function $\varphi_e(n)$ and its properties in detail. Cai [6,7] et. studied the parity of $\varphi_e(n)$ for $e = 2, 3, 4$ and 6. Zhang [8] solved the generalized Euler function $\varphi_2(x - \varphi_2(x)) = 2$ and $\varphi_2(\varphi_2(x-\varphi_2(x))) = 2$. At the same time, when $e = 6$ was selected in Reference [9], the equation $\varphi_6(n) =$ $2^{\omega(n)}$ was solved.

Yu and Shen [10] extended $\varphi(\varphi(n)) = 2^{\omega(n)}$ to the generalized Euler function, and obtained the positive integer solutions $\varphi_2(n) = 2^{\omega(n)}$ and $\varphi_2(\varphi_2(n)) = 2^{\omega(n)}$. Jin and Shen [11] changed $\omega(n)$ into $\Omega(n)$ on the basis of [10], and calculated the positive integer solutions of $\varphi_2(n) = 2^{\Omega(n)}$ and $\varphi_2(\varphi_2(n)) = 2^{\Omega(n)}$, where $\Omega(n)$ is the number of prime factors of *n*, counting repetitions.

In this paper, we consider the equation $\varphi_2(n - \varphi_2(n)) = 2^{\omega(n)}$, and obtain the following theorem.

Theorem 1.1 All positive integer solutions of the equation

$$
\varphi_2(n-\varphi_2(n))=2^{\omega(n)}
$$

are $n = 18, 19, 20, 21, 23, 24, 26, 36$.

2 Lemmas

In order to prove Theorem 1.1, we need to use the following lemmas.

Lemma 2.1 Let t_i $(1 \leq i \leq k)$ be distinct positive integers, then

$$
\prod_{i=1}^k \left(2^{2^{t_i}} + 1 \right) \le 2^{\sum_{i=1}^k 2^{t_i} + 1}.
$$

Proof Set $n \ge max\{t_1, t_2, \dots, t_k\}$, then

$$
\prod_{i=0}^{n} (2^{2^{i}} + 1) = (2^{2^{0}} + 1)(2^{2^{1}} + 1) \cdots (2^{2^{n}} + 1)
$$

$$
= (2^{2^{0}} - 1)(2^{2^{0}} + 1)(2^{2^{1}} + 1) \cdots (2^{2^{n}} + 1)
$$

$$
= 2^{2^{n+1}} - 1
$$

$$
= 2^{\sum_{i=0}^{n} 2^{i} + 1} - 1
$$

$$
\leq 2^{\sum_{i=0}^{n} 2^{i} + 1}.
$$

Hence

$$
\prod_{i=1}^k \left(2^{2^{t_i}} + 1\right) = \frac{\prod_{i=0}^n \left(2^{2^i} + 1\right)}{\prod_{i=0,i \neq t_i}^n \left(2^{2^i} + 1\right)} \leq \frac{2^{\sum_{i=0}^n 2^{t_i} + 1}}{\prod_{i=0,i \neq t_i}^n 2^{2^i}} = 2^{\sum_{i=1}^k 2^{t_i} + 1},
$$

This completes the proof of Lemma 2.1.

Lemma 2.2 Let *s* be a positive integer, then the equation $\varphi(x) = 2^s$ has at most one odd solution.

Proof Let $x = \prod_{i=1}^{k} p_i^{\alpha_i}$ be an odd solution of $\varphi(x) = 2^s$, then

$$
\prod_{i=1}^k p_i^{\alpha_i-1}(p_i-1)=2^s,
$$

Hence, $\alpha_i = 1 (1 \le i \le k)$, $p_i - 1 = 2^{s_i}$, $\sum_{i=1}^k s_i = s$. If $p_i = 2^{s_i} + 1$ is a prime, then there is t_i such that $s_i =$ 2^{t_i} . According to binary representation, there are unique t_i ($1 \le i \le k$) such that

$$
s = \sum_{i=1}^{k} s_i = \sum_{i=1}^{k} 2^{t_i}.
$$

Therefore if there is an odd solution x such that $\varphi(x) = 2^s$, then the expression is unique. If $2^{2^{t_i}} + 1$ is not a prime, then the equation $\varphi(x) = 2^s$ has no solution. Hence, the equation $\varphi(x) = 2^s$ has at most one odd solution.

This completes the proof of Lemma 2.2.

Lemma 2.3 Let s be a positive integer, and x be a solution to equation

 $\varphi(x) = 2^s$.

Then

$$
x \le 2^{s+2}.
$$

Proof For $s = 1$, then $x = 3.4$ or $6 \le 2^{1+2}$, the proposition holds.

Assume that the proposition is true for s , and we attempt to prove the validity of the proposition for $s + 1$.

(1) If x is an odd solution of $\varphi(x) = 2^{s+1}$, it can be seen from the proof of Lemma 2.2 that there are unique positive integers t_i ($1 \le i \le k$) which distinct, such that $\sum_{i=1}^{k} 2^{t_i} = s+1$, and $x = \prod_{i=1}^{k} \left(2^{2^{t_i}} + 1 \right)$. By Lemma 2.1 we have

$$
x = \prod_{i=1}^k \left(2^{2^{t_i}} + 1 \right) \le 2^{\sum_{i=1}^k 2^{t_i} + 1} = 2^{s+2} \le 2^{s+3}.
$$

(2) If $x(2||x)$ is an even solution to equation $\varphi(x) = 2^{s+1}$, then $\frac{x}{2}$ is exactly the unique odd solution of $\varphi(x) =$ 2^{s+1} . We can obtain $\frac{x}{2} \le 2^{s+2}$ by case (1), therefore

$$
x \le 2^{s+3} = 2^{(s+1)+2}.
$$

(3) If $x(4|x)$ is an even solution of $\varphi(x) = 2^{s+1}$, then $\frac{x}{2}$ is also an even solution of $\varphi(x) = 2^s$, then we know $\boldsymbol{\chi}$ $\frac{x}{2} \le 2^{s+2}$ by assumption, then we have

$$
x \le 2^{s+3} = 2^{(s+1)+2}.
$$

This completes the proof of Lemma 2.3.

Lemma 2.4 When $\omega(n) = 2$, all positive integer solutions of $\varphi_2(n - \varphi_2(n)) = 2^{\omega(n)}$ are

$$
n = 18,20,21,24,26,36.
$$

Proof When $\omega(n) = 2$, the equation

$$
\varphi_2(n-\varphi_2(n))=2^{\omega(n)}
$$

is

$$
\varphi_2(n-\varphi_2(n))=4.
$$

By Lemma 4 of [10], we obtain $n - \varphi_2(n) = 15,16,20,24$ or 30, i.e.,

$$
2n - \varphi(n) = 30,32,40,48 \text{ or } 60. \tag{1}
$$

Set the standard decomposition formula of *n* as $n = 2^{\beta} p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, where p_i is prime and $3 \leq p_1 < p_2$ $\cdots < p_k$.

Since $\omega(n) = 2$, if $\beta = 0$, then $k = 2$, (1) is equivalent to

$$
2p_1^{\alpha_1}p_2^{\alpha_2} - p_1^{\alpha_1-1}p_2^{\alpha_2-1}(p_1-1)(p_2-1) = 30,32,40,48 \text{ or } 60.
$$

We can obtain $2p_1^{\alpha_1}p_2^{\alpha_2} - p_1^{\alpha_1-1}p_2^{\alpha_2-1}(p_1-1)(p_2-1) \equiv 2 \pmod{4}$, thus we only need to solve the equation $2p_1^{\alpha_1}p_2^{\alpha_2} - p_1^{\alpha_1-1}p_2^{\alpha_2-1}(p_1-1)(p_2-1) = 30$. That is $p_1^{\alpha_1-1}p_2^{\alpha_2-1}[(p_1+1)(p_2+1)-2] = 30$, we have $\alpha_1 = \alpha_2 = 1$, $p_1 = 3$, $p_2 = 7$, $n = 21$.

If $\beta \ge 1$, then $k = 1$, (1) can be simplified to

$$
2^{\beta+1}p_1^{\alpha_1} - 2^{\beta-1}p_1^{\alpha_1-1}(p_1-1) = 30{,}32{,}40{,}48 \text{ or } 60.
$$

After simplification, we get

$$
2^{\beta-1}p_1^{\alpha_1-1}(3p_1+1) = 30{,}32{,}40{,}48 \text{ or } 60.
$$

If $2^{\beta-1}p_1^{\alpha_1-1}(3p_1+1) = 30$, then $3p_1 + 1 \le 30$ and $(3p_1 + 1)|30$, we can get $p_1 = 3$, $\alpha_1 = 2$, $\beta = 1$, then

$$
n=2\times 3^2=18.
$$

If $2^{\beta-1}p_1^{\alpha_1-1}(3p_1+1) = 32$, then $3p_1 + 1 \le 32$ and $(3p_1 + 1)|32$, we can get $p_1 = 5$, $\alpha_1 = 1$, $\beta = 2$, then $n = 2^2 \times 5 = 20.$

If
$$
2^{\beta-1}p_1^{\alpha_1-1}(3p_1+1) = 40
$$
, then $3p_1 + 1 \le 40$ and $(3p_1 + 1)|40$, we can get $p_1 = 3$, $\alpha_1 = 1$, $\beta = 3$,

$$
n=2^3\times 3=24,
$$

or

$$
p_1 = 13, \alpha_1 = 1, \beta = 1,
$$

 $n = 2 \times 13 = 26.$

If $2^{\beta-1}p_1^{\alpha_1-1}(3p_1+1) = 48$, then $3p_1 + 1 \le 48$ and $(3p_1 + 1)|48$, we know there is no solution in this case. If $2^{\beta-1}p_1^{\alpha_1-1}(3p_1+1) = 60$, then $3p_1 + 1 \le 60$ and $(3p_1 + 1)|60$, we can get $p_1 = 3$, $\alpha_1 = 2$, $\beta = 2$,

$$
n=2^2\times 3^2=36.
$$

In summary, when $\omega(n) = 2$, the solutions of equation $\varphi_2(n - \varphi_2(n)) = 2^{\omega(n)}$ are $n = 18,20,21,24,26,36$.

This completes the proof of Lemma 2.4.

Lemma 2.5 When $\omega(n) = 3$, the equation $\varphi_2(n - \varphi_2(n)) = 2^{\omega(n)}$ has no solution.

Proof When $\omega(n) = 3$, equation $\varphi_2(n - \varphi_2(n)) = 2^{\omega(n)}$ is

$$
\varphi_2(n-\varphi_2(n))=8.
$$

By Lemma 5 of [10], we can get $n - \varphi_2(n) = 17,32,34,40,48,60$, then

$$
2n - \varphi(n) = 34,64,68,80,96 \text{ or } 120. \tag{2}
$$

Set the standard decomposition formula of *n* as $n = 2^{\beta} p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, where p_i is prime and $3 \leq p_1 < p_2$ $\cdots < p_k$.

Since $\omega(n) = 3$, if $\beta = 0$, then $k = 3$, we can get (2) to

$$
2p_1^{\alpha_1}p_2^{\alpha_2}p_3^{\alpha_3} - p_1^{\alpha_1-1}p_2^{\alpha_2-1}p_3^{\alpha_3-1}(p_1-1)(p_2-1)(p_3-1) = 34,64,68,80,96 \text{ or } 120,
$$

Since

$$
2p_1^{\alpha_1}p_2^{\alpha_2}p_3^{\alpha_3}-p_1^{\alpha_1-1}p_2^{\alpha_2-1}p_3^{\alpha_3-1}(p_1-1)(p_2-1)(p_3-1)\equiv 2(mod 4),
$$

thus we only need to solve the equation

 $2p_1^{\alpha_1}p_2^{\alpha_2}p_3^{\alpha_3} - p_1^{\alpha_1-1}p_2^{\alpha_2-1}p_3^{\alpha_3-1}(p_1-1)(p_2-1)(p_3-1)=34.$

By calculation, there is no solution.

When $\beta \geq 1$, $k = 2$, (2) is equivalent to $2^{\beta+1}p_1^{\alpha_1}p_2^{\alpha_2} - 2^{\beta-1}p_1^{\alpha_1-1}p_2^{\alpha_2-1}(p_1-1)(p_2-1) = 34{,}64{,}68{,}80{,}96 \text{ or } 120$

Since $2^{\beta+1}p_1^{\alpha_1}p_2^{\alpha_2} - 2^{\beta-1}p_1^{\alpha_1-1}p_2^{\alpha_2-1}(p_1-1)(p_2-1) \equiv 0 \pmod{4}$, we only need to consider the

equations

$$
2^{\beta+1}p_1^{\alpha_1}p_2^{\alpha_2} - 2^{\beta-1}p_1^{\alpha_1-1}p_2^{\alpha_2-1}(p_1-1)(p_2-1) = 64,68,80,96 \text{ or } 120.
$$

After simplification we get

$$
2^{\beta-1}p_1^{\alpha_1-1}p_2^{\alpha_2-1}(3p_1p_2+p_1+p_2-1)=64,68,80,96,120.
$$

By calculation, there is no corresponding odd primes p_1, p_2 such that

 $(3p_1p_2 + p_1 + p_2 - 1)$ |64,68,80,96 or 120.

Therefore there is no solution.

This completes the proof of Lemma 2.5.

Lemma 2.6 When $\omega(n) = 4$, equation $\varphi_2(n - \varphi_2(n)) = 2^{\omega(n)}$ has no solution.

Proof When $\omega(n) = 4$, equation $\varphi_2(n - \varphi_2(n)) = 2^{\omega(n)}$ is

$$
\varphi_2(n-\varphi_2(n))=16.
$$

By Lemma 6 of [10], we can get $n - \varphi_2(n) = 51,64,68,80,96,102,120$, then

$$
2n - \varphi(n) = 102,128,136,160,192,204 \text{ or } 240. \tag{3}
$$

Set the standard decomposition formula of *n* as $n = 2^{\beta} p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, where p_i is prime and $3 \leq p_1 < p_2$ $\cdots < p_k$.

Since $\omega(n) = 4$, if $\beta = 0$, then $k = 4$, (3) is equivalent to

$$
2\prod_{i=1}^{4} p_i^{\alpha_i} - \prod_{i=1}^{4} p_i^{\alpha_i-1} (p_i - 1) = 102,128,136,160,192,204 \text{ or } 240.
$$

However,

$$
2\prod_{i=1}^{4} p_i^{\alpha_i} - \prod_{i=1}^{4} p_i^{\alpha_i - 1} (p_i - 1) > \prod_{i=1}^{4} p_i^{\alpha_i} > 3 \times 5 \times 7 \times 11 = 1155,
$$

therefore, when $\beta = 0, k = 4$, equations (3) have no solution.

If $\beta \ge 1$, then $k = 3$, (3) is equivalent to

$$
2^{\beta+1}p_1^{\alpha_1}p_2^{\alpha_2}p_3^{\alpha_3} - 2^{\beta-1}p_1^{\alpha_1-1}p_2^{\alpha_2-1}p_3^{\alpha_3-1}(p_1-1)(p_2-1)(p_3-1) = 102,128,136,160,192,204,240.
$$

However,

$$
2^{\beta+1}p_1{}^{\alpha_1}p_2{}^{\alpha_2}p_3{}^{\alpha_3} - 2^{\beta-1}p_1{}^{\alpha_1-1}p_2{}^{\alpha_2-1}p_3{}^{\alpha_3-1}(p_1 - 1)(p_2 - 1)(p_3 - 1)
$$

=
$$
2^{\beta-1}p_1{}^{\alpha_1-1}p_2{}^{\alpha_2-1}p_3{}^{\alpha_3-1}[4p_1p_2p_3 - (p_1 - 1)(p_2 - 1)(p_3 - 1)]
$$

$$
\geq 2^{\beta-1} \times 3p_1{}^{\alpha_1}p_2{}^{\alpha_2}p_3{}^{\alpha_3} \geq 3 \times 3 \times 5 \times 7 = 315.
$$

Hence when $\beta \ge 1$, $k = 3$, (3) has no solution.

This completes the proof of Lemma 2.6.

3 Proof of Theorems

Proof of Theorem1.1 When $n = 1$, we can know that the left side of the original formula $\varphi_2(1 - \varphi_2(1)) =$ $\varphi_2(1-0) = \varphi_2(1) = 0$, and the right side of the original formula $2^0 = 1$. The original equation has no solution.

When $\omega(n) = 1$, the equation can be reduced to $\varphi_2(n - \varphi_2(n)) = 2$. In [9], five solutions of this formula have been obtained $n = 6,10,12,19,23$ to $\varphi_2(n - \varphi_2(n)) = 2$, of which $n = 19,23$ satisfies the condition of $\omega(n) = 1$.

When $\omega(n) \ge 5$, equation $\varphi_2(n - \varphi_2(n)) = 2^{\omega(n)}$ can be transformed to $\varphi(n - \varphi_2(n)) = 2^{\omega(n)+1}$.

By lemma 2.3, we can know $n - \varphi_2(n) \leq 2^{\omega(n)+3}$, then

 $n \leq 2n - \varphi(n) \leq 2^{\omega(n)+4}$. (4)

However, when $\omega(n) \geq 5$,

$$
n = p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3} p_4^{\alpha_4} p_5^{\alpha_5} \cdots p_{\omega(n)}^{\alpha_{\omega(n)}}
$$

\n
$$
\ge 2 \times 3 \times 5 \times 7 \times 11 \times \cdots \times p_{\omega(n)}
$$

\n
$$
= 2310 \times \cdots \times p_{\omega(n)} > 2^9 \times 2^{\omega(n)-5} = 2^{\omega(n)+4}.
$$

This contradicts (4), therefore when $\omega(n) \ge 5$, equation $\varphi_2(n - \varphi_2(n)) = 2^{\omega(n)}$ has no solution.

Together with Lemma 2.4 – 2.6, all positive integer solutions of equation $\varphi_2(n - \varphi_2(n)) = 2^{\omega(n)}$ are

$$
n = 18,19,20,21,23,24,26,36.
$$

This completes the proof of Theorem 1.1.

Acknowledgements

This work is supported by the Natural Science Foundation of Zhejiang Province, Project (No. LY18A010016) and the National Natural Science Foundation of China, Project (No. 12071421).

Competing Interests

Authors have declared that no competing interests exist.

References

- [1] Lv Zhihong. An equation involving the Euler function [J](Chinese). Journal of Northwest University (Natural Science Edition). 2006;(01):17-20.
- [2] Lv Zhihong. Two functions of number theory and the equations [J](Chinese). Pure and Applied Mathematices. 2006;(03):303-306.
- [3] Li Yijun. Properties of some kind of number theoretic function [J](Chinese). Journal of Shangqiu Teachers College. 2007;(09):20-22.
- [4] Cai TX, Fu XD, Zhou X. A congruence involving the quotients of Euler and its application (II), Acta Arithmetic. 2007;130(3):203-214.
- [5] Ding Yu. Generalized Euler function and its properties [D]. Zhejiang University; 2008.
- [6] Tianxin Cai, Zhongyan Shen, Mengjun Hu. On the Parity of the Generalized Euler Function [J]. Advances in Mathematics. 2013;42(04):505-510.
- [7] Shen Zhongyan, CAI Tianxin, HU Mengjun. On the Parity of the Generalized Euler Function (II), Advances in Mathematics (China). 2016;45(4):509-519.
- [8] Zhang Sibao, Adim Yoldax. Two Equation of Generalized Euler Function $\varphi_2(n)[J]$ (Chinese). Journal of Northeast Normal University (Natural Science Edition). 2019;51(02):7-12.
- [9] Zhang Sibao. Solutions of Equation $\varphi_6(n) = 2^{\omega(n)}$ on Generalized Euler function [J] (Chinese). Journal of Southwest China Normal University (Natural Science Edition). 2018;43(02):36-41.
- [10] Yu Honglin, Shen Zhongyan. The Equations Related with Generalized Euler Function [J](Chinese). Journal of Zhejiang International Studies University. 2012;(03):91-97.
- [11] Jin Mingyan, Shen Zhongyan. Solvability of Equations $\varphi_2(n) = 2^{\Omega(n)}$ and $\varphi_2(\varphi_2(n)) = 2^{\Omega(n)}$ [J] (Chinese). Journal of Zhejiang International Studies University. 2013;(04):47-52. ___

© 2021 Yifan and Zhongyan; This is an Open Access article distributed under the terms of the Creative Commons Attribution License [\(http://creativecommons.org/licenses/by/4.0\)](http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar) http://www.sdiarticle4.com/review-history/67775