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ABSTRACT 
 

In this paper, we have considered the estimation problem of one-parameter exponentiated Rayleigh 
distribution. The parameters are estimated using likelihood based inferential procedure. We have 
computed MLEs and Bayes estimates under informative and non-informative priors along with six 
different loss functions, the Bayes estimation was obtained “Squared error, Linear exponential, 
Precautionary, Entropy, De Groot and non-Linear exponential loss functions”. Finding a good 
estimator of the unidentified shape parameter is the study's main goal. The Bayesian estimates of 
the parameter of exponentiated Rayleigh distribution are obtained using Markov chain Monte Carlo 
(MCMC) simulation method. All the computations are performed in OpenBUGS and R software.  
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1. INTRODUCTION 
 

For modelling data, Burr [1] introduced twelve 
different forms of cumulative distribution function. 
Among them Burr Type X and Burr Type XII 
received the maximum attention, where Surles 
and Padgett [2] observed that the Burr Type X 
distribution (Exponentiated Rayleigh distribution) 
can be used quite effectively in modeling 
strength data and also modeling general lifetime 
data. Several aspects of the ER distribution were 
studied in literature, see foe example Sartawi 
and Abu-Salih [3], Jaheen [4], Ahmed, Fakhry 
and Jaheen [5], Karam and Jbur [6], Feroze and 
Aslam [7] and Sindhu and Aslam [8]. The 
cumulative distribution function (CDF) and the 
probability density function (pdf) of the ER 
distribution with shape parameter    > 0) are 
respectively as follows [9]: 
 

Numerous authors have worked on the 
generalization of Rayleigh distribution; among 
them are Voda [10], Kundu and Raqab (2005), 
Raqab and Madi [11], Merovci [12], Dey et al. 
[13], Merovci and Elbatal [12], Ahmad et al. [14], 
Saima et al. [15], Ateeq et al. [16], Sofi et al. 
(2019).  
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The random number has been generated by 
inverse transformation method, which is for 
uniform random U: 
 

             
     

   

                    (3) 

 

Studying a particular phenomenon via the 
challenge of estimating the unknown parameters 
in statistical distributions is one of the significant 

problems that individuals who are interested in 
applied statistics face. This study examines the 
estimations of the ER distribution's unknown 
shape parameter. The ER distribution is a 
significant distribution in operations research and 
statistics, and it is used in a number of fields 
including biology, agriculture, and other sciences 
[17,18]. Considering the Bayesian analysis of the 
unknown parameters with various priors 
(informative and non-informative) and loss 
functions for complete samples is the main goal 
of this [19,20]. 

 
2. LIKLEHOOD FUNCTION 
 
Let X1, X2,..,Xn be a random sample from ER 
distribution with shape parameter   >0. 

Therefore, the likelihood function of  , from (1), 
as follows as: 
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Such that  

       
            

  
               

 
    

   
 
    

 

 
2.1 Bayesian Estimators using Different 

Prior and Loss Functions  
 

In this section Bayesian Estimators of the shape 
parameter for four different prior functions and 
under six different loss functions has been 
determined. 

 

 
 

Fig. 1. Plot of cumulative density function at different value of parameter 
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Fig. 2. Plot of probability density function at different value of parameter 
 
Types of loss functions: - 
 

If    represent of estimator for the shape parameter  , then for: 
 

1. Squared error loss function (SELF): SELF defined as:(2011) 
 

                                        (7) 

 
2. Linear exponential loss function: the loss function defined as: (2011) 

 

              
                              

 

 
                (8) 

 
3. Precautionary loss function: the Precautionary loss function defined as: (2012) 

 

          
       

  
                      (9) 

 
4. Entropy loss function (ELF): ELF defined as: (2011) 

 

          
  

 
 
 

     
  

 
 
 

                      
 
 

      (10) 

 
5. De Groot loss function (DLF): DLF defined as: (2011) 

 

           
      

  
 
 

              
     

    
    (11) 

 
6. Non- Linear exponential loss functions is defined as: 

 

               
                                        

 

   
                   (12) 

 

The Posterior distributions with different priors 
 

For the random variable X, the posterior density function of the shape parameter   is: 
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For “Bayesian estimation”, we describe two distinct posterior distributions under complete samples, 
and two distinct prior distributions for the shape parameter. 
 
The Jeffery’s prior, for the parameter      is:  
 

      
 

 
          (14) 

 
Then under the assumption of this prior distribution and by equation (13), the posterior distribution will 
be as: 
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The Gamma prior, considered to be: 
 

      
      

    
                  (17) 

 
By equation (13) the posterior distribution under the assumption Gamma prior is: 
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Bayesian Estimators under Jeffrey Prior using the six different loss functions: 
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Bayesian Estimators under Gamma Prior using the six different loss functions: 
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3. SIMULATION STUDY  
 
In this section we mainly perform some 
simulation experiments to observe the behaviour 
of the different Bayes estimators for the shape 
parameter proposed in the previous section (3), 
using different sample sizes “n= 10, 20, 30, 50, 
75 and 100”and for two distinct parameters 
values “ = 1.5 and 3”, by applying the Monte 

Carlo simulation to compare the performance of 
these estimators using the mean squared error 
(MSE). All results are computed by R program 
based on replications and for two different put “a 
= 3, b= 0.8, c= 1; a = 4, b= 1.2, c= 1”. 
 
The mean and MSE values for the Bayesian 
estimator, are recorded in tables (1), (2), (3)         
and (4). 

 

Table 1. The mean value of    , when       
 

n Jeffery prior 

  BSELF             BPLF               BDLF            BLINEX            BELF             BNLINEX 

10 1.6566 1.7356 1.8124 1.5118 1.4047 1.6125 

20 1.5573 1.5860 1.6253 1.4871 1.4301 1.5464 

30 1.5502 1.5657 1.6017 1.5105 1.4622 1.5345 

50 1.5264 1.5312 1.5462 1.5022 1.4713 1.5144 

75 1.5219 1.5217 1.5320 1.5043 1.4811 1.5132 

100 1.5191 1.5262 1.5245 1.5032 1.4761 1.5112 

 

n Gamma prior 

  BSELF             BPLF               BDLF            BLINEX            BELF             BNLINEX 

10 1.8812 1.9512 2.0247 1.7456 1.6615 1.8357 

20 1.6832 1.7274 1.7453 1.6231 1.5634 1.6606 

30 1.6452 1.6597 1.67082 1.5843 1.5407 1.6328 

50 1.5782 1.5832 1.6182 1.5523 1.5376 1.5632 

75 1.5472 1.5638 1.5679 1.5413 1.5246 1.5539 

100 1.5452 1.5532 1.5509 1.5234 1.5232 1.5423 
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n Gamma prior 

  BSELF             BPLF               BDLF            BLINEX            BELF             BNLINEX 

10 1.9054 1.6345 2.1420 1.7657 1.7032 1.8632 
20 1.7034 1.5604 1.7676 1.6345 1.6245 1.7682 
30 1.6401 1.5456 1.6875 1.6208 1.5934 1.6456 
50 1.5789 1.5345 1.6556 1.5753 1.5443 1.5965 
75 1.5556 1.5245 1.5236 1.5532 1.5265 1.5534 
100 1.5434 1.5156 1.5123 1.5256 1.5134 1.5431 

 

Table 2. The mean value of    , when     
 

n Jeffery prior 

  BSELF             BPLF               BDLF            BLINEX            BELF             BNLINEX 

10 3.3243 3.4652 3.5247 2.8184 2.8125 3.1517 
20 3.1145 3.1924 3.3458 2.7857 2.7823 3.1386 
30 3.0764 3.1778 3.2764 2.6219 2.7225 3.0261 
50 3.0621 3.1231 3.1289 2.6708 2.7706 3.0226 
75 3.0423 3.0645 3.0643 2.5823 2.5669 3.0227 
100 3.0351 3.0545 3.0565 2.4596 2.5636 3.0200 

 

n Gamma prior (a= 3, b = 0.8) 

  BSELF             BPLF               BDLF            BLINEX            BELF             BNLINEX 

10 3.3456 2.8732 3.4729 2.9598 2.9556 3.2162 
20 3.2593 2.8978 3.3543 2.9372 2.9618 3.1032 
30 3.1208 2.9343 3.2467 2.9784 2.9738 3.0432 
50 3.0878 2.9991 3.1343 3.0023 3.0056 3.0634 
75 3.0695 2.9922 3.0881 3.0092 3.0084 3.0457 
100 3.0414 2.9821 3.0652 3.0076 3.0073 3.0465 

 

n Gamma prior (a= 4, b = 1.2) 

  BSELF             BPLF               BDLF            BLINEX            BELF             BNLINEX 

10 2.9675 2.9013 2.9292 2.9598 2.9556 3.2162 
20 3.1278 2.8323 3.2567 2.9372 2.9618 3.1032 
30 3.1149 2.9324 3.2076 2.9784 2.9738 3.0432 
50 3.0643 2.9435 3.1465 3.0023 3.0056 3.0634 
75 3.0351 2.9772 3.0881 3.0923 3.0084 3.0457 
100 3.0484 2.9822 3.0652 3.0772 3.0073 3.0465 

 

Table 3. The MSE value of    , when    1.5 
 

n Jeffry’s prior 

  BSELF             BPLF               BDLF            BLINEX            BELF             BNLINEX 

10 0.3343 0.2302 0.4765 0.2187 0.2343 0.2934 
20 0.1345 0.1153 0.1627 0.10834 0.1134 0.1243 
30 0.0807 0.0786 0.1041 0.0797 0.0792 0.0831 
50 0.0486 0.5674 0.0534 0.0468 0.0245 0.0533 
75 0.0323 0.3493 0.3391 0.0310 0.0302 0.0332 
100 0.0241 0.2321 0.2383 0.2354 0.0232 0.0245 

n Gamma prior (a= 4, b = 1.2) 

  BSELF             BPLF               BDLF            BLINEX            BELF             BNLINEX 

10 0.4323 0.2141 0.6014 0.2808 0.2543 0.3754 
20 0.1621 0.1054 0.2062 0.1243 0.1162 0.1489 
30 0.1204 0.0802 0.1323 0.0932 0.0853 0.1032 
50 0.0573 0.0453 0.0637 0.0549 0.0483 0.0549 
75 0.0352 0.0304 0.0365 0.0343 0.0323 0.0421 
100 0.0244 0.0234 0.0275 0.0256 0.0231 0.0245 
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n Gamma prior (a= 4, b = 1.2) 

  BSELF             BPLF               BDLF            BLINEX            BELF             BNLINEX 

10 0.4327 0.2145 0.6013 0.2918 0.2532 0.3767 
20 0.1623 0.1052 0.2067 0.1242 0.1160 0.1476 
30 0.1101 0.0801 0.1322 0.0912 0.0857 0.1034 
50 0.0574 0.0463 0.0651 0.0507 0.0478 0.054I 
75 0.0351 0.0306 0.0386 0.0334 0.0312 0.0321 
100 0.0251 0.0224 0.0275 0.0297 0.0251 0.0242 

 

Table 4. The MSE value of    , when    3 
 

n Jeffry’s prior 

  BSELF             BPLF               BDLF            BLINEX            BELF             BNLINEX 

10 1.3456 1.6709 1.9305 0.6836 0.9347 1.0532 

20 0.5326 0.5867 0.6467 0.3875 0.4587 0.4357 

30 0.3189 0.3343 0.3568 0.2557 0.2861 0.2856 

50 0.2018 0.2096 0.2204 0.1743 0.1865 0.1904 

75 0.1306 0.1388 0.1395 0.1183 0.1228 0.1256 

100 0.0972 0.0976 0.0971 0.0876 0.0912 0.0912 

n Gamma prior (a= 3, b = 0.8) 

  BSELF             BPLF               BDLF            BLINEX            BELF             BNLINEX 

10 0.8503 1.0097 1.2108 0.4493 0.5734 0.6532 

20 0.4245 0.4609 0.5213 0.2956 0.3453 0.3657 

30 0.2867 0.3078 0.3284 0.2205 0.2423 0.2556 

50 0.1987 0.1997 0.2121 0.1612 0.1715 0.1784 

75 0.1346 0.1308 0.1353 0.1122 0.1176 0.1216 

100 0.0932 0.0961 0.0976 0.0845 0.0861 0.0812 

 
According to Tables (3) and (4), as sample size 
rises, the rate at which estimates approach the 
true value of the shape parameter increases. 
Based on the best estimates from experiments 3 
and 4, it can be concluded that the performance 
of the Bayes estimator with the Gamma prior and 
the linear exponential loss function is preferable 
to that of other priors with other priors and for 
various sample sizes. 
 

3.1 Data Analysis 
 
This section is devoted to illustrate the practical 
applications of the proposed exponentiated 
Rayleigh distribution. In order to assess the 
flexibility of the new model, we analyze one real 
life data sets taken from literature and the 
numerical results of exponentiated Rayleigh 
distribution are compared with its sub-models, 
namely Rayleigh distribution (RD), Weibull 
distribution (WD), exponential distribution (ED) 
and generalized exponential distribution (GED). 
The model selection is carried out by using 
different model selection criterions including the 

negative log-likelihood, Akaike information 
criteria (AIC) (Akaike 1974), Schwarz Information 
Criteria (SIC) (Schwarz 1978), Corrected Akaike 
information criteria (AICC) (Bazdogan 1987). 
Also, Kolmogorov-Simonov test statistics along 
with corresponding p-value has been calculated.  
 
Data set 1: The data set due to Smith and 
Naylor (1987) consists of 63 observations of the 
strengths of 1.5 cm glass fibres, originally 
obtained by workers at the UK National Physical 
Laboratory. This data set was also analysed by 
Oguntunde et al. (2015) to demonstrate the 
applicability of Weibull-Exponential distribution. 
 
The data are: “0.55, 0.74, 0.77, 0.81, 0.84, 0.93, 
1.04, 1.11, 1.13, 1.24, 1.25, 1.27, 1.28, 1.29, 
1.30, 1.36, 1.39,1.42, 1.48, 1.48, 1.49, 1.49, 
1.50, 1.50, 1.51, 1.52, 1.53, 1.54, 1.55, 1.55, 
1.58, 1.59, 1.60, 1.61, 1.61,1.61, 1.61, 1.62, 
1.62, 1.63, 1.64, 1.66, 1.66, 1.66, 1.67,1.68, 
1.68, 1.69, 1.70, 1.70, 1.73, 1.76, 1.76,1.77, 
1.78, 1.81, 1.82, 1.84, 1.84, 1.89, 2.00, 2.01, 
2.24”. 
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Table 5. ML estimate and the statistic -2l, AIC, SIC, AICC using data set 1 
 

Model ML estimates -2l AIC SIC AICC 

ERD 1.4997 172.22 178.43 185.23 179.49 
RD 1.635 180.35 184.23 189.35 185.06 
WD 2.543 196.23 198.67 200.50 198.58 
GED 5.783 194.67 202.34 213.67 185.76 

 

4. CONCLUSIONS 
 

The methods described to build a full framework 
to accommodate academic research and 
engineering applications seeking to implement 
modern computational based classical as well as 
Bayesian approaches related to exponentiated 
Rayleigh distribution, especially in the area of 
reliability. We have proposed an integrated 
procedure for Bayesian inference using Markov 
chain Monte Carlo methods. For the sake of 
comparison, we have discussed the maximum 
likelihood estimation. The above study makes the 
suggestion that when =3, the performance of the 
Bayes estimator under the Gamma prior with 
linear loss function, records full appearance "for 
all sample sizes," as the best prior distribution, 
and utilising various loss functions for the entire 
data set. 
 

A simulation study is carried out to investigate 
the behaviour of ML estimates for finite sample 
size. The estimation of parameters is 
approached by the method of maximum 
likelihood estimation. The applications of the 
power exponentiated Rayleigh distribution to real 
data are provided which show that the new 
distribution can be used quite effectively to 
provide better fits than the other competing 
distributions. We prospect that the proposed 
model will draw wider applications in statistics  
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