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Abstract 
 

Clients (expecting mothers) wait for hours in ante-natal clinic to receive medical service – waiting before, 
during or after being served. This study deals with a dynamic queuing system. Results of the study 
evaluate the effectiveness of queuing simulation model by identifying the ante-natal clinic queuing 
system parameters in terms of server utilization, usage, and clients flow time. The study uses the Simmer 
package in R for Discrete-event Simulation of the clients' flow in the system. The study showed that the 
resources are highly utilized with a bottleneck at the Doctors station, with constant service time for all 
clients, and long waiting time in the system. By replicating the parameters or replicate the model 
execution, once, with different initial conditions (by adding resources) and then performing another 
simulation over the output, the result showed that the resources are utilized with no bottlenecks at each 
server station, constant activity and flow time for all clients (expecting mothers). Hence, the model has 
proved to be accurate and efficient. This will help the clinic to utilize the resources and reduce long flow 
time. 
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1 Introduction 
 
The complexity of many real-world systems involves many unaffordable analytical models, and 
consequently, such systems are commonly studied using simulation. As defined by Shannon [1], simulation 
"is the process of designing a model of a real system and conducting experiments with this model for either 
understanding the behaviour of the system or of evaluating various strategies for the operation of the 
system". Further, Hejase et al. [2] contend that simulation “is a methodology that allows organizations to 
approach a business opportunity affected by risk virtually by creating an analogous situation without the 
commitment of scarce resources.” (p. 446). Different types of simulation apply depending on the nature of 
the system under consideration. A common model taxonomy classifies a simulation problem along three 
main dimensions [3]: (i) Deterministic vs. Stochastic. (ii). Static vs. Dynamic (depending on whether they 
require a time component). (iii). Continuous vs. Discrete (depending on how the system changes). Discrete-
event simulation is a specific technique for modelling stochastic and or deterministic, dynamic and evolving 
system. 
 
Simulation is useful to measure performance in systems that are so complex that they cannot be described by 
analytical queuing models [4]. To model any system we need to define its state space, that is, the variables 
that govern the behaviour of the system concerning the metrics being estimated. If the variables continuously 
change with time it is called a continuous system. If the system state instantaneously changes at discrete 
points in time, instead of continuously, it is called a discrete system. 
 

1.1 Discrete event simulation 
 
Discrete-event simulation is an analysis methodology that permits hospital administrators/clinic managers to 
evaluate the efforts of existing healthcare delivery systems, to ask "what if?" questions, and design new 
healthcare delivery system operations. Discrete-event simulation permits analysing bottlenecks and 
modelling the details of complex patients flow in hospitals [5], it has become a popular tool for health care 
decision-makers to support their efforts in achieving their objectives. 
 
Discrete- event simulation is also used as a forecasting tool to assess the potential impact of changes in 
patients' flow, to examine asset allocation needs (such as in staffing levels or physical capacity), and or to 
investigate the complex relationships among different system variables (such as the rate of patients' arrivals 
or the rate of patient service delivery). Such information allows healthcare administrators and analysts to 
identify management alternatives that can be used to reconfigure existing healthcare systems, to improve 
system performance or design, and or to plan new systems, without altering the existing system. 
 
Discrete-event simulation in the analysis of healthcare systems has become increasingly more accepted by 
healthcare decision-makers as a viable tool for improving operations [5]. 
 
This study aims to use Discrete-event simulation model to minimize the waiting time of expecting mothers 
and maximize the utilization of the resources (Nurse, Doctor, Administrator) in ante-natal care unit of 
Aminu Kano Teaching Hospital. 
 

2 Materials and Methods 
 
2.1 Method of data collection 
 
Primary data collection was performed using observation method which involves the physical presence of 
researchers collecting the data. According to Hejase and Hejase [6], “observation methods rely on watching 
and examining people’s behaviours within certain predefined settings. Observational data is usually 
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collected without the researcher’s direct intervention” (p. 115). The researcher observed the arrivals and 
departures of expecting mothers at the Ante-Natal Care Unit per hour, including the service time at each 
phase. 
 

2.2 Methodologies of discrete-event simulation 
 
We now consider how to simulate discrete-event systems. The most common strategies for designing and 
implementing discrete-event simulation programs are [7]: 
 

1. Event Scheduling: In the event schedule, list of all events in the system are constructed. Each event 
is taken individually and described in terms of the particular interaction between entity and 
resource. Associated with each event is the corresponding action or procedure to be invoked when 
the event occurs. 

2. Activity Scanning: The purpose of the activity scanning is to overcome the reactivation problem of 
event scheduling. 

3. Process Interaction: The process interaction methodology describes the system’s workings from the 
view-point of an entity flowing through the system. 

4. System State Variables: The system state variables are a set of data required to define the internal 
process within the system at a given point of time. 

 

2.3 Discrete-event simulation modelling concepts 
 

1.  Model: A model is a representation of an actual system. 
2.  Entities and attributes: An entity represents an object whose value can be static or dynamic, 

depending upon the process with other entities. Attributes are the local values used by the entity. 
3.  Resources: A resource is an entity that provides service to one or more dynamic entities at a time.  
4.  List Processing: Entities are managed by allocating them to resources that provide service, by 

attaching them to event notices thereby suspending their activity into the future, or by placing them 
into an ordered list. Lists are used to represent the queues by the entities and resources. 

5.  Activities and Delays: An activity is a duration time whose duration is known before the 
commencement of the activity whereas a delay is an indefinite duration that is caused by some 
combination of system conditions.  

6.  Events: An event is any change in the state of the system. 
 

2.4 Steps in a simulation study 
 
Modelling the process include the following steps: 
 
Step I: Examine the problem. In this stage, the simulation analyst must understand the problem and choose 
its classification accordingly, such as deterministic or stochastic. 
 
Step II: Design a model. In this stage, the simulator will perform the following tasks which will help to 
design a model –  
 

 Collect data as per the system behaviour and future requirements. 
 Analyse the system features, its assumptions and necessary actions to be taken to make the model 

successful. 
 Determine the variable names, functions, units, relationships and their applications used in the 

model. 
 Solve the model using a suitable technique and verify the result using verification methods. Next, 

validate the result. 
 Prepare a report which includes results, interpretations, conclusion and suggestions. 
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Step III: Provide recommendations after completing the entire process related to the model. It includes 
investment, resources, algorithms, techniques, etc. 
 

2.5 Method of analysis 
 
The Simmer Package for Discrete- event simulation model was used in simulating the client's flow. Simmer 
is a process-oriented and trajectory-based Discrete-Event Simulation (DES) package for R designed to be a 
generic framework it leverages the power of RCPP to boost the performance and turning DES in R feasible. 
As a noteworthy characteristic, simmer exploits the concept of trajectory: A common path in the simulation 
model for entities of the same type. It is pretty simple to use and leverages the chaining/piping workflow 
introduced by the Magritt R package [8]. 
 
2.5.1 The simmer environment 
 
First of all, we load the packages Simmer and Simmer.plot [9]. Instantiate a new simulation environment, 
call it an ante-natal clinic, and create the client trajectory. Next, we define the processes trajectories and the 
completion time for the different activities as random draws from probability distributions or fixed variables 
(we are using fixed variables for this study since the model is deterministic). Likewise, the inter-arrival times 
for the clients are defined, see Appendix I. 
 
The trajectory in Appendix I illustrates the two most basic activities available: displaying a message seize ( ) 
and spending some time in the system (timeout ( )). An arrival attached to this trajectory will execute the 
activities in the given order, i.e., it will display "Entering the trajectory", then it will spend some units of 
(simulated) time, and finally it will display "Leaving the trajectory". That is, the trajectory of an incoming 
client starts by seizing a nurse, it takes a fixed time of 15 minutes for a check-up and releases the nurse. 
Then, the client seizes the Doctor, takes a fixed time of 18 minutes for consultation and release the doctor. 
And at last, the client seizes the administration for 5 minutes to schedule for the next appointment and 
release the administration. And the client leaves the system. Finally, the trajectory releases the client, so that 
it is ready again [10]. 
 

Once the processes trajectories are defined, the second block instantiates the simulation environment, we 
define the simulation time (start time and end time), creates resources (that is, append 5 identical nurses, 5 
identical doctors and 3 identical administrators to the simulation environment), attaches a generator to the 
clients trajectory with inter-arrival time of 3 minutes and run the simulation for 480 units of time. 
 

The simulation will be run for some units of times, and the simulator will monitor all the state changes and 
lifetimes of all processes, which enables any kind of analysis without any additional effort from the 
modeller's side [10]. 
 

Next, we use the visualization tools, that is the plot model with metric clients, the plot of resources with 
metrics the usage of a resource (nurse, doctor and administration) over the simulation time frame and the 
utilization of specified resources (nurse, doctor and administration) in the simulation, and the plot of arrivals 
with metrics activity time, waiting time and flow time. 
 

Typically, running a certain simulation only once does not provide the information needed by the simulation 
analyst [10]. We will replicate the model execution, many times, with different initial conditions (by adding 
resources) and then perform another simulation over the output [11]. Running simulation more than once can 
be achieved using the standard R tools, e.g. The lapply or simulator function. This study uses the lapply ( ) 
and Wrap ( ) to perform 100 replicates of the simulation, but the trajectory need not be redefined as shown in 
Appendix II. 
 

3 Data Analysis 
 
This chapter presents the results of Discrete-event simulation of clients’ flow in Ante-natal clinic. 
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3.1 Presentation of simulation results and graph 
 
Here, the number of servers is finite, so the clients are served according to a specific order, First-In-First-Out 
with a constant service time (the service consists of essentially the same routine task for all clients) and that 
the input parameters (service time) for the model used fixed numbers (single values) rather than a 
distribution in the function since the model is non-stochastic (hence deterministic). Also, the model assumes 
that all inter-arrival times equal some fixed constant. Therefore, the average inter-arrival time between 
clients is 
  

(1 .8 1.5 6)m inutes 9.3m inutes 3m inutes
33

 
   

 

the client’s trajectory 
 

Nursing Station (Phase I): The client will seize one Nurse and remains for 15 minutes and releases the 
Nurse. Then moves from the Nursing station and joins the queue for consultation. 
 

Doctors station (Phase II): The client will seize one Doctor for consultation and remains for 18 minutes and 
releases the Doctor. And then move to the administration. 
 

Administration Station (Phase III): Here, the client will seize one administrator to schedule for the next 
appointment for at most 5 minutes and release the administration, and then exit the system as shown in the 
client’s flow shown in Figure 1. 
 

 
 

Figure 1. Clients flow plot 
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We add resources using the function add resources, we add Five Nurses, Five Doctors and Five 
Administration staff and add a generator. And simulate for 480 minutes (from 06:00 am to 02:00 pm) The 
simulation has been run for 100 times using the lapply function twice for the same empirical data obtained 
using the SIMMER package for Discrete-Event Simulation (Inputs and Outputs in Appendix III). 
 

3.2 Simulation results 
 
3.2.1 First simulation output 
 
Mean inter-arrival time = 3 minutes 
Simulation for 0 to 8hours (i.e., 480minutes) 
Number of clients generated = 160 
Resource: Nurse 
                 Server Status = 5(5) 
                 Queue = 0 (Inf) 
 Resource: Doctor 
       Server Status = 5(5) 
       Queue = 25 (Inf) 
Resource: Administration 
      Server Status = 1 (3)  
       Queue = 0 (Inf) 
Simulation time = -7.992449 seconds 
  

The metrics we are measuring from the resources are utilization and usage over time, and the metrics from 
arrivals are waiting time, activity time and flow time. Figs. 2 to 6 will describe the metrics from resources 
and arrivals.  
 

From the resource utilization plot in Figure 2, we can see that the Doctors and Nurses are 99% utilized 
which shows that their bottleneck at the Doctors and Nursing station. 
 

 
 

Figure 2. Resource utilization plot 
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From the resource usage plot in Figure 3, we can see in the graph field there are two lines the red line and 
the blue line. The red line represents the queue while the blue line represents the server. At the Doctors 
station, the red line (queue) crosses over the blue line (servers ceiling) which shows there is the bottleneck at 
the Doctors station. At the Nursing and Administration station (the queue line does not cross the server 
ceiling) which shows there is no bottleneck at the stations. 
 

 
 

Figure 3. Resource usage plot 
 

From the clients waiting time evolution plot shown in Figure 4, the clients waiting time is increasing by 
time. At the first 100 minutes, we can see that the waiting time was 11 minutes, as time goes on when the 
clients are filing up, the queue gets longer and the arrivals waiting time reaches up to 75 minutes. The blue 
line in the graph field is the trend line of 100 simulations and the black hair is the simulation of its own. 
 

 
 

Figure 4. Waiting time evolution plot 
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The activity time is constant over time (the service time is fixed). The blue line in Figure 5 represents the 
trend line. 
 

 
 

Figure 5. Activity time evolution 
 
The flow time (total processing time) evolution plot in Figure 6 shows the time spent by clients in the system 
from beginning to end, as the time increases the flow time also increases, i.e. at 45 minutes the flow time 
was 38 minutes, as the time goes up the clients processing time reaches to 95 minutes. 
 

 
 

Figure 6. Flow time evolution 
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3.2.2 Second simulation outcome: 
 
We changed the settings from the Doctors station by adding one more Doctor and rerun the simulation. 
 
Mean inter-arrival time = 3minutes 
Simulation for 0 to 8hours (i.e., 480minutes) 
Number of clients generated = 160 
Resource: Nurse 
                 Server Status = 5(5) 
                 Queue = 0 (Inf) 
 Resource: Doctor 
       Server Status = 6(6) 
       Queue = 0 (Inf) 
Resource: Administration 
      Server Status = 1 (3)  
       Queue = 0 (Inf) 
Simulation time = -7.20seconds  
 
The metrics we are measuring from the resources are utilization and usage over time, and the metrics from 
arrivals are waiting time, activity time and flow time. Figure 7 to 10b will describe the metrics from 
resources and arrivals. 
 
From the resource utilization plot in Figure 7, the plot shows that the Doctors and Nurses are 96% utilized 
and there is no bottleneck at the Doctors station like in the previous simulation. 
 

 
 

Figure 7. Resource utilization plot 
 
The resource usage plot shows that the queue at the Doctors station does not cross the server ceiling, which 
means that the bottleneck at the Doctors station disappeared by adding one Doctor. Also, there is no queue at 
the Nursing and Administration stations. 
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The resource usage plots in Figure 8 shown that the queue at the Doctors station does not cross the server 
ceiling, which means that the bottleneck at the Doctors station disappeared by adding one Doctor. Also, 
there is no queue at the Nursing and Administration stations. 
 

 
 

Figure 8. Resource usage plot 
 

By adding one more Doctor to the resources, as shown in Figure 9 in the graph the clients waiting time drops 
to zero. 
 

 
 

Figure 9. Waiting time plot 
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The activity time and flow time are constant over time (the service time is fixed), as shown in Figure 10a and 
10b. 

 

 
 

Figure 10a. Activity time plot                               Figure 10b. Flow time plot 
 

4 Discussion 
 
The discrete event simulation model was used to analyze the system which measures the metrics (utilization 
and usage over time) of the resources (Doctors, Nurses and Administrators) and the metrics (waiting time, 
activity time, and flow time) of the clients. The simulation was replicated twice with 100 repetitions in each 
simulation for 480 minutes (8 hours). 
 
Based on results obtained from the first simulation, with constant inter-arrival and service times, 160 clients 
were generated and 25 clients waiting at the Doctors station. The graph of the server utilization shows that 
the Doctors and Nurses are highly utilized (there is the bottleneck at the Doctors and Nursing Stations). The 
resource usage plot shows the queue line is below then server ceiling at the Nurse and Administration station 
but crosses the server ceiling at the Doctors station which indicates that from 0 to 8 hours of the clinic 
services (0 – 480 minutes), the queue grows simultaneously at the Doctors station as the time of the day goes 
on. 
 
The waiting time evolution plot shows at the first 100 minutes the waiting time was 11 minutes, and as time 
increases the waiting time of the clients also increases. The activity time is constant over time (service time) 
and from the total processing time (flow time) plot, the time clients spend in the system at 45 minutes of 
simulation was 38 minutes, but as the time increases the queue grows larger and the flow time increase to 
110 minutes at 480 minutes simulation time. 
 
We add one Doctor to the resources and replicate the simulation, the resource utilization plot shows that all 
the resources are highly utilized but there is no bottleneck at each station, in the resource usage plot it was 
discovered that the queue line at the Doctors station dropped (does not cross the server ceiling). The activity 
time is constant over time, the clients waiting time drops to zero and the clients flow time in the second 
simulation is constant (47 minutes for all clients). 
 
The research concludes it is optimal to have six Doctors in the Ante-natal clinic. According to the study, the 
research has shown that Discrete-event Simulation Model is more accurate than other models to be used in 
simulating patients flow in hospitals and a tool for decision making on issues of resourcing and capacity 
planning. 
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5 Conclusion 
 
Providing patients with timely access to appropriate medical care is an important element of health care 
delivery and increases patient satisfaction. "When" care is received, is often as important as "What" care is 
received. In this study, applications of discrete even simulation in modelling hospital services (antenatal 
clinic) has been used in measuring the performance of the resources (server utilization and usage) and clients 
flow time in the system since the healthcare facilities are interested in improving the system performance. 
The study establishes expecting mothers are not satisfied with long waiting times and experience negative 
effects as a result. Queuing simulation model (Discrete Event Simulation) is an effective and powerful 
modelling technique that can help the Hospital administrators to make decisions on staffing needs for 
optimal performance with regards to queuing challenges in the clinic. This study should, therefore, be 
replicated in other clinics and departments in Aminu Kano Teaching Hospital and other Hospitals as well to 
inform hospital administrators more on the usefulness of simulation model as a tool for improved decision 
making with regards to the waiting line challenges that are faced by the hospital. 
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Appendix I 
 

 
 

Appendix II 
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Appendix III 
 

 

 
 



 
 
 

Abubakar et al.; AJPAS, 6(2): 63-78, 2020; Article no.AJPAS.53491 
 
 
 

77 
 
 

Output Result: 
 

 

 



 
 
 

Abubakar et al.; AJPAS, 6(2): 63-78, 2020; Article no.AJPAS.53491 
 
 
 

78 
 
 

 

 
_______________________________________________________________________________________ 
© 2020 Abubakar et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
 

 

Peer-review history: 
The peer review history for this paper can be accessed here (Please copy paste the total link in your 
browser address bar) 
http://www.sdiarticle4.com/review-history/53491 


