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+e challenge of estimating the parameters for the inverse Weibull (IW) distribution employing progressive censoring Type-
I (PCTI) will be addressed in this study using Bayesian and non-Bayesian procedures. To address the issue of censoring time
selection, qauntiles from the IW lifetime distribution will be implemented as censoring time points for PCTI. Focusing on
the censoring schemes, maximum likelihood estimators (MLEs) and asymptotic confidence intervals (ACI) for unknown
parameters are constructed. Under the squared error (SEr) loss function, Bayes estimates (BEs) and concomitant maximum
posterior density credible interval estimations are also produced. +e BEs are assessed using two methods: Lindley’s
approximation (LiA) technique and the Metropolis-Hasting (MH) algorithm utilizing Markov Chain Monte Carlo
(MCMC). +e theoretical implications of MLEs and BEs for specified schemes of PCTI samples are shown via a simulation
study to compare the performance of the different suggested estimators. Finally, application of two real data sets will
be employed.

1. Introduction

Keller and Kamath [1] were the ones to propose the IW
model as a sustainable idea for describing the deterio-
ration of structural devices in diesel engines. +e IW
distribution gives an excellent match to various real data
sets, according to [2]. In the perspective of a mechanical
system’s load-strength relationship, Calabria and Pulcini
[3] gave an essential explanation of this distribution. +e
IW distribution, which was created to explain failures of
structural devices influenced by degradation phenomena,
plays a critical part in reliability engineering and lifetime
testing. It has been looked into from a variety of angles.
On the basis of the PC type-II data set, Musleh and Helu
[4] used both conventional and Bayesian estimation
techniques to estimate parameters from the IW distri-
bution. Singh et al. [5] evaluated simulated hazards of

several estimators, with a focus on the Bayesian approach.
De Gusmao et al. [6] and Elbatal and Muhammed [7]
focused their efforts on its comprehensive versions re-
search, which included both generalized and expo-
nentiated generalized IW distributions.

+e distribution of IW has been studied from many
angles. Khan et al. [8] visually and quantitatively
depicted several aspects of this distribution, including
mean (M), variance (V), kurtosis, and skewness. Erto [9]
calculated the IW distribution using a fresh prior dis-
tribution, taking into account the shape parameter’s
range and the predicted value of a quantile (Q) of the
sampling distribution. Sultan et al. [10] go into great
depth on how to include two IW distributions into a
hybrid model. +e IW distribution’s density function
(pdf ), cumulative function (cdf ), and Q function (Qf ) are
shown as follows:
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f(x) � cλx
− (c+1) exp

− λ
x

c􏼠 􏼡, x> 0, c, λ> 0,

F(x) � exp
− λ
x

c􏼠 􏼡, x> 0, c, λ> 0,

(1)

Q(u) �

������
λ

ln(1/u)

c

􏽳

. (2)

Note that when c � 1 and c � 2 the IWmodel reduces to
inverted exponential (IE) inverted Rayleigh (IR) models.

Censored data arises in real-life testing trials when the
experiments, which include the lifetime of test units, must be
stopped before acquiring complete observation. For a variety
of reasons, including time constraints and cost minimiza-
tion, the censoring method is frequent and inescapable in
practice. Various types of censorship have been explored in
depth, with Type-I and Type-II censoring being the most
prevalent. In comparison to classic censoring designs, a
generalized type of censoring known as PC schemes has
recently garnered substantial attention in the works as a
result of its efficient use of available resources. PCTI is one of
these PC schemes. When a certain number of lifetime test
units are continually eliminated from the test at the con-
clusion of each of the post periods of time, this pattern is
seen [11].

Assume there are n units in a life testing experiment.
Assume that X1, X2, . . . , Xn indicate the lifetime of all these
n units drawn from a population. +e equivalent ordered
lifetimes recorded from the life test are denoted by
x(1) <x(2) < · · · < x(n). Eventually Ri items are omitted from
the surviving items at the predetermined period of censoring
Tqi

in accordance with qth
i Qs, i � 1, 2, . . . , m, where m

denotes the number of testing stages, Tqi
>Tqi− 1

and
n � r + 􏽐

m
i�1 Ri. +e values Tqi

must be established
beforehand:

(1) According on the experimenter’s prior knowledge
and expertise with the items on test [12].

(2) +e Qs of lifetimes distribution, qi th, which may be
constructed using the given formula

P X≤Tqi
􏼐 􏼑 � qi⇒Tqi

� F
− 1

qi( 􏼁 i � 1, 2, . . . , m. (3)

In these situations, Ri, Tqi
, and n are preset and constant,

whereas li is the number of surviving objects at a given point
in time Tqi

and r � 􏽐
m
i�1 li are random variables. +e LL

function is indicated by

ℓ(θ)∝􏽙
r

i�1
f x(i); θ􏼐 􏼑 􏽙

m

j�1
1 − F T

qj( 􏼁
; θ􏼒 􏼓􏼒 􏼓

Rj

, (4)

where x(i) is the observed lifetime of the i th order statistic
[13]. Figure 1 describes this scheme of censoring [14].

One can observe that complete samples and also Type-I
censoring scheme can be considered as special cases of this
scheme of censoring.

Cohen [13] introduced PCTI scheme for the Weibull
distribution. Mahmoud et al. [15] derived the MLLEs and
the BEs for the parameters of the generalized IEmodel under
PCTI. +ere are two closely related papers for the PCTI. +e
first one was the MLEs and ACI estimates for the unknown
parameters of the generalized IE model under the idea that
there are two types of failures [16]. +e MLLEs and BEs for
the unknown parameters of the generalized IE model [17]
were the second.

+e purpose of this paper is to look at the PCTI scheme
when the lifetimes have their own IW model. We use two
distinct techniques to drive theMLEs and BEs and derive the
ACI of these different parameters: MCMC and Lindley
Approximation. We look at a simulation outcome and a real
data set to see how the various models perform in practice.
+e following is how the remaining of the article is struc-
tured: +e MLLE and confidence intervals are discussed in
Section 2. In Section 3, the Metropolis-Hasting (MH) al-
gorithm and LiA are used to explore the Bayesian estimation
technique, fully accrediting the gamma distribution as a
prior distribution for unknown parameters. A simulated
outcome and a real data set are utilized to demonstrate the
theoretical conclusions in Section 5. Finally, there are some
final observations and a summary.

2. Estimation Using Method of
Maximum Likelihood

According on the PCTI method, for the unknown param-
eters of the IW distribution, the MLLE technique of estimate
is examined in this section. +is is how the PCTI system can
be put into practice:

(i) Suppose a random sample of n units with the next
lifetime IW (c, λ) distribution to the test in a real-
life experiment.

(ii) Prefix m censoring time points Tq1
, . . . , Tqm

, at
which fixed number R1, . . . , . . . , Rm− 1 of surviving
items are randomly omitted from the test. +e
censoring times Tqj

are chosen corresponding to
P(X≤Tqj

) � qj, where X follows IW (c, λ) distri-
bution and qth

j is the Qs (j � 1, 2, . . . , m) of the
chosen lifetime distribution.

(iii) +e life test terminates at or before a prespecified
time Tqm

.

withdrawn withdrawn withdrawn withdrawn

Rm

TmT3T2T1

R1 R2 R3

Figure 1: PCTI scheme.
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+erefore, one can obtain PCTI samples
x � (x(1), x(2), . . . , x(r)) that indicate the reported lifetime
of r units under that same censoring procedure.

By applying equation (1) of IW distribution in equation
(4) of LL function under PCTI, the connected LL function of
c and λ given the PCTI data, x, may be interpreted as

ℓ(c, λ)∝ (cλ)
r

􏽙
r

i�1
x

− (c+1)
i exp

− λ
x

c
i

􏼠 􏼡􏼠 􏼡 􏽙
m

j�1
1 − exp

− λ
T

c
qj

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

Rj

.

(5)

Take logarithm of ℓ(c, λ) to obtain log-LL L as

L∝ r ln c + r ln λ − (c + 1) 􏽘
r

i�1
ln xi − λ􏽘

r

i�1
x

− c
i

+ 􏽘
m

j�1
Rj ln 1 − exp

− λ
T

c
qj

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(6)

First partial derivatives of log-LL functionL in terms of
c and λ are computed as follows:

zL

zc
�

r

c
− 􏽘

n

i�1
ln xi + λ 􏽐

r

i�1
x

− c
i ln xi − 􏽘

m

j�1

λRj ln Tqj

Aj

, (7)

zL

zλ
�

r

λ
− 􏽘

r

i�1
x

− c

i + 􏽘
m

j�1

Rj

Aj

, (8)

where Aj � T
c
qj

[exp(λ/Tc
qj

) − 1].
Equating (zL/zc)|

c�􏽢c and (zL/zλ)|
λ�􏽢λ

to 0, then the
numerical solution of the above two equations for 􏽢c and 􏽢λ is
the MLEs of c and λ.

+e approximate variance-covariance (V-C) matrix of
the MLEs of c and λ is

I(c, λ) �

− E
z
2
L

zc
2􏼠 􏼡 − E

z
2
L

zc zλ
􏼠 􏼡

− E
z
2
L

zλ zc
􏼠 􏼡 − E

z
2
L

zλ2
􏼠 􏼡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (9)

where

z
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L
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2 �

− r

c
2 − λ􏽘

r
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2

− 􏽘
m
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λRjCj ln Tqj
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j

,

z
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(10)

z
2
L

zc zλ
� 􏽘

r

i�1
x
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i ln xi − 􏽘

m

j�1

RjCj

A
2
j

, (11)

where Bj � (zAj/zλ) � exp(λ/Tc
qj

) and Cj � (zAj/zc) �

ln Tqj
[Aj − λBj]. Paper [18] came to the conclusion that the

approximation V-C matrix might be constructed by

substituting anticipated values with their MLEs. +e esti-
mated sample information matrix will now be generated as

I(􏽢c, 􏽢λ) � −

z
2
L

zc
2

z
2
L

zc zλ

z
2
L

zλ zc

z
2
L

zλ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (12)

and hence the approximate V-C matrix of 􏽢c and 􏽢λ will be

σ11 σ12

σ21 σ22

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ � −

z2L

zc2
z2L

zc zλ

z2L

zλ zc

z2L

zλ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− 1

c�􏽢c,λ�􏽢λ

. (13)

Focused on the empirical distribution of theMLLE of the
parameters, CIs for the unknown parameters c and λ will be
computed. It is established from the empirical distribution of
the MLLE of the parameters that

(􏽢c, 􏽢λ) − (c, λ)⟶ N2 0, I
− 1

(􏽢c, 􏽢λ)􏼐 􏼑, (14)

where N2(·) is bivariate normal distribution and I(·) is the
the Fisher information matrix which is defined in equation
(12).

Considering specific regularity constraints, the two-
sided 100(1 − α)%, 0< α< 1, ACIs for the unknown pa-
rameters c and λ can be obtained as 􏽢c ± Zα/2

���σ11
√ and

􏽢λ ± Zα/2
���σ22

√
, where σ11 and σ22 are the asymptotic Vs of the

MLEs of c and λ, respectively; here Zα/2 is the upper α/2th

percentile of the standard normal distribution.

3. Bayesian Estimation

In this part, we will look at how to use Bayesian estimation to
estimate the unknown parameters of an IW distribution
using a PCTI method. +e SEr loss function will be used for
Bayesian parameter estimation. It is possible to use separate
gamma priors for both parameters of the IW distribution c

and λ with pdfs

π1(c)∝ c
a1− 1 exp − b1c( 􏼁, c> 0, a1 > 0, b1 > 0, (15)

π2(λ)∝ λa2− 1 exp − b2λ( 􏼁, λ> 0, a2 > 0, b2 > 0, (16)

+e hyperparameters a1, b1, a2, b2 are used to represent
past knowledge of the unknown parameters in this situation.
+e joint prior (JP) for c and λ is as follows:

π(c, λ)∝ c
a1− 1λa2− 1 exp − b1c − b2λ( 􏼁. (17)

Hyperparameter elicitation: the informative priors (IPs)
will be used to elicit the hyperparameters. +e above IPs will
indeed be deduced from the MLEs for (c, λ) by equating the
M and V of (􏽢cj, 􏽢λ

j
) with both the M and V of the regarded

priors (Gamma priors), where j � 1, 2, . . . , k and k is the
number of observations from the IW distribution that are
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available. +us, on equating M and V of (􏽢cj, 􏽢λ
j
) with the M

and V of gamma priors, we acquire (29)

1
k

􏽘

k

j�1
􏽢c

j
�

a1

b1
and

1
k − 1

􏽘

k

j�1
􏽢c

j
−
1
k

􏽘

k

j�1
􏽢c

j⎛⎝ ⎞⎠

2

�
a1

b
2
1
,

1
k

􏽘

k

j�1

􏽢λ
j

�
a2

b2
and

1
k − 1

􏽘

k

j�1

􏽢λ
j

−
1
k

􏽘

k

j�1

􏽢λ
j⎛⎝ ⎞⎠

2

�
a2

b
2
2
.

(18)

+e calculated hyperparameters may now be expressed
as after solving the preceding two equations

a1 �
1/k 􏽐

k
j�1 􏽢cj􏼐 􏼑

2

1/k − 1􏽐
k
j�1 􏽢c

j
− 1/k 􏽐

k
j�1 􏽢cj􏼐 􏼑

2 and b1 �
1/k 􏽐

k
j�1 􏽢c

j

1/k − 1􏽐
k
j�1 􏽢c

j
− 1/k 􏽐

k
j�1 􏽢cj􏼐 􏼑

2,

a2 �
1/k 􏽐

k
j�1

􏽢λ
j

􏼒 􏼓
2

1/k − 1􏽐
k
j�1

􏽢λ
j

− 1/k 􏽐
k
j�1

􏽢λ
j

􏼒 􏼓
2 and b2 �

1/k 􏽐
k
j�1

􏽢λ
j

1/k − 1􏽐
k
j�1

􏽢λ
j

− 1/k 􏽐
k
j�1

􏽢λ
j

􏼒 􏼓
2.

(19)

According to the observed data, the appropriate pos-
terior density (PD) x � (x(1), x(2), . . . , x(r)) can indeed be
expressed as

π(c, λ|x) �
π(c, λ)L(c, λ)

􏽒
∞
0 􏽒
∞
0 π(c, λ)L(c, λ)dcdλ

. (20)

+e PD function is denoted by the symbol

π(c, λ|x) � K
− 1

c
r+a1− 1λr+a2− 1 exp − b1c − b2λ( 􏼁 􏽙

r

i�1
x

− (c+1)
i exp

− λ
x

c
i

􏼠 􏼡􏼠 􏼡 􏽙

m

j�1
1 − exp

− λ
T

c
qj

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

Rj

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦, (21)

where

K � 􏽚
∞

0
􏽚
∞

0
c

r+a1− 1λr+a2− 1 exp − b1c − b2λ( 􏼁 􏽙

r

i�1
x

− (c+1)
i exp

− λ
x

c
i

􏼠 􏼡􏼠 􏼡 􏽑
m

j�1
1 − exp

− λ
T

c
qj

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

Rj

dc dλ. (22)

As a result, the PD may be rewritten as follows:

π(c, λ|x)∝ c
r+a1− 1λr+a2− 1 exp − b1c − b2λ( 􏼁 􏽙

r

i�1
x

− (c+1)

i exp
− λ
x

c

i

􏼠 􏼡􏼠 􏼡 􏽑
m

j�1
1 − exp

− λ
T

c
qj

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

Rj

. (23)

Under the SEr, the Bayes estimator of any function, such
as g(c, λ), is provided by

􏽥g(c, λ) � 􏽚
∞

0
􏽚
∞

0
g(c, λ)π(c, λ|x)dcdλ. (24)

Consequently, equation (24) cannot be calculated for
general g(c, λ). As a result, we recommend using the most
widely used approximate BEs of c and λ MCMC.

3.1. Lindley’s Approximation. Lindley proposed an ap-
proximation to compute the ratio of integrals of the form in
equation (25) for the specified priors on c and λ and under
the SEr loss function. Consider the ratio L(X)

L(X) �
􏽒

(c,λ)
g(c, λ)exp[L(c, λ) + ρ(c, λ)]d(c, λ)

􏽒
(c,λ)

exp[L(c, λ) + ρ(c, λ)]d(c, λ)
, (25)
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where g(c, λ) is function of c and λ only and L(c, λ) is the
log-LL given in (5) and ρ(c, λ) is the log-JP distribution.
Using the approach developed by [19], the ratio L(X) can be
expressed as

L(X) � 􏽢g(c, λ) +
1
2

􏽢gcc + 2􏽢gc􏽢ρc􏼐 􏼑􏽢σcc + 􏽢gλc + 2􏽢gλ􏽢ρc􏼐 􏼑􏽢σλc􏽨

+ 􏽢gcλ + 2􏽢gc􏽢ρλ􏼐 􏼑􏽢σcλ + 􏽢gλλ + 2􏽢gλ􏽢ρλ( 􏼁􏽢σλλ􏽩

+
1
2

􏽢gc􏽢σcc + 􏽢gλ􏽢σcλ􏼐 􏼑 􏽢Lccc􏽢σcc + 􏽢Lcλc􏽢σcλ + 􏽢Lλcc􏽢σλc􏼐􏽨

+ 􏽢Lλλc􏽢σλλ􏼑 + 􏽢gc􏽢σλc + 􏽢gλ􏽢σλλ􏼐 􏼑 􏽢Lλcc􏽢σcc + 􏽢Lcλλ􏽢σcλ
􏽢Lλcλ􏼐

+ 􏽢σλc + 􏽢Lλλλ􏽢σλλ􏼑,

(26)

where

􏽢gi �
zg(c, λ)

zi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌c�􏽢c,λ�􏽢λ

􏽢gij �
z2g(c, λ)

zi zj

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌c�􏽢c,λ�􏽢λ

􏽢ρi �
zρ(c, λ)

zi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌c�􏽢c,λ�􏽢λ

,

􏽢Lij �
z2L(c, λ)

zi zj

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌c�􏽢c,λ�􏽢λ

􏽢Lijk �
z3L(c, λ)

zi zj zk
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􏽢σ � −
1
􏽢L

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌c�􏽢c,λ�􏽢λ

.

(27)

Partial derivatives of L in equations (7)–(11) are also

Lccc �
2r

c
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r

i�1
x

− c
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3

− 􏽘
m
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λRj ln Tqj

KjAj − 2C
v
j􏼐 􏼑A

3
j ,

Lλλλ �
2r

λ3
− 􏽘

m

j�1
Rj DjAj − 2B

2
j􏼐 􏼑A

3
j ,

Lcλc � − 􏽘

r

i�1
x

− c
i ln xi( 􏼁

2
− 􏽘

m

j�1
Rj KjAj − 2C

2
j􏼐 􏼑A

3
j ,

(28)

Lcλλ � − 􏽘
m

j�1

EjRj Aj − 2Bj􏼐 􏼑

A
3
j

, (29)

where Dj � (zBj/zλ) � T
− c
qj

Bj, Ej � (zBj/zc) �

− λT
− c
qj
ln Tqj

Bj, Fj � (zCj/zλ) � − λDj ln Tqj
, and

Kj � (zCj/zc) � ln Tqj
[Bj − λEj].

+e log-JP is given as

ρ(c, λ) � log[π(c, λ)] � C + a1 − 1( 􏼁log c

+ a2 − 1( 􏼁λ − b1c − b2λ.
(30)

+us, the partial derivatives of log-JP distribution are

ρc �
zρ(c, λ)

zc
�

a1 − 1
c

− b1, (31)

ρλ �
zρ(c, λ)

zλ
�

a2 − 1
λ

− b2. (32)

Under the SEr function, the BE of c is already provided
as

g(c, λ) � c⇒gc � 1, gλ � gcc � gcλ � gλc � gλλ

� 0 andLcλλ � 0.
(33)

By substituting equations (7)–(11), (18)–(33) in (26), the
estimates of c and λ can be written as 􏽢cLindley and 􏽢λLindley.

3.2. Metropolis–Hasting Algorithm. We need to specify IW
model and beginning values for the unknown parameters c

and λ to run the MH method for the IW distribution. We
explore a bivariate normal distribution for the proposal
distribution, that is, q((c′, λ′)|(c, λ)) � N2((c, λ), Sc,λ). We
may get negative observations, which are undesirable, if Sc, λ
represents the variance-covariance matrix. We use the MLE
for c and λ to determine the starting values, that is,
(c(0), λ(0)) � (􏽢c, 􏽢λ). +e selection of Sc,λ is examined to be
the asymptotic V-C matrix I− 1(􏽢c, 􏽢λ), where I(.) is the Fisher
informationmatrix. It is worthmentioning that the choice of
Sc,λ is critical in the MH Algorithm 1, since the acceptance
rate is determined by it. +e following steps are followed
used by theMHmethod to draw a sample from the PD given
by equation (24) supplied in the following manner.

If u≤ β set θ(i)
� θ′

otherwise set θ(i)
� θ.

⎧⎨

⎩ (34)

Eventually, using the PD’s random samples of size M,
part of the initial samples can indeed be eliminated (burn-
in), and the remaining samples can be used to produce BEs.
Extra precisely equation (24) can be estimated as

􏽥gMH(c, λ) �
1

M − lB
􏽘

M

i�lB

g ci, λi( 􏼁, (35)

where lB is the total number of burn-in samples.

3.3. Highest Posterior Density (HDP). We use the samples
generated from the proposed MH method in the preceding
subsection to create HPD intervals for the unknown pa-
rameters c and λ of the IW distribution under PCTI.
Consider the following scenario: c(δ) and λ(δ) are the δ th Q
of c and λ, respectively, that is,

c
(δ)

, λ(δ)
􏼐 􏼑 � inf (c, λ): Π((c, λ)|x)≥ δ􏼈 􏼉, (36)

where 0< δ < 1 and Π(·) is the posterior distribution
function of c and λ. It is worth noting that, for specific c∗

and λ∗, a simulation accurate estimator of π((c, λ)|x) may be
calculated as

Π c
∗
, λ∗( 􏼁|x( 􏼁 �

1
M − lB

􏽘

M

i�lB

I(c,λ)≤ c∗,λ∗( ). (37)

Here I(c,λ)≤(c∗,λ∗) is the indicator function. +en the
appropriate estimate is computed as
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􏽢Π c
∗
, λ∗( 􏼁|x( 􏼁 �

0 if c
∗
, λ∗( 􏼁< c lB( ), λ lB( )􏼒 􏼓

􏽘

i

j�lB

ωj if c(i), λ(i)􏼐 􏼑< c
∗
, λ∗( 􏼁< c(i+1), λ(i+1)􏼐 􏼑

1 if c
∗
, λ∗( 􏼁> c(M), λ(M)􏼐 􏼑

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (38)

where ωj � (1/M − lB) and (c(j), λ(j)) are the ordered values
of (cj, λj). Now, for i � lB, . . . , M, (c(δ), λ(δ)) can be ap-
proximated by

􏽥c
(δ)

, 􏽥λ
(δ)

􏼒 􏼓 �

c lB( ), λ(l− B)􏼒 􏼓 if δ � 0

c(i), λ(i)􏼐 􏼑 if 􏽘
i− 1

j�lB

ωj < δ < 􏽘
i

j�lB

ωj.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(39)

Let us now compute a 100(1 − δ)% HPD credible in-
terval for c and λ

HPDc

j � 􏽥c
(j/M)

, 􏽥c
(j+(1− δ)M/M)

􏼐 􏼑 andHPDλ
j

� 􏽥λ
(j/M)

, 􏽥λ
(j+(1− δ)M/M)

􏼒 􏼓,
(40)

for j � lB, . . . , [δM]; here [a] represents the biggest integer
that is less than or equal to a.+en select HPDj∗ from among
all HPDj

′ s with the shortest width.

4. Simulation Study and Real Data Application

4.1. Simulation Study. In this part, we use a Monte Carlo
simulation study to evaluate the performance of estimation
approaches, namely, MLLE and Bayesian estimation using
MCMC and Lindley’s approximation, for the IW distribu-
tion using a PCTI scheme. We create 1000 data sets from the
IW distribution for the MLEs under the next assumptions:

(1) Two initial values are IW(c � 2, λ � 1.5) and
IW(c � 1, λ � 2)

(2) Sample sizes are n � 25, 50, 100
(3) Number of stages of PCTI is m � 3, 4, 5
(4) Censoring time Tqj

is calculated on the basis for the
identified qth

j Qs from IW(2, 1.5) and IW(1, 2):

(a) At m � 3 and qj � (10%, 40%, 70%)

(b) At m � 4 and qj � (10%, 30%, 50%, 70%)

(c) At m � 5 and qj � (10%, 25%, 40%, 55%, 70%)

(5) Omitted items Rj are proposed based on a fraction of
sample size n where the number of removed items in
each stage of censoring can be computed from

Rj � ⌈
f%n

m − 1
⌉, f � 0%, 25%, 50%. (41)

+us, the proposed schemes of removing items can be

Scheme I (f � 0%): R1 � R2 � · · · � Rm− 1 � 0,
Scheme II (f � 25%): R1 � R2 � · · · � Rm− 1 �

⌈25%n/m − 1⌉

Scheme III (f � 50%): R1 � R2 � · · · � Rm− 1 �

⌈50%n/m − 1⌉,

When Rm � n − (􏽐
m− 1
j�1 Rj + r) and r is the number of

failure items and ⌈⌉ is the ceiling function. It is indicated that
scheme I represents Type-I censoring scheme where
Rm � n − r.

We construct MLEs and related 95% asymptotic CIs
premised on the data that is generated. When constructing
MLEs, the initial estimate values are assumed to be the same
as the real parameter values.

Under the informative prior (IP), we calculate BEs using
the MH algorithm for Bayesian estimation. +us, we have
the following.

(i) As previous samples for the gamma prior, we pro-
duce 1000 complete samples of size 60 each from the
IW(2, 1.5) and IW(1, 2) distributions, and then
obtain the hyperparameter values accordingly:
a1 � 22.74, b1 � 14.20, a2 � 9.65, b2 � 4.29.

To compute the desired estimations, the aforementioned
IP values are entered in. We use the MLEs as starting guess
values, as well as the related V-C matrix Sθ of (ln(􏽢λ), ln(􏽢α))

when using the MH algorithm. Finally, we eliminated 2000

First Step Put initial value of θ as θ(0) � (􏽢c, 􏽢λ).
Second Step For i � 1, 2, . . . , M the necessary phases should be repeated:
2.1: Set θ � θ(i− 1).
2.2: Create a new value for the candidate parameter δ from N2(ln θ, Sθ).
2.3: Set θ′ � exp(δ).
2.4: Compute β � (π(θ′|x)/π(θ′x)), where π(·) is the PD.
2.5: Construct a sample u from the uniform U(0, 1) model
2.6: Accept or deny the new request according to θ′

ALGORITHM 1: Algorithm of MCMC.
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burn-in samples from the total of 10,000 samples generated
by the PD and then used [20] approach to get BEs and HPD
interval estimations.

Tables 1–6 show the average estimates for both tech-
niques. In addition, the first row displays average estimates
(AVEs) and interval estimates (IEs), while the second row
displays related mean square errors (MSErs) and average
lengths (ALs) with coverage probabilities (CPrs). It can be
seen from the table of values that, depending on MSErs,
larger values of n result in better estimates. It is also worth
noting that MLEs outperform Lindley BEs and that the
performance of BEs produced using MCMC outperforms
Bayes estimates obtained via LiA. It is also worth noting that
MCMC’s ALs and related CPrs for HPD intervals outper-
form LiA. Furthermore, when the units are eliminated at an
early stage in scheme II and scheme III, MSErs and ALs of
related interval estimations are typically smaller.

4.2. RealDataApplication. Two real data set are investigated
for illustration and also to examine the statistical perfor-
mance of the MLEs and BEs for the IW distribution under
different PCTI censoring schemes.

4.2.1. Data Set I. +e accompanying basic data set corre-
sponds to an unfiltered data set. +e data collection includes
34 observations of vinyl chloride data from [21], which
indicates cleanup gradient ground–water monitoring wells
in mg/L.

We begin by determining if the IW distribution is ap-
propriate for studying this data set. To assess the quality of
fit, we provide the MLEs of the parameters as well as the
value of the Kolmogorov–Smirnov (KS) test statistic. +e
estimated KS and p-value for the IW distribution are 0.1161
and 0.749 6, respectively, where 􏽢c � 0.8431 and 􏽢λ � 0.7121,
which indicate that this distribution can be considered as an
adequate model for the given data set.

From the raw data, one may construct, for example,
three PCTI censored samples with m � 3, 4, 5 stages at time
censoring Tqj

matching to the chosen qth
j , Qs, where

j � 1, . . . , m. +e sequences of deleted elements are pre-
sented for three fractions of eliminating f � 0%, 25%, 50%
of total sample size (n � 34). Table 7 describes these patterns
of removal process.

Here, (1∗4, 0) indicates, for example, that the censoring
scheme used is (1, 1, 1, 1, 0)\enleadertwodots

In Table 8, the MLEs of the parameters c and λ, as well as
their related standard error and ACI at suggested schemes
for PCTI samples in the provided real data set, have been
computed.

Additionally, BEs were computed using the MH algo-
rithm under the noninformative prior, i.e.,
a1 � b1 � a2 � b2 � 0. It is said while using the MHmethod
to generate samples from the posterior distribution, starting
values of (c, λ) are regarded as (c(0), λ(0)) � (􏽢c, 􏽢λ) and 􏽢c, 􏽢λ
are the MLEs of the parameters c, λ. Afterwards, 2000 burn-
in samples were eliminated from the overall 10 000 samples
generated by the PD, and BEs and HPD intervals were

produced. BEs based on LiA have been calculated based on
the MLEs.

+e convergence of MCMC estimate is in the case of
PCTI scheme III for the data set I where the percentage of
removal is f � 50%.+e BEs utilizingMCMC are converged
through three subgraphs, as shown in Figure 2: scatter plot,
histogram, and cumulative mean of the 10 000 estimates.

4.2.2. Data Set II. A real data set of the carbonation depth of
pier of a reinforced concrete girder bridge was analyzed
under progressive Type-I censoring scheme [22]. +e data
set represents 27 measurements which are

2.0, 2.1, 2.2, 2.3, 2.3, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.2,
3.2, 3.3, 3.3, 3.3, 3.4, 3.4, 3.4, 3.5, 3.5, 3.6, 3.7, 3.8, 3.9.

First, we check whether the IW distribution is suitable
for analyzing this data set. Also, we provide the MLEs of the
parameters as well as the value of the Kolmogorov–Smirnov
(KS) test statistic. +e estimated KS and p-value for the IW
distribution are 0.207 4 and 0.195 7, respectively, where 􏽢c �

5.2000 and 􏽢λ � 157.8003, which indicate that this distri-
bution can be considered as an adequate model for the given
data set.

Two different PCTI censored samples are assumed for
the given data set with m � 3, 5 stages at time censoring Tqj

matching to the chosen qth
j , Qs, where j � 1, . . . , m. Table 9

describes the patterns of removing elements for three
fractions of eliminating f � 0%, 25%, 50% of total sample
size (n � 27).

In Table 10, the MLEs of the parameters c and λ, as well
as their related ACI estimations and ACI at suggested
schemes for PCTI samples in the provided real data set, have
been computed.

As in data set I, BEs were computed using the MH al-
gorithm under the noninformative prior. +e starting values
of (c, λ) are regarded as (c(0), λ(0)) � (􏽢c, 􏽢λ). Finally, 2000
burn-in samples were eliminated from the overall 10 000
samples generated by the PD, and BEs and HPD intervals
were produced. BEs based on LiA have been calculated based
on the MLEs as a prior estimates.

Figure 3 illustrates the convergence of MCMC estimate
in the case of PCTI scheme II for the real data set II where the
percentage of removal is f � 50%. +e BEs utilizing MCMC
are converged through three subgraphs, as shown in scatter
plot, histogram, and cumulative mean of the 10 000
estimates.

5. Summary and Conclusion

We investigated the topic of IW distribution estimation and
prediction under PCTI from both classical and Bayesian
perspectives in this work. For the unknown parameters of
the IW distribution, we calculated maximum likelihood
estimates and associated asymptotic confidence intervals.
+en, using informative priors, we produced Bayes estimates
and the related HPD interval estimates. In addition, when an
informative prior is taken into account, a discussion of how
to pick the values of hyperparameters in Bayesian estimation
is examined based on historical samples. +e simulation
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Table 1: Numerical results of AVEs, ACIs, MSErs, ALs, and CPrs (in %) for c � 2 and λ � 1.5 under number of stages m � 3.

f% n Parm.
MLLE Bayesian: MCMC Bayesian: Lindley

AVE MSEr ACI AL/CPr AVE MSEr HPD AL/CPr AVE MSEr

0

25
c

2.102 (1.344, 2.861) 2.078 (1.348, 2.827) 2.062
0.159 1.517/96.60 0.155 1.479/96.60 0.278

λ 1.590 (0.952, 2.228) 1.579 (1.003, 2.329) 1.504
0.148 1.276/94.10 0.142 1.326/96.10 0.387

50
c

2.053 (1.536, 2.570) 2.040 (1.536, 2.584) 2.042
0.078 1.034/95.30 0.077 1.048/96.10 0.102

λ 1.541 (1.109, 1.972) 1.535 (1.137, 2.022) 1.522
0.054 0.863/95.40 0.053 0.885/97.00 0.090

100
c

2.029 (1.669, 2.389) 2.023 (1.655, 2.363) 2.026
0.034 0.720/96.50 0.034 0.708/96.20 0.040

λ 1.513 (1.214, 1.811) 1.510 (1.207, 1.807) 1.507
0.024 0.597/96.60 0.024 0.600/96.80 0.032

25

25
c

2.149 (1.328, 2.970) 2.123 (1.383, 3.074) 2.105
0.216 1.642/95.50 0.211 1.691/97.30 0.367

λ 1.586 (0.937, 2.235) 1.577 (1.005, 2.320) 1.442
0.140 1.298/95.10 0.134 1.315/97.00 0.691

50
c

2.065 (1.509, 2.621) 2.051 (1.572, 2.679) 2.053
0.085 1.112/96.00 0.084 1.107/97.90 0.118

λ 1.545 (1.103, 1.987) 1.541 (1.159, 2.027) 1.523
0.057 0.884/95.20 0.056 0.868/97.00 0.104

100
c

2.028 (1.647, 2.408) 2.021 (1.648, 2.414) 2.023
0.039 0.761/96.40 0.039 0.766/96.80 0.047

λ 1.522 (1.217, 1.828) 1.520 (1.192, 1.833) 1.517
0.027 0.611/95.90 0.026 0.641/96.20 0.037

50

25
c

2.167 (1.274, 3.059) 2.136 (1.274, 3.055) 2.091
0.266 1.785/95.70 0.256 1.780/96.00 0.471

λ 1.578 (0.914, 2.243) 1.573 (0.922, 2.322) 1.298
0.153 1.328/94.30 0.149 1.399/96.20 2.160

50
c

2.071 (1.481, 2.660) 2.055 (1.506, 2.650) 2.054
0.097 1.179/96.80 0.095 1.144/97.10 0.136

λ 1.541 (1.092, 1.990) 1.538 (1.112, 2.013) 1.505
0.057 0.898/96.10 0.056 0.901/96.80 0.137

100
c

2.047 (1.642, 2.452) 2.040 (1.630, 2.450) 2.044
0.046 0.810/96.10 0.046 0.820/96.50 0.055

λ 1.518 (1.208, 1.828) 1.516 (1.206, 1.825) 1.510
0.026 0.620/96.80 0.026 0.619/96.80 0.039

Note: Parm.: parameter, AV: average, and ACI: asymptotic confidence interval.

Table 2: Numerical results of AVEs, ACIs, MSErs, ALs, and CPrs (in %) for c � 2 and λ � 1.5 under number of stages m � 4.

f% n Parm.
MLLE Bayesian: MCMC Bayesian: Lindley

AVE MSEr ACI AL/CPr AVE MSEr HPD AL/CPr AVE MSEr

0

25
c

2.110 (1.349, 2.871) 2.086 (1.315, 2.841) 2.107
0.168 1.522/96.10 0.164 1.526/96.20 0.313

λ 1.605 (0.960, 2.249) 1.593 (0.906, 2.295) 1.497
0.153 1.289/93.60 0.148 1.389/95.30 2.667

50
c

2.057 (1.539, 2.576) 2.045 (1.516, 2.563) 2.048
0.077 1.036/96.00 0.076 1.047/96.00 0.101

λ 1.536 (1.106, 1.966) 1.530 (1.100, 1.974) 1.515
0.055 0.860/95.60 0.053 0.874/95.90 0.091

100
c

2.025 (1.666, 2.385) 2.019 (1.688, 2.363) 2.031
0.032 0.719/97.30 0.032 0.675/97.00 0.039

λ 1.513 (1.215, 1.812) 1.510 (1.243, 1.823) 1.501
0.023 0.596/96.90 0.023 0.580/98.00 0.033
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Table 2: Continued.

f% n Parm.
MLLE Bayesian: MCMC Bayesian: Lindley

AVE MSEr ACI AL/CPr AVE MSEr HPD AL/CPr AVE MSEr

25

25
c

2.158 (1.308, 3.007) 2.127 (1.267, 3.025) 2.102
0.245 1.699/95.10 0.237 1.758/96.00 0.427

λ 1.586 (0.931, 2.242) 1.578 (0.917, 2.249) 1.385
0.169 1.311/95.50 0.169 1.331/96.10 1.224

50
c

2.083 (1.520, 2.645) 2.069 (1.566, 2.702) 2.072
0.096 1.125/95.80 0.094 1.136/97.70 0.131

λ 1.552 (1.109, 1.995) 1.548 (1.125, 2.068) 1.529
0.061 0.886/94.70 0.059 0.943/97.10 0.113

100

c 2.032 (1.650, 2.413) 2.025 (1.607, 2.409) 2.033
0.042 0.763/96.00 0.042 0.802/96.30 0.046

λ 1.517 (1.213, 1.821) 1.515 (1.218, 1.810) 1.523
0.028 0.608/96.60 0.027 0.592/96.30 0.037

50

25
c

2.175 (1.271, 3.078) 2.141 (1.369, 2.995) 2.108
0.239 1.807/96.60 0.227 1.626/96.30 0.425

λ 1.576 (0.917, 2.234) 1.571 (0.928, 2.283) 1.298
0.140 1.317/94.80 0.136 1.354/96.20 1.758

50
c

2.071 (1.481, 2.659) 2.054 (1.518, 2.643) 2.055
0.090 1.178/96.70 0.088 1.125/96.60 0.128

λ 1.527 (1.085, 1.970) 1.524 (1.143, 1.965) 1.491
0.053 0.884/96.80 0.052 0.821/97.00 0.120

100
c

2.030 (1.622, 2.437) 2.022 (1.604, 2.408) 2.031
0.047 0.815/97.00 0.047 0.804/96.50 0.056

λ 1.522 (1.212, 1.833) 1.521 (1.222, 1.864) 1.519
0.029 0.621/95.80 0.028 0.642/97.20 0.039

Note: Parm.: parameter, AV: average, and ACI: asymptotic confidence interval.

Table 3: Numerical results of AVEs, ACIs, MSErs, ALs, and CPrs (in %) for c � 2 and λ � 1.5 under number of stages m � 5.

f% n Parm.
MLLE Bayesian: MCMC Bayesian: Lindley

AVE MSEr ACI AL/CPr AVE MSEr HPD AL/CPr AVE MSEr

0

25
c

2.110 (1.352, 2.869) 2.086 (1.412, 2.891) 2.072
0.158 1.517/96.30 0.154 1.479/97.30 0.265

λ 1.600 (0.958, 2.241) 1.588 (0.946, 2.310) 1.501
0.151 1.283/94.40 0.144 1.364/95.90 0.575

50
c

2.070 (1.550, 2.590) 2.058 (1.560, 2.586) 2.062
0.079 1.040/96.20 0.077 1.026/96.70 0.104

λ 1.529 (1.101, 1.956) 1.522 (1.141, 1.993) 1.505
0.051 0.855/96.20 0.049 0.852/97.90 0.092

100
c

2.024 (1.664, 2.383) 2.017 (1.698, 2.415) 2.020
0.034 0.719/96.10 0.033 0.717/97.50 0.039

λ 1.521 (1.221, 1.821) 1.518 (1.217, 1.827) 1.516
0.025 0.600/95.80 0.025 0.610/96.60 0.032

25

25
c

2.156 (1.275, 3.038) 2.124 (1.331, 3.074) 2.099
0.228 1.763/95.50 0.218 1.743/96.50 0.412

λ 1.596 (0.930, 2.261) 1.590 (0.931, 2.268) 1.412
0.206 1.331/94.70 0.211 1.337/95.60 0.936

50
c

2.070 (1.498, 2.642) 2.055 (1.541, 2.668) 2.057
0.093 1.144/96.10 0.090 1.127/97.00 0.127

λ 1.542 (1.100, 1.983) 1.537 (1.105, 1.977) 1.512
0.055 0.883/96.60 0.054 0.872/96.70 0.119

100
c

2.034 (1.645, 2.423) 2.026 (1.662, 2.427) 2.030
0.040 0.778/96.30 0.040 0.765/96.80 0.047

λ 1.523 (1.217, 1.828) 1.521 (1.245, 1.840) 1.517
0.025 0.611/97.10 0.024 0.595/97.70 0.035
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Table 3: Continued.

f% n Parm.
MLLE Bayesian: MCMC Bayesian: Lindley

AVE MSEr ACI AL/CPr AVE MSEr HPD AL/CPr AVE MSEr

50

25
c

2.178 (1.217, 3.139) 2.138 (1.311, 3.250) 2.076
0.309 1.922/94.40 0.295 1.939/97.00 0.575

λ 1.594 (0.915, 2.272) 1.590 (0.876, 2.263) 1.242
0.193 1.357/95.60 0.190 1.387/95.70 3.589

50
c

2.101 (1.477, 2.724) 2.082 (1.504, 2.775) 2.084
0.119 1.247/95.70 0.115 1.271/97.40 0.166

λ 1.541 (1.091, 1.992) 1.539 (1.041, 2.019) 1.493
0.064 0.901/94.80 0.063 0.978/95.80 0.175

100
c

2.034 (1.615, 2.452) 2.025 (1.637, 2.471) 2.028
0.048 0.836/96.20 0.047 0.833/97.30 0.058

λ 1.516 (1.206, 1.827) 1.515 (1.228, 1.851) 1.506
0.027 0.621/96.10 0.027 0.622/97.20 0.043

Note: Parm.: parameter, AV: average, and ACI: asymptotic confidence interval.

Table 4: Numerical results of AVEs, ACIs, MSErs, ALs, and CPrs (in %) for c � 1 and λ � 2 under number of stages m � 3.

f% n Parm.
MLLE Bayesian: MCMC Bayesian: Lindley

AVE MSEr ACI AL/CPr AVE MSEr HPD AL/CPr AVE MSEr

0

25
c

1.072 (0.688, 1.456) 1.060 (0.644, 1.455) 1.013
0.051 0.768/95.20 0.050 0.811/95.60 0.323

λ 2.166 (1.251, 3.081) 2.148 (1.285, 3.286) 2.155
0.359 1.830/93.80 0.356 2.001/95.70 0.365

50
c

1.037 (0.776, 1.299) 1.031 (0.764, 1.288) 1.023
0.021 0.523/96.20 0.020 0.524/96.00 0.062

λ 2.086 (1.480, 2.692) 2.075 (1.502, 2.736) 2.082
0.131 1.212/94.60 0.128 1.234/96.10 0.132

100
c

1.011 (0.830, 1.190) 1.007 (0.852, 1.202) 1.002
0.009 0.360/96.90 0.008 0.350/98.20 0.016

λ 2.025 (1.615, 2.436) 2.021 (1.614, 2.436) 2.025
0.046 0.821/95.80 0.046 0.822/96.10 0.047

25

25
c

1.074 (0.663, 1.485) 1.061 (0.692, 1.483) 1.011
0.052 0.822/96.10 0.053 0.791/96.70 0.386

λ 2.156 (1.236, 3.077) 2.150 (1.387, 3.158) 2.142
0.356 1.841/95.10 0.357 1.771/96.60 0.363

50
c

1.042 (0.762, 1.322) 1.035 (0.760, 1.310) 1.025
0.022 0.560/96.90 0.021 0.550/96.90 0.079

λ 2.090 (1.476, 2.703) 2.081 (1.491, 2.813) 2.085
0.130 1.227/94.30 0.127 1.322/97.10 0.133

100
c

1.013 (0.820, 1.199) 1.006 (0.831, 1.193) 0.999
0.010 0.379/96.50 0.009 0.362/96.60 0.019

λ 2.029 (1.615, 2.443) 2.024 (1.608, 2.435) 2.028
0.046 0.828/96.50 0.045 0.827/96.60 0.047

50

25
c

1.086 (0.637, 1.535) 1.071 (0.657, 1.649) 0.964
0.071 0.898/94.10 0.070 0.992/97.00 0.756

λ 2.153 (1.225, 3.082) 2.140 (1.316, 3.179) 2.132
0.303 1.857/95.00 0.301 1.863/96.20 0.322

50
c

1.034 (0.739, 1.329) 1.026 (0.744, 1.339) 0.994
0.025 0.590/95.80 0.025 0.595/96.90 0.122

λ 2.078 (1.464, 2.693) 2.070 (1.446, 2.738) 2.072
0.127 1.229/95.20 0.124 1.292/96.30 0.132

100
c

1.014 (0.813, 1.215) 1.010 (0.814, 1.211) 1.002
0.010 0.402/96.90 0.010 0.397/96.70 0.024

λ 2.036 (1.616, 2.455) 2.031 (1.594, 2.455) 2.034
0.054 0.839/95.30 0.053 0.861/95.40 0.055

Note: Parm.: parameter, AV average, and ACI asymptotic confidence interval.
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Table 5: Numerical results of AVEs, ACIs, MSErs, ALs, and CPrs (in %) for c � 1 and λ � 2 under number of stages m � 4.

f% n Parm.
MLLE Bayesian: MCMC Bayesian: Lindley

AVE MSEr ACI AL/CPr AVE MSEr HPD AL/CPr AVE MSEr

0

25
c

1.074 (0.690, 1.458) 1.061 (0.683, 1.436) 1.036
0.046 0.768/96.10 0.044 0.753/95.80 0.264

λ 2.161 (1.251, 3.071) 2.141 (1.326, 3.224) 2.149
0.326 1.820/94.00 0.317 1.898/96.20 0.333

50
c

1.027 (0.768, 1.285) 1.020 (0.762, 1.274) 1.005
0.018 0.517/96.80 0.018 0.512/96.70 0.059

λ 2.075 (1.473, 2.676) 2.064 (1.526, 2.738) 2.071
0.116 1.203/95.00 0.113 1.212/96.50 0.117

100
c

1.016 (0.835, 1.196) 1.013 (0.835, 1.182) 1.010
0.008 0.361/96.60 0.007 0.347/96.30 0.015

λ 2.027 (1.616, 2.437) 2.021 (1.633, 2.465) 2.025
0.048 0.821/95.60 0.047 0.832/96.90 0.048

25

25
c

1.089 (0.661, 1.516) 1.074 (0.674, 1.538) 1.032
0.060 0.855/94.90 0.057 0.864/96.10 0.475

λ 2.166 (1.241, 3.091) 2.150 (1.359, 3.343) 2.145
0.334 1.850/94.10 0.328 1.984/97.10 0.351

50
c

1.036 (0.756, 1.316) 1.029 (0.744, 1.310) 1.012
0.022 0.560/95.90 0.021 0.566/96.40 0.083

λ 2.070 (1.465, 2.675) 2.060 (1.498, 2.777) 2.064
0.118 1.210/94.70 0.115 1.279/96.60 0.121

100
c

1.015 (0.824, 1.206) 1.011 (0.832, 1.238) 1.005
0.011 0.382/95.60 0.010 0.406/97.60 0.022

λ 2.038 (1.622, 2.455) 2.034 (1.608, 2.441) 2.037
0.051 0.833/95.90 0.050 0.833/96.00 0.052

50

25
c

1.083 (0.630, 1.536) 1.066 (0.630, 1.523) 0.976
0.066 0.906/95.60 0.063 0.893/96.00 0.741

λ 2.173 (1.232, 3.113) 2.159 (1.288, 3.363) 2.148
0.383 1.881/93.70 0.381 2.075/95.80 0.396

50
c

1.040 (0.744, 1.336) 1.031 (0.742, 1.348) 1.010
0.026 0.592/95.80 0.025 0.606/97.20 0.110

λ 2.066 (1.459, 2.673) 2.057 (1.498, 2.721) 2.060
0.110 1.214/95.00 0.108 1.224/96.10 0.115

100
c

1.019 (0.814, 1.223) 1.014 (0.806, 1.216) 1.009
0.011 0.409/96.60 0.012 0.410/96.60 0.025

λ 2.030 (1.613, 2.447) 2.025 (1.646, 2.510) 2.028
0.051 0.834/95.10 0.054 0.864/97.60 0.053

Note: Parm.: parameter, AV: average, and ACI: asymptotic confidence interval.

Table 6: Numerical results of AVEs, ACIs, MSErs, ALs, and CPrs (in %) for c � 1 and λ � 2 under number of stages m � 5.

f% n Parm.
MLLE Bayesian: MCMC Bayesian: Lindley

AVE MSEr ACI AL/CPr AVE MSEr HPD AL/CPr AVE MSEr

0

25
c

1.054 (0.675, 1.432) 1.042 (0.695, 1.435) 0.952
0.042 0.757/95.90 0.041 0.740/97.00 0.836

λ 2.170 (1.259, 3.080) 2.151 (1.409, 3.194) 2.164
0.271 1.821/94.60 0.262 1.785/96.80 0.280

50
c

1.027 (0.768, 1.287) 1.021 (0.760, 1.295) 1.005
0.019 0.519/95.30 0.019 0.535/96.20 0.061

λ 2.072 (1.471, 2.673) 2.063 (1.492, 2.710) 2.070
0.117 1.202/94.60 0.115 1.218/96.20 0.120

100
c

1.017 (0.836, 1.197) 1.014 (0.842, 1.196) 1.011
0.009 0.361/96.90 0.008 0.353/97.20 0.016

λ 2.048 (1.632, 2.464) 2.043 (1.640, 2.456) 2.047
0.049 0.831/96.80 0.048 0.815/96.80 0.049
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Table 6: Continued.

f% n Parm.
MLLE Bayesian: MCMC Bayesian: Lindley

AVE MSEr ACI AL/CPr AVE MSEr HPD AL/CPr AVE MSEr

25

25
c

1.092 (0.648, 1.537) 1.077 (0.687, 1.621) 1.002
0.071 0.889/93.10 0.068 0.934/97.00 0.677

λ 2.171 (1.240, 3.103) 2.157 (1.299, 3.244) 2.149
0.345 1.863/93.70 0.342 1.945/96.10 0.363

50
c

1.041 (0.753, 1.328) 1.033 (0.757, 1.357) 1.018
0.024 0.575/95.50 0.023 0.600/97.00 0.093

λ 2.089 (1.477, 2.702) 2.079 (1.472, 2.729) 2.085
0.117 1.225/95.30 0.114 1.257/96.30 0.120

100
c

1.019 (0.824, 1.214) 1.015 (0.831, 1.207) 1.012
0.010 0.390/96.80 0.009 0.376/96.60 0.020

λ 2.036 (1.620, 2.452) 2.032 (1.617, 2.486) 2.035
0.051 0.832/95.50 0.051 0.869/96.60 0.052

50

25
c

1.112 (0.622, 1.602) 1.092 (0.665, 1.701) 1.009
0.091 0.980/93.90 0.085 1.036/96.80 0.951

λ 2.188 (1.233, 3.144) 2.177 (1.319, 3.410) 2.154
0.410 1.911/93.40 0.415 2.091/96.50 0.430

50
c

1.052 (0.740, 1.365) 1.043 (0.740, 1.369) 1.030
0.031 0.625/95.30 0.030 0.629/95.90 0.126

λ 2.079 (1.466, 2.693) 2.071 (1.509, 2.775) 2.071
0.120 1.227/94.80 0.118 1.266/96.60 0.125

100
c

1.024 (0.813, 1.234) 1.019 (0.797, 1.231) 1.014
0.013 0.421/96.30 0.012 0.434/96.60 0.030

λ 2.043 (1.623, 2.464) 2.039 (1.612, 2.480) 2.041
0.056 0.841/95.30 0.055 0.868/96.60 0.057

Note: Parm.: parameter, AV: average, and ACI: asymptotic confidence interval.

Table 7: Removal patterns of units under different censoring schemes for data set I.

Scheme m qj(%) Tqj
Ri

I 3 (10, 40, 70) (0.26, 0.90, 2.31)
f0%: R � (0∗2, Rm)

f25%: R � (3∗2, Rm)

f50%: R � (5∗2, Rm)

II 4 (10, 30, 50, 70) (0.26, 0.59, 1.15, 2.31)
f0%: R � (0∗3, Rm)

f25%: R � (2∗3, Rm)

f50%: R � (4∗3, Rm)

III 5 (10, 25, 40, 55, 70) (0.26, 0.50, 0.90, 1.251, 2.31)
f0%: R � (0∗4, Rm)

f25%: R � (2∗4, Rm)

f50%: R � (3∗4, Rm)

Table 8: MLL, Bayesian, and St.E and ACI based on the PCTI under various censoring schemes for data set I.

Sch. f% Parm.
MLL MCMC Lindley

Estimate St.E ACI Estimate St.E HPD Estimate

I

0 c 0.4720 0.0952 (0.2854, 1.1864) 0.6417 0.0165 (0.4024, 0.9145) 0.7053
λ 1.7210 0.2727 (0.6586, 2.2556) 1.0312 0.0555 (0.5647, 1.4825) 1.7534

25 c 0.5186 0.1131 (0.2968, 1.0013) 0.6151 0.0216 (0.3353, 0.8893) 0.8423
λ 1.5560 0.2830 (0.7405, 2.1107) 1.0192 0.0671 (0.5144, 1.5035) 1.6146

50 c 0.4557 0.1157 (0.2289, 1.0803) 0.5234 0.0198 (0.2898, 0.8476) 0.9699
λ 1.7423 0.3377 (0.6825, 2.4043) 1.2496 0.0945 (0.6814, 1.8303) 1.8185
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outcomes demonstrate that MLEs informative Bayes esti-
mates using Lindley approximation perform better than
both MLEs and informative prior using Lindley approxi-
mation and that estimates under informative prior using
MCMC perform better than both MLEs and informative

prior using Lindley approximation. We used Bayesian es-
timation with the squared error loss function for future
work, but other loss functions can also be used. In addition,
the current approach may be extended to the construction of
an optimum progressive censoring, as well as alternative

Table 8: Continued.

Sch. f% Parm.
MLL MCMC Lindley

Estimate St.E ACI Estimate St.E HPD Estimate

II

0 c 0.5406 0.1072 (0.3304, 0.9283) 0.6486 0.0166 (0.4117, 0.9216) 0.7447
λ 1.4382 0.2601 (0.7507, 1.9482) 1.0257 0.0545 (0.5853, 1.4701) 1.4749

25 c 0.6203 0.1207 (0.3838, 0.8324) 0.7199 0.0203 (0.4393, 0.9876) 0.8450
λ 1.3309 0.2543 (0.8569, 1.8294) 0.9202 0.0493 (0.5122, 1.3606) 1.3860

50 c 0.5892 0.1442 (0.3065, 0.7183) 0.5459 0.0247 (0.2531, 0.8646) 0.9890
λ 1.3319 0.3130 (0.8720, 1.9455) 1.1908 0.0990 (0.6207, 1.8487) 1.4416

III

0 c 0.5406 0.1072 (0.3304, 0.9283) 0.6427 0.0176 (0.3972, 0.9138) 0.7527
λ 1.4382 0.2601 (0.7507, 1.9482) 1.0185 0.0561 (0.5831, 1.4811) 1.3028

25 c 0.6217 0.1417 (0.3439, 0.6541) 0.6094 0.0211 (0.3299, 0.8943) 0.9460
λ 1.1831 0.2698 (0.8994, 1.7120) 1.0463 0.0623 (0.5815, 1.5315) 1.2913

50 c 0.6971 0.1528 (0.3976, 0.5897) 0.6977 0.0288 (0.3841, 1.0246) 1.0644
λ 1.1005 0.2606 (0.9966, 1.6114) 0.9170 0.0671 (0.4681, 1.4697) 1.2497

Note: ACI: asymptotic confidence interval, Parm.: parameter, Schs.: scheme, and St.E: standard error.
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Figure 2: Convergence of MCMC estimates for c and λ implementing the MH method for data set I under PCTI m � 5 and f � 50%.
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Table 9: Removal patterns of units under different censoring schemes for data set II.

Scheme m qj(%) Tqj
Ri

I 3 (10, 40, 70) (2.26, 2.84, 3.40)
f0%: R � (0∗2, Rm)

f25%: R � (3∗2, Rm)

f50%: R � (5∗2, Rm)

II 5 (10, 25, 40, 55, 70) (2.26, 2.45, 2.84, 3.23, 3.40)
f0%: R � (0∗4, Rm)

f25%: R � (2∗4, Rm)

f50%: R � (3∗4, Rm)

Table 10: MLL, Bayesian, and St.E and ACI based on the PCTI under various censoring schemes for data set II.

Sch. f% Parm.
MLL MCMC Lindley

Estimate St.E ACI Estimate St.E HPD Estimate

I

0 c 2.9651 0.6477 (1.6130, 5.6993) 2.9660 9.34 ×10(− 5) (2.9464, 2.9853) 2.9793
λ 27.0113 1.7130 (23.3172, 33.3233) 27.0115 1.01 ×10(− 4) (26.9920, 27.0312) 27.0107

25 c 3.5567 0.8081 (2.0791, 6.0904) 3.5572 9.72 ×10(− 5) (3.5382, 3.5767) 3.5741
λ 44.8461 3.3430 (24.0343, 64.6019) 44.8460 1.02 ×10(− 4) (44.8270, 44.8656) 44.8457

50 c 3.2201 0.9133 (1.5435, 7.6124) 3.2204 9.93 ×10(− 5) (3.2016, 3.2404) 3.2475
λ 35.1225 4.9036 (23.8966, 46.6325) 35.1224 1.06 ×10(− 4) (35.1022, 35.1414) 35.1216

II

0 c 3.5062 0.7624 (3.0917, 7.3792) 3.5068 9.83 ×10(− 5) (3.48812, 3.5276) 3.5222
λ 38.4492 2.7722 (23.9207, 53.5191) 38.4491 1.02 ×10(− 4) (38.4290, 38.4685) 38.4487

25 c 4.6583 1.0922 (2.9813, 10.7054) 4.6585 9.88 ×10(− 5) (4.6387, 4.6772) 4.6790
λ 59.4018 9.4702 (28.3353, 78.0982) 59.4020 1.06 ×10(− 4) (29.3828, 80.4223) 59.4016

50 c 3.9068 1.1731 (2.0377, 12.2449) 3.9066 9.97 ×10(− 5) (3.8868, 3.9259) 3.9306
λ 48.4916 13.8929 (18.7758, 74.7383) 48.4915 1.09 ×10(− 4) (48.4720, 48.5111) 48.4911

Note: ACI: asymptotic confidence interval, Parm.: parameter, Schs.: scheme, and St.E: standard error.
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Figure 3: Convergence of MCMC estimates for c and λ implementing the MH method for the data set II under PCTI m � 5 and f � 50%.
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censoring methods. Neutrosophic statistics can be an ex-
tended work on area of progressive censoring schemes under
the assumed distribution and PCTTI.
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