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)is paper presents a general method for fatigue life prediction of corroded steel reinforcing bars. A fatigue testing on standard
specimens with pitting corrosion is carried out to obtain corrosion fatigue data. )e maximum corrosion degree (MCD),
characterizing the most severe site of the corrosion pit, is identified to have a log-linear relationship with the fatigue life. A fatigue
life model incorporating the MCD and the stress range for corroded steel reinforcing bars is proposed. )e model parameters are
identified using the testing data, and the model is considered as the baseline model. To utilize the proposed model for life
prediction of corroded steel reinforcing bars with different geometries and working conditions, the Bayesian method is employed
to update the baseline model. )e effectiveness of the overall method is demonstrated using independent datasets of realistic steel
reinforcing bars.

1. Introduction

Fatigue phenomenon in civil engineering is an increasingly
prominent concern and cannot be ignored [1–7]. It has been
widely reported that the fatigue failure of reinforced con-
crete (RC) bridge structures is controlled by the failure of
steel reinforcing bars [8, 9]; therefore, the fatigue perfor-
mance of reinforcing bars plays a significant role in the safety
of RC structures subjected to cyclic fatigue loading. To make
things even worse, in the harsh environment of chloride
concentration or relatively severe concrete carbonization,
the passive film on reinforcing steel bars is disrupted and the
bars are likely to get corroded prematurely over the service
life of the RC structures [10–12]. Corrosion can have serious
impacts on steel reinforcing bars, including the reduction of
the cross-sectional area, passive changes of the mechanical
properties (especially for fatigue), and stress concentration
near the corrosion pit [11, 13, 14]. Brittle fracture may occur
more often and faster for the corroded steel reinforcing bars

subjected to fatigue loading compared to the uncorroded
bars.

Studies of fatigue behavior of corroded reinforcing bars
have been carried out over the past few decades. Fernandez
et al. [13] performed a series of fatigue tests consisting of 140
corroded reinforcing bars under 3 stress ranges and reported
a negative exponential model correlating the fatigue life with
the corrosion degree, which is defined as the ratio between
the mass loss and the initial mass. Tang et al. [15] conducted
an experimental study on 22 deformed reinforcing bars with
corrosion degrees (mass loss ratio) of 0%, 5%, 10%, and 20%.
In the study, corrosion damages were made using the
impressed current technique, and fatigue life data with
different corrosion degrees were analyzed. Li et al. [16]
studied the performance of tensile fatigue using 15 plane
steel bars with naturally carbonation-induced corrosions.
Corrosion degrees ranging from 15% to 30% under 3 stress
ranges were used. Results showed that fatigue life of steel
reinforcement with natural corrosions has a power law
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dependence with the corrosion degree, and the log-scale
slope parameter increases with the increasing of the stress
range. Ma et al. [17] created semielliptical and triangular
corrosion pits on reinforcing bars by removing materials
directly. Fatigue life data of the steel reinforcing bars with
different notch shapes and sizes were presented. Zhang et al.
[18] obtained the fatigue lives of both artificially and nat-
urally corroded reinforcing bars and found that the artifi-
cially corroded reinforcing bars are more susceptible to
corrosion damage. An empirical fatigue life prediction
model was proposed to incorporate the combined influence
of the corrosion degree and the stress range.

Although a great deal of efforts has been made in fatigue
life prediction of corroded steel reinforcing bars, there still
remain challenges for practical engineering applications. In
particular, most of the reported fatigue life prediction
models are specific to certain circumstances and applica-
tions. For instance, model parameters need calibrations
when the geometry of the bars or the working condition
changes significantly. )is is due to the uncertain nature of
the corrosion process and the variation of the environment.
In addition, the mass loss ratio, which is widely used in those
models, characterizes an average influence of the corrosion
pit to the fatigue life. It rarely accounts for the most severe
location of a corrosion pit. It has been shown that the
minimum cross section of a local corrosion pit is the most
critical site for fatigue crack initiation, propagation, and final
fracture due to stress concentration and cyclic fatigue loads
[19–21]. As a result, the average treatment can introduce
additional uncertainty into fatigue life prediction.)erefore,
a more general fatigue life model taking the local geometry of
the corrosion pit into account is highly needed for a reliable
life prediction of corroded reinforcing bars.

)is study presents a general method for fatigue life
prediction of corroded reinforcing bars. To overcome the
potential limit of the mass loss ratio parameter, a new pa-
rameter defined based on the cross-sectional area reduction
is used. To resolve the issue that a model tunned with one set
of testing data can yield inaccurate results when it is directly
applied to applications with different geometry and working
conditions, Bayesian method is used to update the initial
baseline model with the observed data specific to the ap-
plication. )e rest of the study is structured as follows. First,
experimental work on standard reinforcing steel specimens
with pitting corrosion is introduced, and fatigue life testing
data are obtained. Next, a regression model is proposed to
associate the stress range and the maximum corrosion de-
gree (MCD) with the fatigue life. Following that, Bayesian
updating is employed to update the initial baseline model for
more general applications, and the effectiveness of the
proposed method is demonstrated using data of realistic
corroded reinforcing bars. Finally, conclusions are drawn
based on the current study.

2. Fatigue Testing of Corroded Specimens

)e overall method development process is illustrated in
Figure 1. Experimental testing is designed and performed on
14 precorroded standard specimens of steel reinforcements

to investigate the corrosion fatigue life under different stress
ranges. Two variables, the stress range and the MCD defined
as the maximum reduction of the cross-sectional area, are
identified as the characterizing factors of the fatigue life. A
baseline fatigue life prediction model is proposed by in-
corporating the two variables. To account for uncertainties
from different usage conditions, the Bayesian method is
employed to update the baseline model allowing for more
general applications. An independent dataset is used for
Bayesian updating and method verification.

2.1.Materials and Specimens. A total number of 14 corroded
standard specimens made from steel reinforcing bars are
prepared, and the fatigue testing data are acquired to build
the baseline model. Artificial corrosion pits are developed
using the impressed current technique in the NaCl solution.
)e maximum corrosion degree is measured with the three-
dimensional (3D) scan technique. Following this, the axial
fatigue testing is carried out under three different stress
ranges, and the results of fatigue life are acquired.)e degree
of corrosions in this study is tentatively controlled to be in
the range between 10% and 40% in terms of the maximum
cross-sectional area reduction to represent the actual degree
of corrosions in practice. )ree levels of applied loads are
considered to simulate the nominal and overload conditions.

)e dimension and an actual specimen used in this study
are shown in Figure 2. )e specimen is prepared by re-
moving the surface layer of hot-rolled ribbed steel bars
(HRB400) with an initial diameter of 20mm. )e chemical
composition of the material is shown in Table 1. )e ge-
ometry and dimension of the final specimens follow the code
requirement for both statistic [22] and fatigue testing [23].
)e elastic modulus and yield strength of the four uncor-
roded specimens are shown in Table 2. )e mean values of
the mechanical properties are calculated and are used as
references for fatigue testing.

2.2. Precorrosion and 3DMeasurement. )e corrosion pit is
developed on each of the 14 specimens using an accelerated
corrosion process in the solution of 5% NaCl with a current
density of 0.6mA/cm2. Before corrosion, the specimen is
wrapped using watertight insulation tapes to protect the
surface from the solution. An elliptical shape of the tape is
removed at the location for corrosion damage to expose the
metal surface to the solution, as shown in Figure 3(a). Both
ends of the specimen are sealed by hot-melt adhesive with
one end connected with a wire. A direct-current power
supply is used for the corrosion process during which the
specimen serves as anode and a separate stainless-steel bar as
the cathode, as shown in Figure 3(b). After the corrosion
process, the specimen is cleaned and stored in a dry con-
dition for fatigue testing.

Due to the nonuniform corrosion process, the width and
depth of the corrosion pit vary along the axial direction.
Consequently, the cross-sectional area also varies along the
axial direction. )e concept of maximum corrosion degree
(MCD), ηmax, is proposed to characterize the most severe
condition of the corrosion pit and is defined as follows:
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Figure 2: An actual specimen and its dimension (unit: mm).

Table 1: Chemical composition of HRB400 bars.

Chemical composition C Si Mn P S V
Percentage 0.22 0.45 1.34 0.028 0.031 0.033

Table 2: Mechanical properties of HRB400 bars.

Specimen no. M1 M2 M3 M4 Mean value
Elastic modulus E (MPa) 210330 212698 201833 205854 207679
Yielding strength σy (MPa) 460.29 463.88 446.09 450.23 455.12

exposed metal
surface

insulating tape

(a) (b)

Figure 3: Treatment of specimen and precorrosion setup. (a) Treatment of specimen before corrosion process. (b) Corrosion environment
setup.
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ηmax �
1 − Amin

A0
, (1)

where Amin is the minimum cross-sectional area of the
corrosion pit and A0 is the initial uncorroded cross-sectional
area.

A high-resolution 3D laser scanner is used to acquire the
surface data of the specimens [24]. )e laser scanner can
produce a point cloud of the surface. )e raw data are
processed using the Geomagic wrap software to reconstruct
a 3D surface for digital measurement [25].)e reconstructed
3D surface model is imported into the Pro/Engineer soft-
ware environment to form a solid volume for cross-sectional
measurement [26]. )e cross-sectional slices are sampled
from the solid volume at an interval of 0.1mm along the
axial direction in the corroded region.)e areas of the cross-
sectional slices are automatically computed in the Pro/En-
gineering software. )e minimum cross-sectional area is
identified as Amin. One of the specimens (FC3) is used for
illustration. )e actual corrosion pit of the specimen is
shown in Figure 4(a), and the reconstructed 3D surface
model is shown in Figure 4(b). )e model shown in
Figure 4(b) is imported into Pro/Engineer and the minimal
cross section in terms of MCD is identified, as shown in
Figure 5. )e whole digital processing and measurement
process is performed for each of the specimens, and the
results of MCD are listed in Table 3.

2.3. Fatigue Testing Results and Discussion. )e uniaxial
fatigue testing is carried out in air condition at room
temperature using a sinusoidal load with a stress ratio of 0.1.
An electrohydraulic fatigue testing machine (Instron 8801,
100 kN) is used to apply cyclic loads as shown in Figure 6.
)e loading frequency of the fatigue testing can be con-
figured using the control software. )e maximum loading
frequency of the electrohydraulic machine is 20Hz. )e
maximum frequency is used to reduce the testing time.
Based on the testing results of the mechanical properties, the
material has a mean yield strength of 455.12MPa. )ree
maximum nominal stress levels are chosen as 0.5σy, 0.7σy,
and 0.8σy. )e stress levels are chosen to represent the
normal service load and two overload conditions [27]. Given
the stress ratio of 0.1, the corresponding nominal stress
ranges are 0.45σy, 0.63σy, and 0.72σy, respectively. )e fa-
tigue testing can adopt two loading schemes, namely, the
force-controlled (ASTM E466) and the displacement-con-
trolled (ASTM E606). Depending on the context, they are
also called stress-controlled or strain-controlled, respec-
tively. For low-cycle fatigue problems where significant
plastic strains are involved and the resulting fatigue life is not
larger than 105 [5], the displacement (strain)-controlled
testing scheme is usually used. For high-cycle fatigue where
the total strain is elastic strain dominant, the force (stress)-
controlled testing scheme is suitable. In this study, the
maximum loading force is 0.8σy; therefore, the force-con-
trolled testing scheme is employed. )e stress ratio and the
minimum stress remain constant during the testing process.
)e nominal stress range is defined as the (Fmax − Fmin)/A0.

Terms Fmax and Fmin are the maximum and the minimum
forces, respectively, and A0 is the uncorroded cross-sectional
area. )e fatigue testing stops when the specimen is com-
pletely fractured and the number of applied load cycles at
rupture is recorded as the fatigue life. )e applied loads in
terms of the normal stress ranges and the actual stress ranges
at the MCD cross section for each of the specimens and the
associated fatigue life results are shown in Table 3. All the
specimens ruptured at their MCD cross sections due to the
maximum local stress at the cross section.

Based on the testing results, it can be seen that the fatigue
life in general decreases as the actual stress range increases.
)e observation is consistent with the usual fatigue testing
results. )e minimal and maximum values of actual stress
range in this case are 247.0MPa and 430MPa, respectively,
which correspond to the largest and smallest fatigue lives of
4060752 and 27611 cycles, respectively. Due to the uncertain
corroded surface conditions and the shapes of the MCD, the
fatigue life results exhibit the inherent interspecimen un-
certainty. For example, there is a noticeable difference in
fatigue life between FC7 and FC8 although the actual stress
ranges of the two specimens are almost identical.

3. Model Development

3.1. Fatigue Life PredictionModel. )e fatigue testing results
show that both the stress range and MCD have significant
influences on the fatigue life, and they are considered as
model independent variables. It is known that the same
stress range has different effects on different materials;
therefore, the normalized stress range, S/σy, is used for
model development. )e normalized stress range is defined
as the ratio between nominal stress range and the yielding
stress of the material. Unless stated otherwise, the stress
range in the text hereafter refers to the normalized nominal
stress range. To identify the relationship between the fatigue
life and MCD at different stress ranges, fatigue life versus
MCD are presented in Figure 7. A log-linear relationship
between the fatigue life and the MCD can be observed under
different stress ranges. At the same level of MCD, the fatigue
life decreases as the stress range increases.

In view of aforementioned features, a fatigue life model
incorporating the combined influence of stress range and
MCD is proposed as follows:

ln N � A1 + A2 ln
S

σy

􏼠 􏼡 + A3 ln ηmax, (2)

where N is fatigue life and A1, A2, and A3 are model pa-
rameters. It is noteworthy that other forms of regression
models can also be adopted. For example, an interaction
term ln(S/σy)lnηmax can be appended to the right-hand side
of equation (2) if it can be justified. )e formal and rigorous
method for model selection is beyond the scope of this study
and can be referred to in other studies [28].

3.2. Probabilistic Parameter Identification. )e parameters
A1, A2, and A3 of the model equation (2) can be obtained
using experimental data. For the deterministic estimation,
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the parameters can trivially be obtained using the standard
least square method; however, the deterministic fatigue life
prediction makes little sense for practical applications due to

the stochastic nature of fatigue process. To incorporate
uncertainties, the probabilistic approach is usually preferred.
In this study, the model parameters are identified statistically

ηmax=23.9%

Figure 5: 3D surface profile measurements and pit geometry of the specimen FC3.

(a) (b)

Figure 4: Specimen FC3 and the reconstructed 3D surface model. (a) )e actual specimen and the corrosion pit and (b) the reconstructed
3D surface model of the specimen using laser scanning data.

Table 3: Fatigue testing results of corroded specimens.

Specimen Nominal stress range S (MPa) MCD ηmax (%) Actual stress range σ (MPa) Fatigue life N (cycle)
FC1 204.8 17.1 247.0 4060752
FC2 204.8 21.1 259.6 1415913
FC3 204.8 23.9 269.1 670622
FC4 204.8 30.1 293.0 338315
FC5 204.8 35.1 315.6 274103
FC6 286.7 19.6 356.6 99580
FC7 286.7 21.3 364.3 153070
FC8 286.7 21.6 365.7 201968
FC9 286.7 22.8 371.4 93330
FC10 286.7 29.8 408.4 35814
FC11 327.7 13.8 380.1 247064
FC12 327.7 14.6 383.7 348902
FC13 327.7 16.9 394.3 125903
FC14 327.7 23.8 430.0 27611

Advances in Civil Engineering 5



using the Bayesian estimator [29]. )e core of the Bayesian
method is to make inference based on prior information and
data. )e Bayesian posterior reads

p(θ | D)∝p(θ) · p(D | θ), (3)

where p(θ) is the prior probability density function (PDF) of
a parameter (vector) θ, D is the data, p(D | θ) is the likeli-
hood, and p(θ |D) is the posterior distribution.)e posterior
distribution of parameters θ can be asymptotically obtained
using sampling methods, such asMarkov chainMonte Carlo

Figure 6: Fatigue testing setup.
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Figure 7: Relationship between fatigue life and MCD at three stress levels.
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(MCMC) simulation and its variants [30, 31]. Direct ap-
plications of the Bayesian method include parameter esti-
mation and model updating. Without loss of generality, the
model prediction error can be modeled as a zero-mean

Gaussian variable. Based on this general assumption, the
Bayesian estimator for the model parameters can be
expressed as follows [32]:

p A1, A2, A3, σe( 􏼁∝
1

σe

���
2π

√
σe( 􏼁

n exp −
1
2

􏽘

n

i�1

ln N − A1 − A2 ln S/σy􏼐 􏼑 − A3 ln ηmax

σe

⎡⎣ ⎤⎦

2⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (4)

where σe is the standard deviation of the error variable, n is
the number of available measurements, and p(A1, A2, A3, σe)
is the posterior joint PDF. Using the experimental data of the
specimens given in Table 3, 200,000 samples are drawn using
MCMC simulations. )e resulting distributions of model
parameters A1, A2, A3 and the standard deviation σe of the
error variable are shown in Figure 8.

)e model parameter vector (A1, A2, A3) follows a
multivariate normal distribution. )e mean vector μ and the
variance-covariance matrix Σ of the parameter vector (A1,
A2, A3) can be estimated from the MCMC samples as
follows:

μ � 2.4301 − 7.0829 − 3.9423􏼂 􏼃, (5)

Σ �

0.6601 0.3198 0.3108

0.3198 0.2857 0.1071

0.3108 0.1071 0.1643

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (6)

respectively. )e standard deviation of the error variable σe
follows a Gamma distribution with a shape parameter of
17.82 and a scale parameter of 0.0195. Using the mean of
parameter vector (A1, A2, A3), the mean prediction of the
model is obtained as follows:

ln N � 2.4301 − 7.0829 ln
S

σy

􏼠 􏼡 − 3.9423 ln ηmax. (7)

To verify the effectiveness of the proposed model, the
results of the mean prediction and the actual fatigue life
are visually compared in Figure 9. A good agreement
between model predictions (Npre) and experimental data
(Nexp) can be observed. )e model with the prior dis-
tribution of (A1, A2, A3) is used as the baseline model for
Bayesian updating.

4. Bayesian Updating for General Applications

)e baseline model above is constructed using data of the
standard specimens.)e dimension and size of the specimen
can be quite different from those of a realistic corroded
reinforcing bar in service [33]. Uncertain factors, such as
residual stress introduced by the machining process of a
component and the inherent dimensional deviations due to
imperfect manufacturing, are difficult to quantify accurately
without enough information [34–36]. To make the model

more reliable, a scientific calibration of the model must be
made. Bayesian updating is a rational way to incorporate
new data into a baseline model. By performing the updating,
the model is gradually calibrated to favor data of the actual
component more than the prior state of knowledge [37].

To demonstrate the above idea and validate the ef-
fectiveness of method, Bayesian updating is performed
using data reported in [13]. In that study, corroded steel
reinforcing bars with two different diameters (10mm and
12mm) are extracted from reinforced concrete beams
exposed to different corrosion degrees. )e corrosion
degrees are measured using the mass loss ratio ranging
from 8% to 28%. Sinusoidal fatigue loads with nominal
stresses of 150MPa, 200Mpa, and 300MPa are applied at
the frequency of 15 Hz. )e details of the testing can be
referred to in [13]. It should be noted that the corrosion
damage in [13] is measured using the mass loss ratio. To
utilize the proposed model, the formulation provided in
[35] is used to transfer the mass loss ratio to MCD and is
given as

Amin

Aave
� 1 − 0.83c, (8)

where c is the mass loss ratio, Amin is the minimum cross-
sectional area, and Aave is the averaged reduced cross-sec-
tional area expressed as

Aave � A0(1 − c). (9)

)e term A0 is the uncorroded section area defined as
before. Combining equations (1), (8), and (9), the MCD is
established as follows:

ηmax � 1 − (1 − c)(1 − 0.83c). (10)

Figure 10 presents the fatigue life prediction Npre by the
prior baseline model and the actual fatigue life data Nexp of the
corroded steel reinforcing bars. )e vertical bar of each pre-
diction point represents 95% confidence intervals. )e dashed
lines and dot-dashed lines are the boundaries deviating from
the actual fatigue life by the multiplication factors of 2 and 5,
respectively. For example, given an x-coordinate value of Nexp,
the values for the corresponding life factor 2 and life factor 5 are
2Nexp and 5Nexp in the y-coordinate. )e overall trends of the
model prediction agree with the experimental data, but the
deviation of the prediction can be larger than a factor of 5.)is
means that the proposed model can capture the influence of
stress range andMCD, but the direct application of the baseline
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Figure 10: Fatigue life prediction results of the prior mean model in equation (7). (a) Steel bars with diameter of 12mm and (b) steel bars
with diameter of 10mm.
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Table 4: Testing results (12mm-diameter bars) arbitrarily chosen from [13], representing observed data for Bayesian updating.

No. Nominal stress range S (MPa) MCD ηmax (%) Fatigue life N (cycle)
1 200 34.2 5909
2 300 29.2 27798
3 300 23.4 63818
4 200 24.9 99873
5 300 30.7 12353
6 300 26.8 48224
7 200 30.9 79579
8 200 22.4 343394
9 200 35.5 7485
10 200 38.0 25064
11 200 30.1 32852
12 300 29.5 54870
13 300 23.0 62138
14 300 25.9 92051
15 200 19.5 264010
16 150 15.3 943043
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Figure 11: Continued.
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Figure 11: )e prior and posterior distributions of model parameters (diameter: 12mm). (a) Parameter A1, (b) parameter A2, and (c)
parameter A3.
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Figure 12: Continued.
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model of equation (7) is not reliable due to the uncertainties
between the specimens and the real components.

)e actual data of the bars are used for Bayesian
updating. )e posterior PDF of the model parameters writes

p A1, A2, A3|D( 􏼁∝
1

2π
���
|Σ|

√ exp −
1
2

A1, A2, A3􏼂 􏼃 − μ( 􏼁Σ− 1
A1, A2, A3􏼂 􏼃 − μ( 􏼁

T
􏼔 􏼕

×
1

���
2π

√
σe( 􏼁

n exp −
1
2

􏽘

n

i�1

ln N − A1 − A2 ln S/fy􏼐 􏼑 − A3 ln ηmax

σe

⎡⎣ ⎤⎦
⎧⎨

⎩

⎫⎬

⎭,

(11)

where the mean vector μ and the covariance matrix Σ are
given by equations (5) and (6), respectively. )e mean value

of σe is estimated as 0.34 from the prior distribution and is
used in equation (11).
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Figure 12: Fatigue life prediction results for 12mm-diameter bars using the model updated with (a) 1 point, (b) 4 points, (c) 8 points, and
(d) 16 points.

Table 5: Testing results (10mm-diameter bars) arbitrarily chosen from [13], representing observed data for Bayesian updating.

No. Nominal stress range S (MPa) MCD ηmax (%) Fatigue life N (cycle)
1 300 40.8 1785
2 300 30.1 8603
3 200 37.4 35988
4 300 18.6 82951
5 200 33.7 5706
6 200 35.9 16346
7 300 21.3 55970
8 300 19.6 122934
9 300 29.0 5715
10 300 34.0 3157
11 300 35.9 12959
12 200 29.0 31959
13 300 21.4 44883
14 200 38.0 68812
15 200 17.5 102030
16 200 18.8 192984

Advances in Civil Engineering 11



4.1. Case 1—Steel Bars with a Diameter of 12mm. A total
number of 16 specimens are arbitrarily chosen from [13] to
represent the observation data for Bayesian updating, and
they are denoted as updating points. )e total 16 sets of (S,
ηmax, N) are listed in Table 4 and are used in the posterior of
equation (11). )e posterior results updated with 1, 4, 8, and
16 data points in Table 4 are evaluated using MCMC
simulations. For each of the four updates, 200,000 samples
are drawn, and the samples are used to estimate the PDFs of
the model parameter vector (A1, A2, A3). )e prior and
posterior distributions of the model parameters A1, A2, and
A3 are presented in Figures 11(a)–11(c), respectively. As

more data are used for updating, the distributions are
gradually tuned to be more specific to the actual
components.

)e fatigue life prediction results of the specimens in [13]
other than those used for updating are obtained using the
resulting MCMC samples and equation (7). )e calculation
procedure is as follows. For each of the specimens, that is, the
discrete hollow points in Figure 12, the stress (S) and MCD
(ηmax) associated with the specimen, and a random instance
of the resulting MCMC samples is used in equation (7) to
compute one sample of the fatigue life Npre. By using a total
number of 200,000 random instances, a total number of
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Figure 13: )e prior and posterior distributions of model parameters (diameter: 10mm). (a) Parameter A1, (b) parameter A2, and (c)
parameter A3.
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200,000 random samples of the fatigue life of the specimen
are evaluated, and the mean and 95% confidence bounds are
estimated from the fatigue life samples. Figure 12 presents
the prediction results of the updated model with 1, 4, 8, and
16 updating points.)e red solid points are the data used for
updating and the blue hollow points are prediction results of
the rest of the specimens in the dataset. )e vertical bar of
each prediction point represents 95% confidence intervals. It
can be observed from Figure 12 that the fatigue life pre-
dictions gradually converge to the experimental results as
more and more data are used for updating. It indicates that
as more andmore relevant information is integrated into the
model through Bayesian updating, the features of the re-
alistic reinforcing bars tend to dominate the posterior,
yielding more accurate prediction results.

4.2. Case 2—Steel Bars with a Diameter of 10mm. )e same
Bayesian updating procedure is performed for the steel bars
with a diameter of 10mm. A total number of 16 sets of
testing results on the 10 mm-diameter bar are arbitrarily
chosen from [13] to represent the actually observed data
presented in Table 5, which are used for Bayesian updating.
Figures 13(a)–13(c) present the posterior distributions of
model parameters A1, A2, and A3, respectively, updated with
1, 4, 8, and 16 points in Table 5 using the posterior of
equation (11). )e prediction results of the updated model
are shown in Figure 14. It can be seen that the updatedmodel
yields more and more accurate results as more data are
incorporated into the baseline model.

)e above two cases demonstrate that the initial
baseline model cannot yield accurate results due to the

103 104 105 106 107 108

Nexp

Life factor 2
Life factor 5 Prediciton results

Updating point

108

107

106

105

104

103

N
pr

e

(a)

103 104 105 106 107 108

Nexp

Life factor 2
Life factor 5 Prediciton results

Updating points

108

107

106

105

104

103

N
pr

e

(b)

103 104 105 106 107 108

Nexp

Life factor 2
Life factor 5 Prediciton results

Updating points

108

107

106

105

104

103

N
pr

e

(c)

103 104 105 106 107 108

Nexp

Life factor 2
Life factor 5 Prediciton results

Updating points

108

107

106

105

104

103

N
pr

e

(d)

Figure 14: Fatigue life prediction results for 10mm-diameter bars using the model updated with (a) 1 point, (b) 4 points, (c) 8 points, and
(d) 16 points.
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deviation between the two sets of specimens under fatigue
testing. However, as more observation data are incorpo-
rated into the baseline model via Bayesian updating, the
predictions results can be largely improved. In particular,
when the baseline model is updated with 16 data points,
most of the life prediction results shown in Figures 12(d)
and 14(d) are within the bounds deviated from the actual
life by a factor of 5. )e updated model with 16 data points
has the ability to estimate the fatigue life in different
corrosion specimens.

5. Conclusion

)is paper proposes a general method for fatigue life
prediction of corroded reinforcing bars using testing data
of standard specimens and Bayesian updating. To in-
vestigate the influencing factors of the fatigue life, a
systematical fatigue testing is performed. )e local ge-
ometry details of the corrosion pits are acquired using the
advanced 3D laser scanning technique. Based on 3D
measurements of the corrosion pits and fatigue life data,
the maximum corrosion degree and stress range are found
to be effective in characterizing the fatigue life. A fatigue
life model is proposed incorporating the two factors. )e
parameters of the model are statistically obtained using
the testing data, and the resulting model is used as a
baseline model for general applications. Due to the var-
iations of the dimension and working condition of an
actual reinforcing bar, the Bayesian method is used to
update the baseline model using data from the actual
reinforcing bars. )e proposed method is demonstrated
using independent fatigue testing data of steel reinforcing
bars. Based on the current results, the following con-
clusions are drawn:

(1) )e normalized nominal stress range and maximum
corrosion degree are effective factors to quantify the
fatigue life of corroded steel reinforcing bars. Ex-
perimental data show that the fatigue life has a log-
linear relationship with the maximum corrosion
degree under different stress ranges. A regression
model incorporating the two factors can be used to
characterize the fatigue life of corroded reinforcing
bars.

(2) )e proposed baseline model can be applied to more
general applications where the dimension and
working condition of a reinforcing bar differ from
that of the standard specimen. )is is achieved by
updating the initial model using the Bayesian
method. )e effectiveness of the method is dem-
onstrated using reinforcing bars with different di-
ameters under different fatigue loads.

(3) )e model obtained from Bayesian updating with 16
data points is observed to have the ability to predict
the fatigue life of different specimens accurately. It is
shown that most of the prediction results are within
the bounds deviated from the actual life by a factor
of 5.

It is worth mentioning that the corrosion-free fatigue
testing results are indispensable as a reference for com-
parison purposes. Due to the time and resource limitations
on the current study, the corrosion-free fatigue testing will
be performed in the future study.
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