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ABSTRACT 
 
Aims:  To validate the use of the non-linear estimator a1ApEn in empirical data.  
Study Design: Comparison of heart rate variability/complexity (HRV/C) between rest and low 
intensity exercise.  
Methodology:  R-R intervals were obtained from electrocardiogram recordings in 15 healthy 
volunteers during 30 minutes of rest followed by 30 minutes of treadmill walking (≅ 4 km/h). The R-R 
series were linearly detrended, checked for stationarity, and windows of 150 non-overlapping 
intervals were sequentially extracted. HRV/C estimators were obtained: standard deviation (SDNN), 
root mean square (RMSSD), power of frequency bands (LF, HF and VHF, i.e., above 0.40 Hz) by 
STFT, normalized power (nu), a1ApEn. Correlations were studied intra-individual between 
conditions and intra-population. Additionally, in the Fourier Transform data, phases were randomly 
shuffled, an inverse transform applied (reconstituted rR-R), and RMSSD and a1ApEn were 
computed. Finally, the scaling profile of a1ApEn between conditions was addressed. 
Results:  All the HRC/V estimators, except nuLF and nuVHF, showed a decrease in low intensity 
exercise. For intra-population, all the estimators, except VHF, demonstrated highly significant 
negative correlations with heart rate. In the reconstituted rR-R series, both RMSSD and a1ApEn 
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increased due to the phase shuffling, while the effect being more intense in a1ApEn. The scaling 
profile of a1ApEn was compatible with normally distributed random noise in both rest and walk. 
Conclusion:  As is currently known, HRV/C estimators are intrinsically correlated to heart rate, and 
a1ApEn follows this rule. Differently from what is usually obtained for plain ApEn, here we show a 
decrease in complexity values with physical effort. Also, the rR-R analysis indicates that a1ApEn is 
more sensitive to temporal organization than RMSSD. At the same time, the scaling profile indicates 
that the complexity of heart rate control keeps the same features from rest to walk. Therefore, we 
show that a1ApEn is a valid tool in time-series analysis of empirical data. 
 

 
Keywords: a1ApEn; time-series analysis; approximate entropy; heart rate; variability; complexity. 
 
1. INTRODUCTION 
 
Information entropy has, now, a long history, and 
it has become a very important general tool in 
the study of several data, particularly in the area 
of time-series analysis. A huge number of so-
called “entropies” or, in general, entropy 
measures, were devised during the last decades 
and applied throughout many fields of research, 
in the context of “complexity analysis”. 
Approximate Entropy (ApEn) is one of such tools 
[1,2], i.e. an information entropy measure widely 
employed, probably due to its very simple 
computation. However, as pointed out in some 
studies, ApEn has a main problem: it lacks an 
objective procedure in the choice of the 
parameters for the analysis [3,4]. 
 
In order to circumvent such a problem, some 
researchers developed entropy measures 
derived from ApEn [3,5,6]. We have recently 
developed an objective and adequate procedure 
to address the temporal organization of the 
series [7]. The procedure is to numerically 
compute the area under the curve of ApEn 

values obtained for window 1m = using all the 
range of tolerances r  that covers the time-
series. Moreover, the method possess benefits 
over the typically employed ApEn alternatives 
(conf. [7]). We named this estimator of 
complexity as a1ApEn (for “area under the curve 
of ApEn with window 1”). 
 
The preceding validation of a1ApEn was done in 
a number of simulated time-series coming from 
prototypical generating processes, as, for 
example, normally distributed random numbers 
or logistic map, as a secure way to validate the 
method. Now, we seek to complete the  
validation of the tool in data coming from real 
experiments. 
 
Heart rate is a biological variable amply studied. 
It presents a degree of variation, known as heart 

rate variability (HRV), related to the control of 
arterial pressure, ventilatory coupling, 
thermoregulation, physical effort, etc (e.g., [8,9]). 
Heart rate variation is also studied in the sense 
of its complexity, i.e., in the sense of characterize 
the dimension or the dynamics of its control 
system [10–14]. Therefore, HRV/C becomes a 
very good candidate to be addressed by a1ApEn 
in order to validate the tool since we already 
know, at least in part, some expected results and 
also how to interpret its deviations. 
 
The aim of the present study is to validate the 
estimator a1ApEn in an empirical setting using 
heart rate as the source of data.  
 
2. METHODS 
 
2.1 Subjects and Experimental Protocol 
 
2.1.1 Subjects  
  
25 healthy people volunteered to the study. All 
participants were instructed to be hydrated, to 
not drink coffee and alcohol in the day of the 
experiment and to avoid extreme physical activity 
in the previous days. From these initial 25 
subjects, five had inadequate data collection 
during the exercise phase (see below) and   
other five had non-stationary data (see below). 
Therefore, this report is based on the    
remaining 15 subjects (nine males, mean age 
26.6 ± 6.1, min = 20, max = 37; six females, 
mean age 24.3 ± 4.4, min = 19, max = 30; ages 
in years ± s.d.). 
 
2.1.2 Experimental protocol  
 
An initial 12-lead clinical electrocardiogram 
(ECG) was obtained from each volunteer to 
verify any disturbance in rhythm or in electrical 
conduction. After that, with the volunteer resting 
in supine position, a 3-lead CM5 (or Lewis) 
configuration ECG was recorded (sampling rate 
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of 1000 Hz - MP30 interface and the Biopac 
Student Lab Pro software - Biopac Systems Inc., 
Goleta, CA, USA), continuously, during 30 
minutes. Then, the volunteer stood up and began 
to walk in a treadmill (speed ≅ 4 km/h) for 
another 30-minute period. All data were collected 
at room temperatures of 21-24°C. 
 
2.2 R-R Time-Series 
 
In each phase (rest and walk), the first and the 
last 5 minutes of the ECG recordings were 
discarded at once. This was done in order to 
avoid transients and anticipations that might 
interfere with cardiac variability. Therefore, each 
time-series to analysis comprises 20 minutes of 
data collection.  
 
From the ECG raw data, R-R intervals were 
automatically obtained. After this, the R-R series 
were examined and eventual abnormal beats 
were excluded. These eventual abnormal beats 
comprised less than 1% of the R-R time-series. 
These procedures were performed through our 
own routine scripts in Matlab (Matlab R2013a, 
The MathWorks, Nantick). 
 
The R-R series was, then, linearly detrended and 
checked for stationarity with built-in Matlab 
functions: (a) augmented Dickey-Fuller test for 
unit root using three models (autoregressive, 
autoregressive with drift and trend stationarity); 
and (b) variance ratio test for random walk. If 
non-stationarity was detected, we discarded an 
initial and/or a final portion of the series, 
maintaining at least 900 consecutive data   
points. If even after discarding these portions   
the remaining series was still non-stationary,   
the subject was rejected from any further 
analysis.  
 
Non-overlapping vectors of 150 consecutive  
data points in the stationary R-R series         
were sequentially extracted. These vectors    
were the object of analysis, except for the  

scaling profile. The mean heart rate ( c
f

) of each 
vector was obtained from the corresponding 
section in the original (non-detrended) R-R 
series. 
 
To obtain frequency bands (see below), Short-
Term Fourier Transform (STFT) was applied on 

each vector. The cf  of each vector was 
employed to construct the corresponding 
frequency axis [15,16]. 
 

2.3 Heart Rate Variability Estimators  
 
2.3.1 Standard deviation of normal-to-normal 

R-R intervals (SDNN)  
 
This estimator is the usual standard deviation of 
the time-series. It gives an overall measure of 
variability. 
 
2.3.2 Root mean square of the difference 

between adjacent R-R intervals 
(RMSSD) 

 
This estimator accesses the degree of 
consecutive changes in the R-R intervals. It gives 
an overall measure of somehow rapid changes in 
heart rate.  
 
2.3.3  Frequency bands  
 
The usual partitioning of the frequency bands in 
HRV analysis is in Ultra Low Frequency (below 
0.0033 Hz), Very Low Frequency (between 
0.0033 and 0.040 Hz), Low Frequency (LF, 
between 0.040 and 0.150 Hz), High Frequency 
(HF, between 0.150 and 0.400 Hz, or above) 
(e.g., [9]). However, because 150 R-R intervals 
becomes a too short total period, we did not 
address both the Ultra and the Very Low bands 
(e.g. [8,17]). In addition, we fixed the HF band as 
the interval between 0.150 and 0.400 Hz, and 
separately examined what we named as the Very 
High Frequency band (VHF, above 0.400 Hz). 
The reason for this is presented in the 
Discussion section. The normalized powers (nu) 
were obtained dividing each partition by the total 
power of the spectrum.  
 
2.4 Heart Rate Complexity Estimator  
 
2.4.1 a1ApEn  
  
A complete description of the a1ApEn estimator 
and its computation is given in [7]. Here we 
summarize it. 
 
From a tolerance vector r , obtained as a set that 
goes from the lowest value of distance that can 
be found among all the possible pairings in the 
time-series to the highest value of distance that 
can be formed among pairs, a normalized 

tolerance vector 
*
r is constructed as: 

 
1

max( )
= ⋅*

r r
r             (1) 
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The next step is to construct a curve of 
approximate entropy (ApEn) values using the 

original r  vector for a window size 1m = :  
 

1 2(1, , ) ( ) ( )= −r r rApEn N φ φ           (2) 
 

Where N  is the size of the time-series ( N  = 
150 for the analysis here, unless for the scaling 

profile, as described shortly), and 
1φ  and 

2φ  are 

countings for 1m =  and 2, respectively, as 
defined in the ApEn procedure [18]. The last step 
is to compute the numeric integral of eqn. (2) in 

relation to the normalized tolerance vector 
*
r : 

 
1

*

0

( ) (1, , ) da1ApEn N ApEn N r= ⋅∫
*
r

          (3) 
 
2.4.2 The scaling profile  
 
As we show in another study ([19]), the 
correlation between a1ApEn values and the size 
N  of vectors can indicate the underlying 
process that generates the time-series. Briefly, 

consider the sizes jN  where the subscript j  

indicates the length of a vector (e.g., j  = 100, 

200, 300, 400, 500). Then, a vector of size S  is 

randomly sub-sampled in v  vectors of size jN  (
3jS N v> + ⋅

∀ j ), and v  values of a1ApEn are 
thus computed. Let these v  a1ApEn values be a 

set ja . For each set ja , the indicators 
minimum, mean and maximum a1ApEn values 
are selected and the correlation between each 

one of them and the logarithm of the sizes jN  is 
computed. Each correlation can be positive, 
negative or non-significant. The profile of the 
correlations of the indicators minimum (Min), 
Mean and maximum (Max) is associated to a 
certain type of process (the reader is advised to 
see [19] for detailed presentation). 
 
The scaling profile is important in two settings. 
Firstly, to indicate the general underlying process 
behind the heart rate variations for the individuals 
as a population. Secondly, to verify whether 
individuals change their generating process 
when they go from rest to walk, i.e., whether the 
features that generate the cardiac control output 
change with the physical effort.   

Because we fixed the time length of analysis (20 
minutes, see above), the total length of a time-
series of R-R intervals changed between 
subjects and conditions due to different heart 
rates. Short series had between 1100 and 1200 
R-R intervals. Therefore, in order to guarantee a 
safe resampling procedure (see [19]), we 

employed j  = 50, 150, 250, 350, 500, and v  = 
30.   
 
A table of the scaling profile of prototypical series 
from different generating processes using the 
same j values and v as in the analysis of the 
empirical data was created for comparison 
(Table 1). The processes comprised NbRN: non-
bounded random numbers (normally distributed 
random numbers and Lévy sets); BnRN: 
bounded random numbers (uniformly distributed 
random numbers ∈ [0,1]), and deterministic 
maps (Hénon and logistic maps close to chaos). 
 
Table 1. Correlation signals of the indicators 

for different generating processes 
 

Process Sub-type Min Mean Max 
NbRN ndrn 0 - - 

+ 0 - 
+ 0 0 

Lévy 0 - - 
BnRN udrn + + + 
Deterministic 
maps 

Hénon + + + 
0 + + 
+ + 0 

logistic + + 0 
NbRN: non-bounded random numbers (ndrn: normally 

distributed random numbers); BbRN: non-bounded 
random numbers (udrn: uniformly distributed random 

numbers); (-) = negative significant correlation; (0) = non-
significant correlation; (+) = positive significant correlation. 
The ndrn and Hénon processes comprises more than one 

line showing the variety of correlations obtained in the 
simulations 

 

2.5 Inverse Fourier Transform with Phase 
Shuffling  

 
In the STFT data from each 150 R-R intervals, 
the phases were randomly shuffled and an 
inverse FFT applied (built-in Matlab function). 
This results in a reconstructed time-series, rR-R, 
with the same mean, variance and frequency 
distribution from the original one. However, the 
temporal organization of the rR-R randomly 
differs from the temporal organization of the 
original data. SDNN, RMSSD and a1ApEn were 
computed in the rR-R series and compared to 
those from the original data. 
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2.6 Comparisons and Statistics  
 
2.6.1 Comparison between rest and walk  
 
For each volunteer, a mean value of the 
estimators was computed in each condition. 
These mean values entered, then, in paired 
comparisons (t-test). 
 
2.6.2 Correlation of the estimators with heart 

rate and among each other  
 
The Pearson correlation coefficients for the mean 
values of the estimators (see above) and their 

corresponding c
f

 were obtained, as well as the 
correlations among the estimators.  
 
2.6.3 Comparison between original and 

phase-shuffled series  
 
 The mean values of SDNN, RMSSD and 
a1ApEn from the original R-R time-series and 
from the reconstructed ones were paired for 
comparison (t-test). Because RMSSD and 
a1ApEn values are of different magnitudes, each 
set of 60 values (30 from rest and 30 from walk) 
of these estimators was normalized (Euclidian 
norm) in order to address the impact of disrupting 
the original temporal organization of the data by 
the phase shuffling in each estimator. 
 
3. RESULTS AND DISCUSSION 
 
3.1 Comparison between Rest and Walk, 

and Correlations with Heart Rate  
 
Table 2 presents mean values for the various 
estimators of HRV/C obtained in rest and during 
walking. Each line in REST and in WALK 
corresponds to the same volunteer. Table 3 
presents the paired comparisons of the 
estimators between the two conditions. Notice 
that, except for the VHF case, all paired 
comparisons gave very significant results (P < 
0.05). 
 
As obviously expected, there is an increase in 
heart rate when the volunteers go from rest to 
walk. On the other hand, there is a decrease in 
SDNN and RMSSD, indicating an overall 
decrease in variability in the transition from rest 
to low intensity exercise. Indeed, most studies 
report a decrease in HRV estimators correlated 
to the level of physical effort (e.g., see review in 
[20]). Due to the overall decrease in variance 

(SDNN squared) the frequency bands show a 
decrease in their respective power. However, 
when we exam the normalized bands, we 
observe a very interesting pattern: there is a 
decrease in nuHF while nuLF and nuVHF 
increase. This is exactly what one would expect 
under the condition imposed by low intensity 
exercise. The standing position is accompanied 
by an increase in the baroreflex gain [21], which 
appears in the LF band. At the same time, there 
is an increase in the ventilatory rate and the 
cardiomotor coupling between leg muscles 
contractions and the heart [16,22]. These two 
effects give rise to frequency components above 
the usual HF band. Therefore, we can observe 
these phenomena in the normalized bands, as if 
the nuHF cedes power to nuLF and to nuVHF. 
 
As presented above, it seems that, technically 
speaking, our data was adequately collected and 
processed. This is relevant to the debate in 
regards to whether there is a decrease or an 
increase in HRV estimators in low intensity 
exercise, and, more importantly for our present 
goals, it guarantees the analysis of complexity by 
the a1ApEn tool, to be presented in subsequent 
sections.  
 
When we take the data set as a whole (i.e., data 
in Table 2 without discriminating subjects or 
conditions), we obtain an overall correlation of 
each estimator with heart rate. These results are 
shown in Table 4. As it can be seen, there is a 
strong correlation between heart rate and each 
HRV estimator (except plain VHF, in italics), as 
well as with a1ApEn.The correlation is negative, 
except for nuLF and nuVHF. This reassures the 
result presented above, i.e., that a transfer of 
power from the HF band to LF and VHF bands 
accompanies the increase in heat rate due to the 
low intensity physical effort and the standing 
position. 
 
The topic of HRC behavior in exercise is still 
controversial. For instance, some authors report 
an increase in heart rate complexity, measured 
by Sample Approximate Entropy, at the onset of 
exercise and, then, a decrease as the activity 
continues [14]. Others report an initial decrease 
and a subsequent increase in HRC, measured 
via Poincaré plot, during physical effort [23]. 
Specifically for low intensity exercise, in a 
protocol extremely similar to the one of the 
present study, an increase in HRC, measured               
by fractal exponent and by ApEn, is reported 
[10].  
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Table 2. Mean values of HRV/C estimators during res t and walk 
 

cf  (Hz) 
SDNN (s) RMSSD (s) a1ApEn  LF (s -2) HF (s-2) VHF (s -2) nuLF  nuHF nuVHF 

Rest  
1.422 0.044 0.028 0.236 4.38E-04 3.99E-04 4.26E-05 0.202 0.208 0.023 
1.093 0.083 0.098 0.310 1.05E-03 2.09E-03 2.89E-04 0.149 0.298 0.042 
0.946 0.161 0.196 0.339 3.92E-03 7.02E-03 5.57E-04 0.151 0.271 0.021 
0.958 0.066 0.063 0.282 5.71E-04 6.70E-04 2.33E-05 0.134 0.165 0.005 
1.054 0.132 0.155 0.368 1.90E-03 4.54E-03 1.05E-03 0.111 0.261 0.061 
1.055 0.045 0.037 0.266 3.64E-04 2.82E-04 3.33E-05 0.181 0.143 0.015 
0.917 0.067 0.062 0.238 8.18E-04 4.97E-04 7.83E-05 0.174 0.114 0.018 
1.018 0.058 0.048 0.281 4.95E-04 4.12E-04 3.96E-05 0.156 0.129 0.012 
1.186 0.078 0.042 0.189 1.86E-03 3.60E-04 5.75E-05 0.304 0.059 0.010 
1.055 0.090 0.105 0.240 1.30E-03 1.88E-03 4.59E-04 0.156 0.229 0.056 
1.261 0.068 0.071 0.313 5.03E-04 2.06E-03 1.59E-04 0.101 0.446 0.031 
1.109 0.060 0.048 0.257 7.55E-04 5.24E-04 5.89E-05 0.203 0.148 0.019 
1.302 0.042 0.039 0.268 4.84E-04 2.87E-04 1.36E-04 0.272 0.168 0.078 
1.111 0.058 0.038 0.260 6.26E-04 4.66E-04 2.08E-05 0.208 0.157 0.007 
0.999 0.031 0.019 0.199 1.70E-04 6.20E-05 6.70E-06 0.178 0.073 0.008 

Walk  
1.857 0.015 0.008 0.193 1.05E-04 2.88E-05 8.63E-06 0.455 0.146 0.040 
1.743 0.019 0.009 0.186 2.05E-04 1.59E-05 1.85E-05 0.557 0.042 0.057 
1.560 0.037 0.036 0.272 3.95E-04 1.89E-04 2.68E-04 0.292 0.131 0.209 
1.346 0.022 0.015 0.235 1.53E-04 3.46E-05 3.25E-05 0.289 0.069 0.067 
1.921 0.012 0.007 0.254 3.32E-05 5.08E-06 1.50E-05 0.245 0.030 0.121 
1.463 0.038 0.035 0.315 3.68E-04 2.43E-04 2.06E-04 0.256 0.166 0.154 
1.550 0.030 0.017 0.215 3.08E-04 4.00E-05 5.12E-05 0.322 0.047 0.057 
1.498 0.036 0.024 0.254 4.02E-04 8.58E-05 1.12E-04 0.314 0.070 0.100 
1.651 0.031 0.015 0.180 4.99E-04 8.12E-05 2.44E-05 0.535 0.085 0.028 
1.820 0.016 0.009 0.216 1.39E-04 2.17E-05 1.70E-05 0.509 0.084 0.066 
2.012 0.009 0.004 0.212 4.21E-05 6.04E-06 5.15E-06 0.508 0.073 0.069 
1.457 0.033 0.025 0.218 4.10E-04 8.95E-05 1.04E-04 0.367 0.085 0.093 
1.806 0.019 0.009 0.201 2.18E-04 2.11E-05 1.35E-05 0.585 0.057 0.039 
1.817 0.024 0.012 0.193 3.07E-04 9.11E-05 1.41E-05 0.446 0.161 0.029 
1.446 0.038 0.031 0.269 4.53E-04 6.89E-05 1.96E-04 0.303 0.048 0.144 
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Table 3. Paired comparisons of the HRV/C estimators  presented Table 2 
 

 
cf  

SDNN RMSSD a1ApEn  LF HF VHF nuLF  nuHF nuVHF 

REST 1.099 0.072 0.070 0.270 0.001 0.001 0.000 0.179 0.191 0.027 
WALK  1.663 0.025 0.017 0.228 0.000 0.000 0.000 0.399 0.086 0.085 
∆∆∆∆ 0.564 -0.047 -0.053 -0.042 -0.001 -0.001 -0.000 0.220 -0.105 0.058 
P-value  .000 .000 .000 .004 .004 .008 .06 .000 .001 .001 
Trend  ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↓ ↑ 
REST and WALK: grand mean of each condition. ∆: difference between grand mean of WALK and REST. P-value: value of the paired comparison (paired t-test). Up-pointing arrows: 

increasing trend. Down-pointing arrows: decreasing trend 
 

 
 

Fig. 1. Boxplot of the difference (delta) between R MSSD and a1ApEn for the reconstructed RR series and  the original ones  
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Table 4. Correlation of HRV/C estimators with 
heart rate 

 
 Pearson correlation 

coefficient  
P-value  

SDNN -0.65 .000 
RMSSD -0.58 .000 
a1ApEn -0.42 .02 
LF -0.53 .002 
HF -0.41 .02 
VHF -0.32 .09 
nuLF 0.77 .000 
nuHF -0.37 .04 
nuVHF 0.59 .000 

 

a1ApEn shows a decrease in the transition 
between rest and low intensity exercise (Tables 3 
and 4). Therefore, our results are in contrast to 

what is described for plain Approximate Entropy 
as well as for Sample Approximate Entropy. 
 
Due to the strong correlations with heart rate, the 
HRV estimators as well as a1ApEn turn out to be 
correlated among each other. Therefore, the 
a1ApEn estimator of complexity gives a result 
more in line with those from variability analysis. 
On the other hand, if the complexity estimator 
under investigation would simply tell the same 
story that the variability estimators already tell, it 
would be much more of a redundant index than a 
complementary tool.  
 
The next sections show that the estimator 
a1ApEn addresses different information in 
relation to variability estimators. 

 

Table 5. Comparison between estimators from the ori ginal and reconstructed R-R intervals 
 

 SDNN RMSSD a1ApEn 
Original rR-R Original rR-R Original rR-R 

 0.015 0.015 0.008 0.008 0.193 0.209 
 0.044 0.044 0.028 0.028 0.236 0.249 
 0.019 0.019 0.009 0.010 0.186 0.211 
 0.083 0.083 0.098 0.098 0.310 0.330 
 0.037 0.037 0.036 0.036 0.272 0.309 
 0.161 0.161 0.196 0.197 0.339 0.354 
 0.022 0.022 0.015 0.015 0.235 0.253 
 0.066 0.066 0.063 0.063 0.282 0.320 
 0.012 0.012 0.007 0.007 0.254 0.253 
 0.132 0.132 0.155 0.155 0.368 0.347 
 0.038 0.038 0.035 0.035 0.315 0.307 
 0.045 0.045 0.037 0.037 0.266 0.286 
 0.030 0.030 0.017 0.017 0.215 0.223 
 0.067 0.067 0.062 0.062 0.238 0.276 
 0.036 0.036 0.024 0.024 0.254 0.248 
 0.058 0.058 0.048 0.048 0.281 0.292 
 0.031 0.031 0.015 0.016 0.180 0.208 
 0.078 0.078 0.042 0.043 0.189 0.210 
 0.016 0.016 0.009 0.009 0.216 0.226 
 0.090 0.090 0.105 0.105 0.240 0.323 
 0.009 0.009 0.004 0.005 0.212 0.222 
 0.068 0.068 0.071 0.071 0.313 0.311 
 0.033 0.033 0.025 0.025 0.218 0.266 
 0.060 0.060 0.048 0.048 0.257 0.302 
 0.019 0.019 0.009 0.009 0.201 0.207 
 0.042 0.042 0.039 0.039 0.268 0.292 
 0.024 0.024 0.012 0.012 0.193 0.220 
 0.058 0.058 0.038 0.039 0.260 0.271 
 0.038 0.038 0.031 0.031 0.269 0.267 
 0.031 0.031 0.019 0.019 0.199 0.254 
Grand mean 0.049 0.049 0.044 0.044 0.249 0.268 
∆∆∆∆  0.0E+00  1.6E-04  1.9E-02 
P-value  .74  .000  .000 
∆: Difference between the grand means from the reconstructed rR-R intervals and the original ones. P-value: paired t-

test between original and reconstructed series 
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3.2 Inverse Fourier Transform with Phase 
Shuffling 

 
Table 5 shows the results for SDNN, RMSSD 
and a1ApEn from the original R-R series (that 
can be found in Table 2 as well) and those from 
the reconstructed R-R series by iFFT with phase 
shuffling. Frequency bands do not take part in 
this analysis since they are exactly the same in 
the original and in the reconstructed series. In 
fact, SDNN, being the square root of       
variance, which is also preserved by the 
procedure, is presented only for illustrative 
purposes. As it can be checked out in Table 5, 
SDNN from the original and the rR-R series are 
the same. 
 
Both RMSSD and a1ApEn are affected by phase 
shuffling, and both present an increase due to 
the procedure. This reveals that the original time-
series have a certain organization that is 
disrupted despite the preservation of the original 
frequencies.  
 
RMSSD and a1ApEn have dissimilar ranges. 
Therefore, in order to compare which one 
suffered more due to the temporal 
disorganization caused by the phase shuffling, 
we normalized the values from each estimator (in 
Table 5) by the Euclidian norm, using the 60 
values from a given estimator (30 from the 
original and 30 from the rR-R series). Fig. 1 
illustrates, graphically, the impact of phase 
shuffling in RMSSD and a1ApEn for the 
normalized data. In these data, the grand means 
for RMSSD and a1ApEn in the original and in the 
reconstructed series are, respectively: 0.091, 
0.092, 0.122, 0.132.These represent differences 
of 3.3x10-4 for RMSSD and 9.6x10-3 for a1ApEn, 
shown in Fig. 1. Obviously, the P-values for the 
normalized data are the same as those in Table 
5. As it can be seen, temporal disorganization 
had a more pronounced effect, almost 30                     
times greater, over a1ApEn than over               
RMSSD. 
 
These results, once again, indicate that the 
a1ApEn estimator is in line with variability 
estimators but accesses some diverse features 
of the cardiac control. 
 
3.3 The Scaling Profile 
 
Table 6 presents the correlations of the three 
indicators (Min, Mean, Max) with vector size 
during rest and walking. Each line corresponds to 
the result of one of the 15 volunteers. Some 

important results must be pointed out. Firstly, the 
majority of the scaling profiles in Table 6 have 
perfect matches with patterns of non-bounded 
random numbers shown in Table 1. Secondly, 
none of the scaling profiles in Table 6 that do not 
have a perfect match with those in Table 1 
presents a pattern compatible with any of the 
patterns from bounded random or deterministic 
maps. In fact, the profiles in Table 6 that do not 
match NbRN profiles have at least two criteria of 
NbRN and one or zero criterion of BnRN or 
deterministic maps.  
 
Therefore, the scaling profile of the complexity 
estimator a1ApEn clearly indicates that the 
cardiac control operates as a pseudo-random 
system, irrespectively of the metabolic demand 
(in the range here studied). These results confirm 
a preliminary analysis of our group [19] and are 
aligned with recent results and interpretations 
about cardiac control [24–27]. 
 

Table 6. Correlations of the indicators with 
vector size 

 
REST WALK  

Min Mean Max Min Mean Max 
0 - - 0 - - 
0 - - 0 - - 
+ - - 0 - - 
0 - - 0 - - 
+ 0 - 0 - - 
0 - - 0 - - 
+ 0 - 0 - - 
0 - - 0 - - 
0 - - 0 - - 
0 0 - 0 - - 
0 - 0 0 - - 
- - - 0 - - 
0 - - 0 - - 
+ - - - - 0 
0 - - - - - 

Coding as in Table 1 
 
4. CONCLUSION  
 
a1ApEn is an estimator of what is generally 
called as complexity of a time-series. Previously, 
we showed its adequacy as a measure of the 
temporal organization of several prototypical 
processes. These studies were conducted using 
artificially (in machina) generated time-series. 
Nevertheless, it lacked a validation in empirically 
obtained series and this is what we addressed in 
the present work. We choose to study heart rate 
variability because there are many estimators of 
it, and these estimators have a somehow known 
behavior. As we show here, a1ApEn adequately 
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estimates complexity of heart rate control and 
adds information beyond those gave by the usual 
HRV estimators. Therefore, a1ApEn is a valid 
tool to study real time-series.  
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