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Beam slab structure is often encountered in a complex tunnel boring machine. Beam slab structure is subject to dynamic load,
which is easy to cause fatigue damage and affect its service life. .erefore, it is necessary to control the vibration of this kind of
beam slab structure. In this study, the central rigid body-flexible beammodel is established for the rotating beam and plate rotating
around the y-axis. Based on the Hamilton variational principle, the dynamic equation of the central rigid body-flexible beam
system is established, and the dynamic model of the central rigid body-flexible beam system considering the influence of Coriolis
force and centrifugal force is given. .e vibration control of the central rigid body-flexible beam system is studied. .e vibration
mode of the rotating Euler Bernoulli beam is determined by using the elastic wave and vibration mode theory..e influence of the
rotating motion on the beam vibration is analyzed, and the variable structure control law is designed to suppress the beam
vibration. Numerical simulation results show that the control method can effectively suppress the first-order and second-order
vibration of the beam and verify the effectiveness of the control strategy.

1. Introduction

With the development of shield technology, superlarge di-
ameter tunnel boring machine (TBM) is frequently used in
civil construction and production. However, various vibra-
tions during operation and tunneling have caused damage to
the components in the TBM and difficult maintenance, which
has increased safety during construction. Risks delay in the
construction period. TBM usually has large flexible attach-
ments. .ese flexible attachments have the characteristics of
large span, light weight, low rigidity, weak structural damping,
and low rigidity of the connection between the plates [1, 2].
During the operation of the TBM and the tunneling process,
certain disturbance can easily arouse the vibration of the
structure. Such vibration is not easy to be found in the
complex underground environment, and the vibration may
last for a long time [3–5]. .is will not only directly affect the
normal operation of the shield but also cause fatigue of such

structures in the TBM, affect the service life of the structure,
and even cause structural damage. .erefore, the attitude
adjustment of the TBM and the suppression of the lateral
vibration of the flexible attachment have extremely important
engineering significance.

.e precise dynamic modeling of the structural system is
directly related to the motion control strategy and control
effect of the system. At present, in the dynamic analysis and
vibration control of mechanical arms and rotating ma-
chinery, when the flexible beam plate rotates as shown in
Figure 1, the central rigid body-flexible beam model [6–8] is
widely used. .e effects of Coriolis force and centrifugal
force are not considered in the state analysis, which will
cause large errors in the calculation and analysis. .erefore,
the study of active vibration control of rotating beams and
plates and the establishment of a more accurate model that
reflects the vibration state of the structure is an important
way to optimize the control method.
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On the other hand, the coupling of rigid body rotation
and flexural vibration of the flexible attachment will cause
the system to be affected by centrifugal force and Coriolis
force, which will cause the entire motion system to have
time-varying and nonlinear characteristics. Look for a ro-
bust control strategy. It has become a hot issue in the vi-
bration control of the central rigid body-flexible beam plate
model [9–11]. .e sliding mode variable structure control
strategy is a robust control method, and it is currently widely
used in active vibration control based on a central rigid
body-flexible beam model [12–15].

Based on the Hamilton variational principle, this study
adopts the Euler–Bernoulli beam theory to establish the
dynamic equation of the central rigid body-flexible beam
system for the rotating plate in which the rotating motion
shown in Figure 1 occurs, and the centrifugal force and
Coriolis force are considered in the modeling of the flexible
attachment. Using elastic wave and vibration mode theory,
the vibration mode of Euler–Bernoulli beam affected by
Coriolis force is determined. .e method of constant ve-
locity approaching law is adopted to design the variable
structure control law, and the control force is designed on
the flexible attachment to suppress its lateral vibration.

2. Dynamic Model System

According to the movement state of the rotating plate, the
model of the central rigid body-flexible beam system is
shown in Figure 1. In the figure, O − XY is a fixed inertial
coordinate system, and o − xy is a conjoined noninertial
coordinate system..e radius of the central rigid body is Rh.
.e moment of inertia is Jh. .e length, height, and mass
density of the beam are L, h, and ρ. .e load density of the
control force is f(x, t). .e control torque is Th. .e angular
displacement of the rigid body is θt. .e lateral displacement
of the beam is v(x, t). .e Euler–Bernoulli beam theory is
used in the dynamic analysis of the system, ignoring the
influence of gravity and external disturbances.

During the rotational movement, the displacement of
any point (x, 0) on the beam relative to the fixed inertial
coordinate system O − XY can be described as

p � −v sin θ − Rh + x( 􏼁(1 − cos θ)􏼂 􏼃i + v cos θ + Rh + x( 􏼁sin θ􏼂 􏼃j.

(1)

When calculating the kinetic energy, the longitudinal
deformation of the beam in motion is ignored. .e total
kinetic energy of the structure is the sum of the rotational

kinetic energy of the central rigid body and the kinetic
energy of the beam..erefore, the total kinetic energy of the
structural system is
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.e bending strain energy of the structure is

E
(1)
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D 􏽚
L

0
ψ′2dx, (3)

where D � EIb is the bending stiffness of the beam. Ib is the
moment of inertia of the beam. ψ is the corner of the beam
section, and ’′’ is the derivative of space variable x.

When the flexible beam vibrates under the action of
centrifugal force, it must overcome the centrifugal force to
do work. When the beam vibrates, any cell dm on the beam
moves Δx to the center O. For different microelement
segments, Δx is different. .erefore, the deformation energy
generated by the centrifugal force on the beam is

E
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where dfce � ρh _θ
2
(Rh + x)dx is the centrifugal force re-

ceived by the microelement, and Δx is the amount of
shortening of the structure in the axial direction caused by
the lateral displacement.
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.e deformation energy of the Coriolis force on the
beam is

E
(3)
p � 􏽚 vdfc1 + 􏽚Δxdfc2 � 2ρh _θ􏽚

L

0
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(6)

where dfc1 � −2ρh _θΔ _xdx is the Coriolis force that the
infinite element receives in the tangential direction, and
dfc2 � −2ρh _θΔ _vdx is the Coriolis force received by the
infinite element in the axial direction.

.e work done by the external control force is

W � Thθ + 􏽚
L

0
f(x, t)v(x, t)dx + 􏽚
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(7)

where f(x, t) is the distributed load density of the beam,
which can be expressed as

f(x, t) � 􏽘
k

i�1
Fi(t)δ x − xi( 􏼁, (8)

where Fi is the concentrated force on the beam where the
abscissa is xi.

.e Hamilton principle of the system is
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Figure 1: Model of the flexible hub-beam.
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􏽚
tf

t0

δ Ek − Ep + W􏼐 􏼑dt � 0. (9)
Substituting (2)–(8) into (9), the dynamic equation of the

central rigid body-flexible beam system is obtained as
follows:
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where

D0(x, t) � −ρh Rh + x( 􏼁 _θ
2

+ 4 _θ _v + 2€θv􏼔 􏼕. (11)

.e boundary conditions of the flexible beam are the
lateral displacement of any point on the beam that can be
written as

v(x, t) � 􏽘
n
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(12)

where Φ � φ1 φ2 . . . φn􏼂 􏼃, q � q1 q2 . . . qn􏼂 􏼃
T, and

φi(x) and qi(t) are the ith modal function and modal co-
ordinates corresponding to the lateral displacement of the
flexible beam.

.erefore, the dynamic equation of the central rigid
body-flexible beam system can be further written as

Mθθ Mθq

Mqθ Mqq

⎡⎣ ⎤⎦
€θ

€q
⎡⎣ ⎤⎦ +

0 0

0 Kqq

⎡⎣ ⎤⎦
θ

q
􏼢 􏼣 +

Qθ

0
􏼢 􏼣 �

T1

T2
􏼢 􏼣,

(13)

where Mθθ ∈ R1 is the total moment of inertia of the system;
Mqθ ∈ Rn×1, Mqθ ∈ Rn×1 is the nonlinear inertial coupling
between the rotational movement of the system and the
lateral movement of the beam;Mqq ∈ Rn×n is the mass matrix
of the flexible beam; Kqq ∈ Rn×n is the stiffness matrix; and
Qθ ∈ R1 is the inertial force term generated by the coupling
of the rotation of the microelement and the lateral move-
ment of the beam. .eir specific expression forms are as
follows:
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􏽥x � x/L, 􏽥Rh � Rh/L, � 􏽥hh/L, and q/L � 􏽥q. .en, the dynamic
equation of the system in dimensionless form can be
expressed as
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.e expression for the dimensionless parameter is
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where 􏽥F is the actuator distribution matrix,
U � 􏽥Th

􏽥F1 · · · 􏽥Fk􏽨 􏽩
T
.

3. Modal Analysis of Central Rigid Body-
Flexible Beam

When solving the beam mode, ignore the axial shortening
caused by the lateral displacement and the external force f (x,t) of
the system, and consider the uniform rotation stage of the
spacecraft’s attitude adjustment, that is, the case where � _θΩ is a
constant. From (10b), the dynamic equation of Euler–Bernoulli
beam considering the influence of Coriolis force is

ρh −Ω2v + €v􏼐 􏼑 + Dψ′′′ � 0. (19)

Let v(x, t) � φ(x)eiωt bring in the above data to get
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According to the elastic wave propagation theory and
(20), the spatial wave number of the mode function φ(x)

should satisfy the following equation:
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When the elastic wave number k2
i ≥ 0(i � 1, 2), it means

that there are two pairs of propagating waves in the
structural beam, and its phase velocity is c � ω/k; when the
elastic wave number k2

1 > 0 and k2
2 < 0, it means that there are

a pair of propagating waves and a pair of attenuating waves
in the structural beam. Since the structural vibration can be
regarded as the superposition of multiple reflections of
various elastic wave modes, the propagating wave can form
the overall vibration in the limited area of the structure, and
the attenuated wave can form the localized vibration in the
limited area of the structure.

.erefore, the jth order vector mode function φj(x) in
the structure can be expressed as
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.e mode coefficient that satisfies the cantilever beam
boundary condition is
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where ki is the wave number of beam elastic vibration, which
is determined by (21).

Satisfy the boundary conditions at both ends of the
cantilever beam to obtain the following equation:
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Combining (21) and (24) together can determine the
dispersion relation of vibration in the structure.

4. Design of the Variable Structure
Control Method

.e design of variable structure control mainly includes
selecting the slidingmode and obtaining the control method.
When the variable structure control strategy is adopted, the
form of the switching function is as follows:

S � CX

�

0 0 0 0 0 0

0 c1 0 0 1 0

0 0 c2 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦X,
(25)

where C is the coefficient matrix,
X � θ q1 q2

_θ _q1 _q2􏽨 􏽩
T
, S � 0, and these constitute the

switching surface in variable structure control design. In the
study of dynamics and control in this study, the first two
vibrationmodes of the flexible attachment when rotating at a
constant speed are considered.

.erefore, the specific form of the two switching surfaces
is as follows:

s1 � c1q1 + _q1, (26a)

s2 � c2q2 + _q2, (26b)

where q1 and q2 are the first-order and second-order modal
coordinates of the flexible attachment, respectively.

Use the following method of equal velocity approach

_si � −Pisgn si( 􏼁, (27)
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where Pi > 0, sgn(si) �
1 si > 0

−1 si < 0
􏼨 􏼩. It is easy to verify that

_sisi < 0 is established, and the reaching condition is satisfied.
Taking the derivation of (25) and considering (17) and

(27), the equation satisfied by the variable structure control
method is
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Equation (17) becomes

C _X �
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From equation (29), the solution at Pi > 0 is stable, so the
variable structure system is stable.

5. Numerical Simulation

In the calculation, the beam length L is taken as the char-
acteristic length. ] � 0.30, 􏽥Jh � 10􏽥J1, 􏽥Rh � 0.3; consider the
control when the rotation is at a constant speed, and take
parameters P1 � |q1|, P2 � |q2|, c1 � 0.2, and c2 � 0.2.

In this study, only the first two modes of the system are
considered, but the control accuracy is good enough..e control
force applied by the two actuators suppresses the vibration of the
first-second mode of the flexible attachment, and the applied
positions are x1 � 0.48L and x2 � 0.96L, respectively.

Figure 2 shows the response of the first two-order
transverse vibration mode coordinates of the flexible beam
when the initial state of the system is
x � 0 −0.004 −0.0001 1 0.002 0.0001􏼂 􏼃. It can be seen
from the figure that before the variable structure control, the
lateral vibration of the beam is severe.

Figure 3 shows the change rule of the coordinate of the
first second-order transverse vibration mode of the flexible
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beam after variable structure control. It can be seen from the
figure that the dimensionless time for the first stage to reach
the desired position is about 17, and the dimensionless time
for the second stage to reach the desired position is about 18.
.e control effect is significant.

Figure 4 shows the change rule of the phase trajectory of
the first two modes after the variable structure control. It can
be clearly seen from the figure that the variable structure
control makes the system enter the sliding mode and moves
the modal coordinates along the sliding mode. Convergence
is reached.

Figure 5 shows the changing law of the control force
required by the system to reach the desired position. It can
be seen from the figure that after the system reaches the
desired position, the required control force tends to stabilize,
which shows that the control strategy is effective.

6. Conclusion

Aiming at the vibration and Coriolis force during the
operation and tunneling of the TBM, this study simulates
the rotating beam plate rotating around the Y axis as a

central rigid body-flexible beam model for research. In the
modeling process of the central rigid body-flexible beam
system, the longitudinal shortening caused by the lateral
displacement of the flexible beam is considered, and the
influence of centrifugal force and Coriolis force is further
improved, thereby, further improving the dynamic model.
Based on the application of elastic wave and vibration mode
theory, the vibration mode of the Euler–Bernoulli beam
rotating at a constant speed is determined, and the in-
fluence of the rotation motion on the system is fully
considered.

In this study, the innovation point is that the variable
structure control strategy is applied to the active vibration
control of the central rigid body-flexible beam model. .e
comparison of the simulation results shows that when the
system vibrates, the system vibrates severely without active
control. After adopting variable structure control, the sta-
bility of the system can be ensured, and the vibration of the
flexible beam can be suppressed. .e dynamic analysis and
control method in this study can provide analysis methods
and reference data for the dynamic analysis and control of
the rotating beam structural components in the TBM.
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Figure 4: .e response of the phase trajectory of the first two modes of the beam after variable structure control.
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