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ABSTRACT 
 

We obtain the rogue waves with a controllable center in the generalized nonlinear Schrödinger 
equation by using a direct method. The position of these solutions can be controlled by varying 
different center parameters. We study the effects of different parameters on rogue waves and 
hence find that the nonlinearity parameter is responsible for the width of rogue waves. With the 
increase of the nonlinearity parameter, the rogue wave becomes wider. What is more, the negative 
nonlinearity parameter can yield some singular rogue waves. 
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1. INTRODUCTION 
 
Rogue waves, are called freak waves, monster 
waves, killer waves, giant waves or extreme 
waves, Rogue waves are spontaneous nonlinear 
waves with amplitudes significantly larger (two or 

more times higher) than the surrounding average 
wave crests [1,2], What is more, they appear 
from nowhere and disappear without a trace. 
 
It is a very meaningful work to search for rogue 
waves, which has been found in many different 
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systems and has many important applications in 
some fields since they can signal fascinating 
stories [3,4].  
 
In this paper, we study the generalized nonlinear 
cubic Schrödinger equation 
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where x is the propagation distance and t is the 
transverse variable. When A=0, equation (1) 
becomes the famous nonlinear cubic 
Schrödinger equation. Some rogue wave 
solutions of the nonlinear cubic Schrödinger 
equation have been found by taking limit of 
Akhmediev breather solutions [5,6] and Darboux 
transformation [7,8]. By a similarity 
transformation, rogue wave solutions to the 
generalized nonlinear Schrodinger equation with 
variable coefficients are obtained [9 ]. 
 

Using the (Exp(−φ (ξ )) ) -Expansion method, 
some new exact traveling wave solutions of the 
cubic nonlinear Schrodinger equation are given 
[10]. The center of these solutions is located at a 
fixed point (0, 0) on (x, t) plane. Basing on a 
simple assumption, WANG et al. [11] founded 
larger universality and applicability of rogue 
waves with a controllable center. The above 
method does not consider the effect of 
parameters on the waveform, which is our 
interest. More researches on rogue waves can 
be founded in Ref [12-21]. 
 

In this paper, our interests focus on two aspects:  
 

(1) We want to determine rogue wave 
solutions of Eq. (1) with an arbitrary 
coefficient of nonlinearity;  

(2) We want to know the role of the 
nonlinearity coefficient on the formation of 
rogue waves.  

The organization of this paper is as follows. In 

Section 2, we obtain some special rogue waves 
with a controllable center by a direct method. In 
Section 3, we analyze the different controllability 
by numerical simulation. Conclusion will be given.  
 
2. SOME SPECIAL ROGUE WAVES  
 
By the similar method in Ref. [9], we assume 
rogue waves as follows 
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       1 0 1 2, + ,q x t b b x b t                               (4) 

 

                    

     
2 2

1 1 2 3, .h x t c x c t c         (5) 

 

Here i , ib  ( i  = 0, 1, 2), jc  ( j  = 1, 2, 3),  , 

  are real parameters. 

 

Substituting the function 1  into Eq. (1) and 

setting different coefficient Lists to be zero. We 
obtain the following possible system of nonlinear 
algebraic equations with the aid of Maple. 
 

2
2 13 0,b c 
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………. 
 

From (6), we can have two classes of solutions:  
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Case 1.  
 

3 0c 
, 0 34 ,a c  1 0a 

, 2 0a 
, 0 38 ,b c 

 1 38b c 
 , 2 0b  , 1 34c c , 3

2

2c
c

m
 .        (7)  

Substituting (7) into Eq. (1), we obtain 
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Case 2 
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Substituting (9) and (10) into Eq. (1), we obtain 
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3. SOME PROPERTIES OF ROGUE 
WAVES 

 

3.1 Width of Rogue Waves 
 

It is well known that the parameter of the 
nonlinearity have a major impact on the forms of 
waves. We herein analyze the impact of rogue 
waves with the varying parameter of the 
nonlinearity. Given by different parameters of the  
 

nonlinearity, we draw the corresponding rogue 
waves and density pictures. It is easy to find that: 
(1) The nonlinearity parameter m   has little 
effect on the height of rogue waves. That is, 
there is no change the height with different 

parameters of the nonlinearity. (2) The 

nonlinearity parameter m  has more effect on the 
width of rogue waves. With the increase of m , 
the rogue waves becomes wider (in detailed see 
Figs. 1-3).  
 

3.2 Rogue Waves with a Controllable 
Center 

 

From (8), we find rogue waves will move when 

,   are given by different values. When we 

study the situation before taking   definite 
values for d of m . The following, we consider 
wave changes under m  taking a fixed value 0.5 

and ,  varying. We find the following facts: 
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When ,   are given by different values, the 

central location of the rogue wave are different, 
namely, the rogue wave center is movable (see 
Figs. 4-7).  
 

3.3 Singular Rogue Waves  
 

According to the analysis in Section 2, when m  
is a negative value, we find that the denominator 
value of obtained solutions (11)-(12) can be zero 
under some positions. So we can obtain some 
singular rogue waves see Figs. 8-11. 
 

 

( a )                                                                     (b ) 

Fig. 1. Rogue wave propagations (a) and contour plots (b) for the intensity 
2

1  for 

0.005, 0m   ， 
 

 

( a )                                                          (b ) 

Fig. 2. Rogue wave propagations (a) and contour plots (b) for the intensity 
2

1  for 

0.5,m  =0  



 
 
 
 

Yin and Feng; PSIJ, 5(3): 179-188, 2015; Article no.PSIJ.2015.019 
 
 

 
183 

 

 

( a )                                                                       (b ) 
 

Fig. 3. Rogue wave propagations (a) and contour plots (b) for the intensity  
2

1  for 

4,m  =0  

 

 

( a  )                                                                   (b ) 
 

Fig. 4. Rogue wave propagations (a) and contour plots (b) for the intensity
2

1 for 0.5m  ，

3, 2    
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( a )                                                                  (b ) 

Fig. 5. Rogue wave propagations (a) and contour plots (b) for the intensity
2

1 for 

0.5m  , 2, 2     

 

 

( a  )                                                                            (b  )b  

Fig. 6. Rogue wave propagations (a) and contour plots (b) for the intensity
2

1 for 

0.5m  2, 2     . 
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( a )                                                                      (b ) 

Fig. 7. Rogue wave propagations (a) and contour plots (b) for the intensity 
2

1  for 

4,m  =0 . 

 

 

( a )                                                                      (b ) 

Fig. 8. Rogue wave propagations (a) and contour plots (b) for the intensity
2

1 for 

0 1,b  1 1,b  2 1,b  1.   
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( a )                                                                          (b ) 
 

Fig. 9. Rogue wave propagations (a) and contour plots (b) for the intensity 
2

1  

for 0 1,b  1 1,b  2 1,b  1.    

 

 

( a )                                                                          (b ) 

Fig. 10. Rogue wave propagations (a) and contour plots (b) for the intensity 
2

1  for 

0 1,b   1 3,b  2 2,b  2.   
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( a )                                                                   (b ) 
Fig. 11. Rogue wave propagations (a) and contour plots (b) for the 

intensity
2

1 for 0 1,b   1 3,b  2 2,b  2.    

 

4. CONCLUSION 
 
In this paper, we obtain some special rogue 
waves with a controllable center by a direct 
method and study the effects of different 
parameters on rogue waves. We find that the 
nonlinearity parameter is responsible for the 
width of rogue waves. In the future, we will study 

the effects of rogue wave solutions 1  on NLS 

equations by similarity transformation. 
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