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Abstract
The aim of this paper is to study simultaneous remotality in the Banach space of bounded linear
operators on a Banach space H.
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1 Introduction
Let X be a Banach space, and E ⊂ X be a closed bounded set of X. For x ∈ X we let

D(x,E) = sup{‖x− e‖ : e ∈ E}

We call D(x,E) attainable if there exists e1 ∈ E such that

D(x,E) = ‖x− e1‖
The point e1 is called farthest point from x in E.
The set E is called remotal if D(x,E) is attainable for all x ∈ X. If D(x,E) is uniquely attainable

for all x ∈ X, then E is called uniquely remotal.
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With each such set E, there is a set map associated with it, called the metric projection defined
as follows

F (x,E) = {e ∈ E : ‖x− e‖ = D(x,E)}

If F (x,E) is a singleton for all x ∈ X, then E is called uniquely remotal.
The problem of whether a set is remotal is an important problem in the theory of Banach spaces.
The study of remotal sets started in the sixties of the last century.
Edelstein and Lewis in [1], proved results on remotality of exposed points in Banach spaces.
Remotality has its application in the geometry of Banach spaces. Many recent papers have been

published on the relation between the geometry of the Banach space and remotality of
sets in that Banach space. We refer to [2], [3], [4], [5], [6] and [7].

Now, let X be a Banach space. On X ×X, one can define many norms. The most interesting
ones are the p-norms for 1 ≤ p ≤ ∞ :

For (x, y) ∈ X × X, we let ‖(x, y)‖p = (‖x‖p + ‖y‖p)
1
p , 1 ≤ p < ∞. For p = ∞, ‖(x, y)‖∞ =

max{‖x‖ , ‖y‖}. For E ⊂ X, let D(E) = {(e, e) : e ∈ E}, the diagonal of E.
The set E is called simultaneously remotal in the p−norm in X, if D(E) is remotal in (X ×

X, ‖.‖p).
Few results are known on simultaneous remotality in Banach spaces. In [8], Abu Sirhan and

Edely, studied simultaneous remotality in L1(µ,X). Al-Sharif, and Rawashdeh, studied simultaneous
remotality in L∞ (I,X) in [9].

In this paper we study simultaneous remotality in L(H,H), the space of bounded linear operators
on a Hilbert space H.

2 Simultaneous Remotality in L(H,H)

Let H be a separable Hilbert space and Y be a closed subspace of H. So H = Y ⊕ Y ⊥, where
Y ⊥ is the orthogonal complement of Y. We set L(H,H) to denote the space of all bounded linear
operators on H to H, and E = L(B1(Y ), B1(Y )), the set of all bounded linear operators that takes
the unit ball of Y into the unit ball of Y. Then E is a closed convex bounded subset of L(H,H).

.

Now:
Any operator T : H → H has a matrix representation

T =

[
T1 T2

T3 T4

]
: Y ⊕ Y ⊥ → Y ⊕ Y ⊥

where

T (y ⊕ ŷ) =
[
T1 T2

T3 T4

] [
y
ŷ

]
So

T1 : Y → Y, T2 : Y ⊥ → Y

T3 : Y → Y ⊥, T4 : Y ⊥ → Y ⊥

Definition 2.1. An operator T ∈ L(H,H) is called block diagonal if T =

[
T1 0
0 T4

]
.

A nice fact about the diagonal operator is the following:
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Lemma 2.2

If T ∈ L(H,H) and T =

[
A 0
0 B

]
, then ‖T‖ = max {‖A‖ , ‖B‖} .

Proof :

Let T ∈ L(H,H) such that T =

[
A 0
0 B

]
.

Then

‖T‖2 = sup
‖x‖=1

‖Tx‖2

= sup
‖y⊕ŷ‖=1

‖T (y ⊕ ŷ)‖2

= sup
‖y⊕ŷ‖=1

∥∥∥∥[A 0
0 B

] [
y
ŷ

]∥∥∥∥2
= sup

‖y⊕ŷ‖=1

∥∥∥∥[AyBŷ
]∥∥∥∥2

= sup
‖y‖2+‖ŷ‖2=1

(
‖Ay‖2 + ‖Bŷ‖2

)
≤ sup

‖y‖+‖ŷ‖=1

(
‖y‖2

∥∥∥∥A y

‖y‖

∥∥∥∥2 + ‖ŷ‖2 ∥∥∥∥B ŷ

‖ŷ‖

∥∥∥∥2
)

But , ‖y‖2
∥∥∥A y
‖y‖

∥∥∥2 + ‖ŷ‖2 ∥∥∥B ŷ
‖ŷ‖

∥∥∥2 is in the form tf(t) + sg(s), with s+ t = 1, where t = ‖y‖2

and s = ‖ŷ‖2 . Consequently,

‖T‖2 ≤ max( sup
‖y‖=1

∥∥∥∥A y

‖y‖

∥∥∥∥2 , sup
‖ŷ‖=1

∥∥∥∥B ŷ

‖ŷ‖

∥∥∥∥2)
= max(‖A‖2 , ‖B‖2

Now,

‖A‖ = sup
‖y‖=1

‖Ay‖

= sup
‖y‖=1

‖Ay +B0‖

= sup
‖y‖=1

‖T (y ⊕ 0)‖

≤ ‖T‖

Similarly
‖B‖ ≤ ‖T‖

Thus,
max{‖A‖ , ‖B‖} ≤ ‖T‖

This ends the proof. �

Now, for S, T ∈ L(H,H), let ‖(S, T )‖∞ = max{‖S‖ , ‖T‖}. Our goal now is to prove that E is
simultaneously remotal in a certain class of operators in L(H,H), in the ‖.‖∞ norm. The remotality
of

E was proved in [10].
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Theorem 2.3

The set E is simultaneously remotal with respect to diagonal operators in L(H,H).
Proof:
Let T be a diagonal matrix in L(H,H).Then T = T1+T2, where T1 : Y → Y and T2 : Y ⊥ → Y ⊥.
Now, T1 has a farthest point in L(B1(Y ), B1(Y )), say A = − T1

‖T1‖
.

Then T −A = T1 −A+ T2. And

‖T −A‖ = max{‖T1 −A‖ , ‖T2‖}
≥ max{‖T1 −B‖ , ‖T2‖}
= ‖T −B‖ for any B ∈ E.

Thus, E is remotal in the diagonal operators in L(H,H).
Now let S, T ∈ L(H,H), such that both are diagonal. Hence S = S1 + S2, and T = T1 + T2,

with S1, T1 ∈ L(Y, Y ). Let B1 be the farthest point of S1 in E, and B2 be the farthest point of T1 in E.

Assume without loss of generality that

max{‖S1 −B1‖ , ‖S2‖ , ‖T1 −B2‖ , ‖T2‖} = ‖S1 −B1‖ ...........(∗)
Let B = B1 + 0. Then B ∈ E. Further

‖(S −B, T −B)‖∞ = max{‖S −B‖ , ‖T −B‖}
= max{‖S1 −B1‖ , ‖S2‖ , ‖T1 −B1‖ , ‖T2‖}
= ‖S1 −B1‖

Since from (∗), we have ‖S1 −B1‖ ≥ ‖T1 −B2‖ ≥ ‖T1 − C‖ for any C ∈ E, we get

‖(S −B, T −B)‖∞ ≥ max{‖S1 − C‖ , ‖S2‖ , ‖T1 − C‖ , ‖T2‖}, ∀C ∈ E
= ‖(S − C, T − C)‖∞ .

Now assume that

max{‖S1 −B1‖ , ‖S2‖ , ‖T1 −B2‖ , ‖T2‖} = ‖S2‖ ......(∗∗)

Then

‖(S −B, T −B)‖∞ = max{‖S −B‖ , ‖T −B‖}
= max{‖S1 −B1‖ , ‖S2‖ , ‖T1 −B1‖ , ‖T2‖}
= ‖S2‖ (by (∗∗) and ‖T1 −B1‖ ≤ ‖T1 −B2‖ ≤ ‖S2‖ )

For all C ∈ E
‖S1 − C‖ ≤ ‖S1 −B1‖ ≤ ‖S2‖ = ‖(S −B, T −B)‖∞
‖T1 − C‖ ≤ ‖T1 −B1‖ ≤ ‖T1 −B2‖ ≤ ‖S2‖ = ‖(S −B, T −B)‖∞
‖T2‖ ≤ ‖S2‖ = ‖(S −B, T −B)‖∞
So

‖(S − C, T − C)‖∞ = max{‖S1 − C‖ , ‖S2‖ , ‖T1 − C‖ , ‖T2‖}
≤ ‖S2‖
= ‖(S −B, T −B)‖∞
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Similarly, if max{‖S1 −B1‖ , ‖S2‖ , ‖T1 −B2‖ , ‖T2‖} = ‖T2‖ . This completes the proof.

Theorem 2.4 :
B1 (L(H,Y )) is simultaneously remotal in L(H,Y ).

Proof :
Let A1, A2 ∈ L(H,Y ). Then there exist J1, J2 ∈ B1 (L(H,Y )) such that J1 is a farthest point of

A1, and J2 is a farthest point of A2.

We have two cases :
If

max{‖A1 − J1‖ , ‖A2 − J2‖} = ‖A1 − J1‖ ,

then
‖(A1 − J,A2 − J)‖∞ = max{‖A1 − J‖ , ‖A2 − J‖} = ‖A1 − J1‖

For any C ∈ B1 (L(H,Y ))

‖(A1 − C,A2 − C)‖∞ = max{‖A1 − C‖ , ‖A2 − C‖}
≤ max{‖A1 − J1‖ , ‖A2 − J2‖}
= ‖A1 − J1‖
= ‖(A1 − J1, A2 − J1)‖∞ .

.If
max{‖A1 − J1‖ , ‖A2 − J2‖} = ‖A2 − J2‖ ,

then
‖(A1 − J2, A2 − J2)‖∞ = max{‖A1 − J2‖ , ‖A2 − J2‖} = ‖A2 − J2‖ .

For all C ∈ B1 (L(H,Y ))

‖(A1 − C,A2 − C)‖∞ = max{‖A1 − C‖ , ‖A2 − C‖}
≤ max{‖A1 − J1‖ , ‖A2 − J2‖}
= ‖A2 − J2‖
= ‖(A1 − J2, A2 − J2)‖∞ .

Thus (A1, A2) has a simultaneous farthest point in B1 (L(H,Y )) . This ends the proof.

3 Conclusions

For any subspace Y of a Hilbert space H, we prove that L(B1(Y ), B1(Y )) is simultaneously remotal
in L(H,H) when the ‖‖∞ is considered for the pair of operators. Here L(E,F ) stands for the set of
bounded linear operators in L(H,H) that takes the subset E v H, into the subset F.
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