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The Vehicle Routing Problem with Fuzzy Payloads 
considering Fuel Consumption
Paraskevi Zacharia , Christos Drosos, Dimitrios Piromalis, 
and Michail Papoutsidakis

Dept. of Industrial Design and Production Engineering, University of West Attica, Egaleo, Greece

ABSTRACT
This paper considers the Vehicle Routing Problem (VRP) with 
fuzzy payloads with the aim to minimize two criteria: the travel 
distance and the fuel consumption. VRP with fuzzy payloads is 
an NP-hard problem, in which a fleet of vehicles with finite 
capacity leaves from a central depot empty of goods and has 
to serve a set of geographically dispersed customers associated 
with fuzzy payloads. Thus, an optimization approach based on 
a bi-objective Genetic Algorithm is developed that is integrated 
with fuzziness. This problem differentiates from the classic VRP, 
since it also considers the fuel consumption to reduce the 
energy consumption. The efficiency of the developed method 
is investigated and discussed through a set of test instances. The 
experimental results highlight the impact of both criteria on the 
resulted optimum solution and prove that increasing the uncer
tainty in customers’ collection quantities results in more costly 
solutions.
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Introduction

The Vehicle Routing Problem (VRP) is a combinatorial optimization problem 
introduced by Dantzig and Ramser (1959) and has many practical applica
tions, especially in transportation and distribution logistics. VRP involves the 
problem of determining the optimal routes of minimum cost for a fleet of 
vehicles starting and ending to a central depot that is assigned to serve a set of 
geographically dispersed customers of minimum total cost satisfying certain 
constraints. The cost is usually expressed as a function of the total distance 
traveled.

Apparently, the operating cost of a vehicle traveling along a route depends 
on several factors. The minimization of energy consumption is a great chal
lenge for logistics and thus, the minimization of fuel consumption offers 
a great potential to reduce the cost as well as environmental pollution that 
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poses major threats to human health. Fuel consumption is a factor that is 
strongly related to the travel distance and mainly depends on distance and 
load.

The Energy Minimizing Vehicle Routing Problem (EMVRP) was firstly 
introduced in (Kara, Kara, and Yetis 2007, 2008) as an extension of the 
classical VRP, where the optimization objective is the minimization of the 
energy consumption along the tour through a distance-weighted load function 
instead of minimizing the traditional total distance. In other words, fuel 
consumption per unit distance is proportional to the total weight of the 
vehicle.

In (Xiao et al. 2012), the Fuel Consumption Rate (FCR) is added to the 
Capacitated Vehicle Routing Problem (CVRP). FCR is taken as a load depen
dent function, where FCR is linearly associated with the vehicle’s load. The 
formulation of the FCR is based on statistical data, proposed by the Ministry of 
Land, Infrastructure, Transport and Tourism of Japan. In this context, 
a mathematical optimization model is proposed and a Simulated Annealing 
algorithm with a hybrid exchange rule is developed.

Gaur, Mudgal, and Singh (2013) study the cumulative Vehicle Routing 
Problem that is a generalization of the Capacitated Vehicle Routing 
Problem with objective of minimizing the fuel consumption. They exam
ined four versions of the problem and gave constant factor approximation 
algorithms. For all examined versions, they considered that the vehicles 
have infinite capacity and an arbitrary number of depot offloads are 
allowed.

In (Fukasawa, He, and Song 2016), a variant of the Capacitated Vehicle 
Routing Problem is studied in the context of energy minimization. The 
authors define cost of traversing an arc as the product of the arc length and 
the total vehicle weight when it traverses that arc. Two mixed-integer linear 
programming formulations are presented: an arc-load formulation and a set 
partitioning. A branch-and-cut algorithm is proposed for the arc-load formu
lation and a branch-cut-and-price algorithm is proposed for the set partition
ing formulation strengthened by additional constraints.

Wang et al. (2019) solve an extension of the VRP with the aim to minimize 
the fuel consumption considering fuzzy travel times between the customers 
due to the traffic load condition. They transform the fuzzy chance constrained 
programming model into an equivalent deterministic model and then they 
revise the original hybrid intelligent algorithm by replacing the embedded 
fuzzy simulation with analytical function calculation in order to improve the 
effectiveness of the algorithm.

Wang, Liu, and Chu (2020) study the Energy Minimization Traveling 
Salesman Problem with the aim to find the minimum energy cost tour. The 
objective is to minimize the sum of the product of load (including curb weight 
of the vehicle) and distance for each arc. The basic model is based on one 
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commodity flow model presented in (Fukasawa, He, and Song 2016). An 
approximation algorithm has been developed and a fast lower bound based 
on the well known 1-tree bound has been proposed.

There exist a wide literature focusing on the deterministic VRP and its 
variants. Recently, the research community has focused on the variants of VRP 
considering stochasticity and energy costs (Altabeeb, Mohsen, and Ghallab 
2019; Asgharia and Mirzapour Al-e-hashem 2021; Barma, Dutta, and 
Mukherjee 2019; Basso et al. 2019; Elshaer and Awad 2020; Huang et al. 
2019; Jianyu et al. 2019; Keskin, Laporte, and Çatay 2019; Li, Soleimani, and 
Zohal 2019; Marković et al. 2020; Moghdani et al. 2021; Oyola, Arntzen, and 
Woodruff 2017; Pelletier, Jabali, and Laporte 2019; Queiroga, Sadykov, and 
Uchoa 2021; Wang et al. 2020; Xidias and Azariadis 2019; Zacharia and Xidias 
2020). In most cases, it is difficult to describe the parameters of the VRP as 
deterministic, because real-world systems are usually afflicted with uncertainty 
resulting in uncertain, subjective, ambiguous and vague data. Fuzzy concepts 
express this uncertainty and thus the fuzzy models are closer to realistic 
situations that take place in real-world systems. The VRP with fuzzy para
meters differs from the deterministic VRP in several fundamental aspects. 
Thus, the solution of VRP considering fuzzy parameters becomes even more 
intricate.

In the relevant literature (Bruglieri et al. 2019; Majumdar and Bhunia 2011; 
Pamucar 2020; Pamucar and Janković 2020), imprecision in data in realistic 
environments is treated using different approaches for the variables: stochastic 
variables that follow a probability distribution, interval arithmetic, gray num
bers and rough numbers. In this work, a fuzzy variable approach has been 
chosen due to the fact that in recent years fuzzy concepts have become 
a powerful tool for decision-makers to deal with impreciseness embedded in 
real-world application problems. It should also be noticed that mixing fuzzy 
logic with genetic algorithms is a promising resolution approach for complex 
routing and scheduling problems.

Last years, fuzziness in the context of a VRP version has attracted research
ers’ interest. There are some works that consider fuzziness in some parameter: 
fuzzy travel times (Zarandi, Hemmati, and Davari 2011; Zheng and Liu 2006), 
fuzzy time windows (Ghannadpour et al. 2014), fuzzy demands (Erbao and 
Mingyong 2009; Ghaffari-Nasab, Ahari, and Ghazanfari 2013; Kuo and Zulvia 
2017). The proposed fuzzy models are based on the credibility theory intro
duced in (Liu 2004) in order to rank fuzzy numbers. The credibility theory is 
a modification to possibility theory based on the concepts of possibility, 
necessity and credibility of a fuzzy event.

The deterministic VRP and its variants are regarded as NP-hard optimiza
tion problems and therefore, they are computationally intractable. Due to the 
combinatorial explosion, exact algorithms can hardly be used to yield exact 
optimal solutions. Thus, researchers resort to metaheuristics, Evolutionary 
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Algorithms, Tabu Search, Simulating Annealing etc. Following this trend, the 
optimization approach presented in this work is based on a Genetic Algorithm 
that belongs to robust metaheuristics and has been proved a very promising 
tool for solving a wide variety of real-world combinatorial optimization 
problems. Our choice of using a GA to solve the problem is based on the 
success of GAs to solve various variants of the VRP. Several authors have also 
highlighted the benefits of using GAs to solve VRP (López-Castro and 
Montoya-Torres).

This paper considers the significantly challenging aspect of energy con
sumption in the context of the Vehicle Routing Problem. This study considers 
concurrently two optimization criteria: the travel distance and the fuel con
sumption. Fuel consumption is inextricably linked to the total vehicle’s weight 
while serving the customers. In order to be close to real-life situations, the 
customers’ quantities are not deterministic; instead, they are considered as 
fuzzy and are represented by triangular fuzzy numbers. Fuzzy consideration is 
based on the concept of the total integral value. A bi-objective Genetic 
Algorithm (GA) is developed that incorporates the fuzzy concepts considering 
the collection quantities associated with the customers. The experimental tests 
examine the solution efficiency and effectiveness of the GA and investigate the 
impact of each criterion as well as the impact of the uncertainty of the loads on 
the final solution.

The literature review reveals that no research has been conducted on the 
solution of VRP considering two optimization criteria and incorporating 
fuzziness in the collection quantities. In this regard, this work is an extension 
to the classical CVRP with an additional optimization criterion (energy con
sumption) and fuzziness in the collection quantities in an attempt to show the 
potential of the proposed model to be integrated in a real-life environment. To 
this end, the main innovations and contribution of this work are summarized 
in the following:

● The traditional vehicle routing problem focuses on the travel distance. In 
this work, it is extended to take into consideration the energy consump
tion in terms of fuel consumption, which is a key issue in transportation 
and distribution logistics. Two competitive objectives are optimized with 
the aim to find the best compromise and reach a trade-off.

● Unlike the classic VRP, payloads are considered as fuzzy instead of fixed 
deterministic in order to reflect the uncertainty embedded in real-world 
situations. The fuzzy concepts based on the total integral value are 
incorporated in the optimization solution method. The research studies 
the effect of the uncertainty in customers’ collection quantities on the 
optimum route.
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● The problem at hand is an NP-hard optimization problem that becomes 
even more complex due to the integration of fuzziness as well as the 
concurrent optimization of two objectives. A heuristic approach for the 
solution of the fuzzy bi-objective VRP is developed to handle the NP-hard 
nature of the problem.

The rest of the paper is organized as follows. In Section 2, the problem is 
formulated, the fuzzy concepts are presented and the model formulation is 
delineated. Section 3 analyses and discusses the main characteristics of the 
proposed bi-objective Genetic Algorithm. In Section 4, computational analysis 
is conducted and experimental instances are employed to test the performance 
of the proposed approach. Finally, Section 5 presents the conclusions and 
directions for future work.

Problem Formulation

Problem Statement

Consider a fleet of m vehicles with a maximum capacity located at a depot in 
a graph G(V, E), where V ¼ 0; 1; 2; . . . ; nf g is the vertex set and E is the edge 
set. Vertex 0 corresponds to the depot and n is the number of vertices 
(customers) associated with uncertain collection quantities. All vehicles start 
their tours from the same depot and must return to the depot after serving all 
customers. The goal is to devise a travel schedule for the vehicle so that all the 
quantities are collected. Depending on the fuzzy collection quantity of the next 
customer, it should be decided whether the vehicle will return to the depot or 
whether it will continue to the next customer. The conditions to be satisfied 
are the following:

● Each customer is served exactly by one vehicle.
● Each route starts and ends at the depot.
● For each collection tour, the payload cumulates as much as preceding 

customer’s collection quantities.
● The payload on any edge of each tour doesn’t exceed the available capacity 

of the vehicles.

Under these conditions, the problem can be stated as:
The problem concerns a number of Autonomous Guided Vehicles (AGVs) 

starting from a depot to serve a number of customers with fuzzy collection 
quantities. The aim is to determine the number of vehicles starting and ending 
at the depot so that all customers are served exactly once. The objectives to be 
minimized are the total travel distance of the vehicles as well as the fuel 
consumption regarding that the capacity of each vehicle is finite.
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Fuzzy Numbers

The concept of fuzzy set was firstly introduced by Zadeh (1965). The use of 
fuzzy numbers to represent the uncertainty in payloads is very plausible and 
more realistic. In this study, the fuzziness of data is represented by Triangular 
Fuzzy Numbers (TFNs). A TFN ~A (see Figure 1) is denoted as a triplet 
a1; a2; a3ð Þ, where is the most plausible value, a1 is the most optimistic value 

(less than a2) and is the most pessimistic value (greater than a2). In other 
words, the actual demand may be equal to a2 (most plausible value), smaller 
(up to the optimistic value a1) or greater (up to pessimistic value) than a2. 
Thus, the value of α2 corresponds to a grade of membership of 1. In practice, 
a dispatcher or analyst studying the problem can subjectively estimate the 
boundaries (α1, α3) of the variable data as well as the most plausible value (α2) 
based on experience and/or intuition.

Since collection quantities are modeled as triangular fuzzy numbers, fuzzy 
operations are needed for the calculations. In particular, the sum of the TFNs 
~A α1; α2; α3ð Þ and ~B β1; β2; β3

� �
is calculated as follows: 

~Aþ ~B ¼ α1 þ β1; α2 þ β2; α3 þ β3
� �

(1) 

To compare fuzzy numbers, a method for ranking fuzzy numbers is necessary. 
In this paper, a flexible method based on the integral value concept has been 
developed in (Liou and Wang 1992). According to this method, the total 
integral value for a TFN ~A ¼ a1; a2; a3ð Þ is a convex combination of the left 
and right integral values through an index of optimism λ 2 0; 1½ �. The left 
integral is used to reflect the optimistic viewpoint and the right integral is used 
to reflect the pessimistic viewpoint of the manager. The total integral value is 

Eλ ~A
� �
¼

1
2

λa3 þ a2 þ 1 � λð Þa1ð Þ (2) 

and is used as the ranking function. Therefore, for any two fuzzy numbers ~A 
and ~B, if Eλ ~A

� �
< Eλ ~B

� �
then ~A< ~B, if then ~A ¼ ~B and if Eλ ~A

� �
> Eλ ~B

� �

then A > B. The index of λ represents the degree of optimism of a decision 

α1 α2 α3 x

1.0

μ (x)

Figure 1. A typical triangular fuzzy number A.
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maker. A larger λ indicates a higher degree of optimism and a smaller λ 
indicates a pessimistic decision maker’s viewpoint. For a moderate decision 
maker, λ is equal to 0:5.

Model Description

In this paper, we consider the VRP considering two optimization criteria: the 
travel distance and fuel consumption. Based on the model presented in (Gaur, 
Mudgal, and Singh 2013), the energy consumption is proportional to the 
friction force of the vehicle on the road and the travel distance. Since the 
payload of a vehicle affects the friction force, the energy consumption is 
strongly affected by the payload and the travel distance. As a result, the 
payload is dynamic and depends on the sequence with which the vehicle visits 
the customers.

Assume that the vehicles are initially empty of goods when they depart from 
the depot. Each vehicle should collect the fuzzy quantity ~qi from each customer 
before it returns to the depot. For the sake of simplicity, all vehicles are 
identical, i.e. the maximum available capacity Q0 is the same for all vehicles. 
The available fuzzy capacity of each vehicle after serving k customers will be: 

~Qk ¼ Q0 �
Xk

i¼1
~qi (3) 

If the available fuzzy capacity is greater than the fuzzy collection quantity at 
the next node, then the vehicle is sent to the next node; otherwise, the vehicle 
should return to the depot. In other words, the capacity constraint imposes 
that the fuzzy collection quantity corresponding to each customer should not 
exceed the available fuzzy capacity of the vehicle. 

~qkþ1 � ~Qk (4) 

Εq.(4) is modeled as based on Eq.(2).
Since ~qkþ1 and ~Qk are triangular fuzzy numbers in the form of ~qkþ1 ¼

qkþ1;1; qkþ1;2; qkþ1;3
� �

and ~Qk ¼ Qk;1;Qk;2;Qk;3
� �

, Εq.(4) is transformed to 

Eλ ~qkþ1
� �

� Eλ Qkð Þ (5) 

λqkþ1;3 þ qkþ1;2 þ 1 � λð Þqkþ1;1 � λQk;3 þ Qk;2 þ 1 � λð ÞQk;1 (6) 

The capacity constraint is checked for each customer to establish a decision 
about sending the vehicle to the next customer or sending it back to the depot. 
If the capacity constraint is satisfied, the vehicle should be sent to the next 
customer. If the capacity constraint is violated, the vehicle returns to the depot 
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and the route ends. Another vehicle is sent from the depot to the next 
customer starting a new route and this process is repeated until all customers 
are served.

The first optimization criterion is the minimization of the total travel 
distance TDtotal considering all vehicles and is computed as:

(7)
and TDi is given by: 

TDi ¼ di
01 þ

Xk� 1

j¼1
di

j;jþ1

� �
þ di

10 (8) 

where di
01 is the distance from depot to the first customer of the route i, di

j;jþ1 is 
the distance from customer j to customer j + 1, di

10 is the distance from the first 
customer of the route i to the depot and r is the total number of routes 
resulting from the capacity constraint.

The second optimization criterion is the minimization of the fuel consump
tion for all vehicles according to the following formula based on (Gaur, 
Mudgal, and Singh 2013): 

FCtotal ¼ a
Xr

i¼1
TDi þ b

Xn

j¼1
qjDj (9) 

where Dj is the distance traveled by a vehicle between picking up the quantity 
from j-customer and dropping it at the depot according to the travel route. 
The constants are defined as 

a ¼ μW0 (10) 

and 

b ¼ μ (11) 

where W0 is the weight of the empty vehicle and μ is the coefficient of friction.
The fuel consumption expressed by Εq.(7) consists of two parts. The first 

part concerns the fuel consumption due to the weight of the empty vehicle and 
the second part concerns the fuel consumption due to the weight of the 
quantities collected along the tour.

It should be noted that the computation of fuel consumption is different for 
the cases of collection and delivery. For the collection case (i.e. the case 
discussed in this work), the payload is increased as the vehicle visits the 
customers resulting in increased fuel consumption rate.

In Figure 2, a schematic overview of the developed model is presented 
including the general mechanism and its main stages. Given the fuzzy 
collection quantity for each customer as well as the location for the 
customers and the depot, the optimization solution method is applied 
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to produce the number of necessary vehicles as well as the routes for 
each one vehicle starting and ending at the depot. In the following 
Section, the proposed optimization solution approach is presented in 
detail.

The Proposed Bi-objective Genetic Algorithm

The vehicle routing problem is a very challenging NP-hard problem that 
can hardly be solved using traditional methods. Thus, researchers often 
resort to intelligent algorithms, such as Genetic Algorithms (Goldberg 
1989). Genetic Algorithms are adaptive search techniques based on the 
principles and mechanisms of natural selection and the ‘survival of the 
fittest.’ GAs are a very promising tool for solving a wide variety of real- 
world combinatorial optimization problems. They are well suited to large 
and complex combinatorial optimization problems and are proved to be 
robust to local optima. In this study, a GA is developed integrated with 
fuzzy considerations based on the total integral value concept, and its 
main characteristics described analytically in the following:

Solution representation: Each solution is represented as an n-dimensional 
vector, which is a permutation of integer numbers. Each integer number 
represents a customer and the sequence of the integer numbers represents 
the order with which the customers will be served. A possible chromosome is 
in the form of 

10825641379 

fuzzy collection 
quantities

customers+depot
location

Bi-criteria optimization 
solution approach

Number of vehicles routing plan for each 
vehicle

Figure 2. A schematic overview of the developed model.
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representing a possible path for the vehicle starting and ending to the depot. 
However, the final tours (and therefore, the total number of vehicles) are 
defined by the capacity constraint.

The evaluation mechanism: The fitness function expresses the possibility 
that the chromosome will survive and reproduce in the next generation and is 
strongly associated to the objective function. The fitness function of the 
problem at hand is expressed by: 

fitness ¼
1

w1TCtotal þ w2FCtotal
(12) 

where w1 and are the weight factors.
Genetic operators: In the proposed GA, reproduction is based on the 

roulette wheel selection scheme, where the parent chromosomes are selected 
with rates proportional to their fitness. In general, chromosomes with higher 
fitness value have more chances to be selected for reproduction. For the 
implementation of the roulette wheel scheme, the following steps should be 
followed:

● Calculate the sum of all chromosomes’ fitness (S).
● Generate a random number (r) between 0 and S.
● Starting from the top of the population, keep adding the finesses to the 

partial sum P, till P < S. The individual for which P exceeds S is the chosen 
individual.

Crossover is a recombination operator that combines the genetic information 
of the parents to produce new offspring. The Order Crossover (OX) 
(Michalewitz 1996) is applied according to a randomly chosen crossover rate 
according to the following steps:

● Create two random cut-points in the parent and copy the segment 
between them from the first parent to the first offspring.

● Starting from the second crossover point in the second parent, copy the 
remaining unused numbers from the second parent to the first offspring, 
omitting numbers that are already present. The sequence is placed in the 
first offspring, starting from the second cut-point.

● Repeat for the second offspring with the parent’s role reversed. 

Parent#1 3 10 9 1 6 5 8 2 4 7 7 9 3 4 10

Parent#2 9 3 6 4 10 1 2 5 7 8 7 3 9 6 8

Offspring#1 3 4 10 1 6 5 8 2 7 9
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Offspring#2 9 6 8 4 10 1 2 5 7 3

Mutation is applied in order to inject new genetic material into the popula
tion and thereby maintain genetic diversity. The inversion (Michalewitz 1996) 
is used for mutation according to a randomly chosen mutation rate and works 
for a single parent with two random cut-points as follows: 

Parent#1 3 10 1 6 2 9 7 8 4 5

Offspring#1 3 10 7 9 2 6 1 8 4 5

Computational Experiments

The simulation tests were implemented in Matlab R2015b and the machine 
used is an intel core i5-8265 U CPU @ 1.60 GHz PC. The control settings for 
the GA parameters are as follows: population size = 100, maximum generation 
number = 300, a random crossover rate taken values in the range [0.7–0.85], 
a random mutation rate taken values in the range [0.06–0.1]. In addition, a and 
b are assigned to be equal to 1.7 and 0.5, respectively. Concerning the index of 
λ, for a moderate decision maker, λ is set to 0.5. For all the test instances 
examined in this section, the collection quantities are fuzzified by setting the 
two extreme (least likely) values of the triplet α1 ¼ α2 � δ1 and α3 ¼ α2 � δ2, 
where and .

Firstly, the performance of the algorithm is evaluated considering both 
optimization criteria (travel distance and fuel consumption) considering 10 
customers and one depot. These tests are performed in order to gather all the 
solutions and find the best one. Note that for all test cases the algorithm runs 
for 20 times and the best solution is presented. Table 1 presents the resulted 
solutions for the two criteria as well as the best found solution and the average 
results for 20 runs of the proposed algorithm, the median, the standard 
deviation and the variance. The last column of Table 1 presents the iteration 
number where the best solution was found for the first time as well as the 
average iteration number.

We conduct the experiment for the collection of fuzzy quantities from 10 
customers and maximum available capacity Q0 ¼ 30. The fuzzy collection 
quantity for each customer is shown in Table 2. To compare the experimental 
results, we generate two scenarios: one with the objective of minimizing travel 
distance and one with the objective of minimizing the total expenditure (travel 
distance and fuel consumption).
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The best solution for the 1st scenario includes 2 tours, as shown in Figure 3; 
vehicle#1 serves 6 customers and vehicle#2 serves 4 customers:

Vehicle#1: depot → 6 → 10 → 9 →8 → 7 → 5 → depot
Vehicle#2: depot → 4 → 3 → 1 → 2 → depot
and the total carrying payload corresponding to each tour is (22.10, 26.00, 

33.80) and (15.3, 18.00, 23.40).
The best solution for the 2nd scenario includes 2 tours as shown in Figure 4, 

where the customers are distributed to the two vehicles as follows:
Vehicle#1: depot → 8 → 7 → 9→ 10 → 6 →4 → depot
Vehicle#2: depot → 3 → 1 → 2 → 5 → depot
and the total carrying payload corresponding to each tour is (21.25, 25.00, 

32.50) and (15.30, 18.00, 23.40).

Table 1. The resulted solutions for 20 different runs.
# of runs optimum TDtotal optimum FCtotal Iteration

1 426.4 2829.7 84
2 399.4 2579.7 121
3 408.8 2662.5 163
4 399.4 2579.7 71
5 407.8 2551.0 111
6 399.4 2579.7 333
7 410.3 2769.9 10
8 395.6 2720.1 214
9 395.6 2720.1 76
10 407.8 2551.0 250
11 407.8 2551.0 176
12 426.0 2789.0 468
13 394.7 2652.4 26
14 393.8 2697.4 114
15 396.5 2675.2 226
16 445.7 2779.9 77
17 399.4 2579.7 300
18 408.8 2662.5 188
19 417.7 2661.8 305
20 393.8 2697.4 116
Average 406.7 2664.5 171.5
Best 393.8 2551.0
Median 403.6 2662.5
Standard deviation 13.5 86.8
Variance 182.3 7537.4

Table 2. The fuzzy collection quantity for 
each customer.

Customer # Fuzzy collection quantities

1 (3.40, 4.00, 5.20)
2 (4.25, 5.00, 6.50)
3 (4.25, 5.00, 6.50)
4 (3.40, 4.00, 5.20)
5 (2.55, 3.00, 3.90)
6 (4.25, 5.00, 6.50)
7 (3.40, 4.00, 5.20)
8 (5.10, 6.00, 7.80)
9 (2.55, 3.00, 3.90)
10 (4.25, 5.00, 6.50)
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In order to study the effect of the objective function on the optimal solution, 
we investigate the two scenarios when increasing the number of customers. 
Table 3 summarizes the results for the different numbers of customers. The % 
deviation of each value from the best possible is also calculated. As shown in 
Table 3, the travel distance for all test cases is smaller for the 1st scenario 
compared to those yielded form the 2nd scenario. On the other hand, for the 
2nd scenario where both objectives are optimized, the increase of the travel 
distance varies in the range from 0.5 to 37.4%, but the fuel consumption is 
decreased compared to the 1st scenario and this reduction varies from 1.9 to 
55.1%. It can be concluded from Table 3 that the minimization of travel 
distance leads to routes with more fuel consumption, but the minimization 

Figure 3. The resulted optimal solution for the 1st instance.

Figure 4. The resulted optimal solution for the 2nd instance.
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of both travel distance and fuel consumption leads to tours with a slight 
increase in the travel distance and a considerable decrease in fuel consump
tion. As a conclusion remark, the two objectives are competitive, since mini
mizing one will be on the cost of the other.

As already mentioned, no other research considers the bi-objective problem 
with fuzzy collection quantities as defined in this paper; thus, no benchmarks 
are available in the open literature for comparison. However, in order to show 
the validity of the proposed approach, the benchmark instances proposed by 
(Christofides and Eilon 1969) that were initially generated for the Capacitated 
Vehicle Routing Problem are transformed and applied to this problem. To this 
end, the newly generated test instances have been modified so that crisp 
collection quantities are transformed to triangular fuzzy payloads. For each 
crisp payload, a TFN is built by setting equal to this crisp quantity (represent
ing the most likely value). The collection quantities are fuzzified by setting the 
two extreme (least likely) values of the triplet equal to α1 ¼ α2 � δ1 and 
α3 ¼ α2 � δ2; where δ1 ¼ 0:85 and δ2 ¼ 1:3, as in the previous test cases.

The proposed optimization algorithm was tested on 11 different benchmark 
instances with varying customers, collection quantities and maximum available 
capacity. The proposed algorithm is tested again for the two scenarios: one with 
the objective of minimizing travel distance and one with the objective of mini
mizing both travel distance and fuel consumption. The algorithm runs 20 times 
for each test instance and the best solution is written down. Table 4 summarizes 
the results of the benchmark instances obtained by (Christofides and Eilon 1969) 
and the results using the proposed GA integrated with fuzziness for a single 
criterion and for two criteria. One should keep in mind that the optimal solutions 
are not known for the bi-objective problem with fuzzy collection quantities, since 
the benchmarks solutions are provided for the CVRP that has only one optimi
zation criterion (traveled distance) and all variables are crisp values. In addition, 
the idea behind assigning the customers to the vehicles is rather different.

Table 3. The optimal results for the two scenarios.

# of 
customers

Minimizing travel 
distance Minimizing both criteria

% deviation for 
travel distance

% deviation for fuel 
consumption

Travel 
distance

Fuel 
consumption

Travel 
distance

Fuel 
consumption

10 296.7 3956.0 407.8 2551.0 37.4 55.1
12 410.9 3039.2 483.1 2967.0 17.5 2.4
14 581.4 5426.6 598.5 4400.1 2.9 23.3
16 616.5 5124.4 619.5 4755.2 0.5 7.8
18 651.9 5346.1 685.8 5.2447 5.2 1.9
20 786.3 8777.3 806.4 7383.6 2.6 18.8
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Even though no direct comparison is possible, some conclusions can still be 
drawn. It can be seen from Table 4 that for most instances, the proposed GA can 
achieve results relatively close to the results of the benchmarks concerning the 
number of routes. It is also clear from the results that the integration of fuzziness 
results in some cases in a small increase in the number of the routes. In other 
words, fuzziness in the collection quantities causes an increase in the number of 
routes, which in turn causes an increase in the travel cost. In regard of the 
optimization criteria, the integration of the 2nd criterion (fuel consumption) 
leads to an increase in the number of routes as well as an increase in the travel 
cost, as expected.

In order to investigate the effect of the uncertainty in customers’ collection 
quantities on the optimum solution, we change the width of the supports of 
the fuzzy collection quantities. We consider the following cases: 
δ1; δ2ð Þ ¼ 0:7; 1:6ð Þ, δ1; δ2ð Þ ¼ 0:9; 1:2ð Þ in order to compare the results 

with the already examined test case where δ1; δ2ð Þ ¼ 0:85; 1:3ð Þ. 
Apparently, a wider support (e.g. δ1; δ2ð Þ ¼ 0:7; 1:6ð Þ) implies more uncer
tainty in the customers’ collection quantities and a narrower support (e.g. 
δ1; δ2ð Þ ¼ 0:9; 1:2ð Þ) decreases the uncertainty and leads toward the most 

plausible collection quantities.
The effect of the change in uncertainty is tested for the test case of 10 

customers and the results considering the total fuzzy payloads for vehicle#1 
and vehicle#2 are shown in Figure 5(a) and (b), respectively. As one can see 
from Figure 5(a) and (b), more uncertainty in customers’ collection quantities 

Table 4. Comparison results for benchmark instances.

Benchmark results
GA results with one 

criterion GA results with two criteria

Instance
number of 
customers

number of 
routes

Travel 
cost

number of 
routes

Travel 
cost

number of 
routes

Travel 
cost

Fuel 
consumption

E-n22- 
k4

22 4 375 5 422.4 5 523.15 493960

E-n23- 
k3

23 3 569 3 631.72 4 1207.08 561200

E-n30- 
k3

30 3 534 3 794.82 4 913.07 492910

E-n33- 
k4

33 4 835 4 1051.2 5 1484.85 1940600

E-n51- 
k5

51 5 521 6 1067.4 6 1280.1 43554

E-n76- 
k7

76 7 682 7 1718.5 7 1940.6 94523

E-n76- 
k8

76 8 735 9 1672.2 9 1977.9 8849.9

E-n76- 
k10

76 10 830 11 1730.9 12 21819 80138

E-n76- 
k14

76 14 1021 16 1919.7 16 2218.0 74561

E-n101- 
k8

101 8 815 8 2396.7 8 3031.8 153990

E-n101- 
k14

101 14 1067 16 2013.7 15 3167.7 123230
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results in a wider support (i.e. more uncertainty) of the total fuzzy payload. On 
the contrary, less uncertainty in customers’ collection quantities (i.e., when 
δ1 ¼ 0:9 and δ2 ¼ 1:2) results in a narrower support (i.e. closer to the most 
plausible value) of the total fuzzy payload.

This test is repeated for the test case of 15 customers and the results for 
the three vehicles used are depicted in Figure 6(a-c). The results for the 
test case of 20 customers are omitted since they present similar perfor
mance. However, it should be noticed that for the combinations (0.85, 
1.3) and (0.7, 1.6), four vehicles are used to serve all the customers, but 
for the combination (0.9, 1.2) expressing less uncertainty, the number of 
vehicles needed is three.

Without loss of generality, we conclude that the increase in the uncer
tainty of collection quantities results in the expansion of the supports 
concerning the fuzzy payloads of the vehicles. On the contrary, the 
decrease in the uncertainty of collection quantities leads to narrower 
supports of the fuzzy payloads and it is also likely to lead to the decrease 
of the number of the vehicles necessary to serve the customers. The latter 
is reasonable since improvement on the certainty leads to solutions that 
are closer to the real situations. On the contrary, the increase in ambiguity 
leads to solutions that diverge from real situations as much as uncertainty 
is increased. This, in turn, leads to more costly solutions (by increasing 
the number of vehicles) that express a risk averse attitude as the intention 
is to act in a way least likely to take risks.

Lastly, a study concerning the computational time required by the proposed 
approach to design the vehicle’s route has been conducted. In Figure 7, the 
average computational time (in seconds) is plotted versus the number of 
customers. As depicted, the computational time is nearly proportional to the 
number of the customers despite the fact that the problem’s complexity is NP- 
hard.

Figure 5. The total fuzzy payload for (a) vehicle#1 (b) vehicle#2 for the test case of 10 customers.
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Conclusions

The classic vehicle routing problem concerns the minimization of travel distance 
considering specific constraints. However, energy consumption is a challenging 
issue, since fuel consumption has negative environmental impacts and increases 
the operational costs. This paper studies the vehicle routing problem considering 
two objectives: the minimization of travel distance and the minimization of fuel 
consumption. Fuel consumption mainly depends on the vehicle’s load while 
following a route. In an attempt to approach more realistic solutions, the 
proposed model considers fuzzy customers’ collection quantities that are for
mulated by triangular fuzzy numbers. In order to encounter the computational 
complexity of the problem, an optimization approach based on a bi-objective 
Genetic Algorithm is developed that is integrated with fuzziness.

The effectiveness of the proposed approach is firstly validated through 
a numerical example of 10 geographically dispersed customers linked with 
fuzzy collection quantities. In order to study the effect of the objective function 
on the optimal solution, we investigate the two instances: one for the minimiza
tion of the travel distance and the other for the minimization of both travel 
distance and fuel consumption. The experimental results proved that the mini
mization of both travel distance and fuel consumption leads to tours with a slight 
increase in the travel distance and a considerable decrease in fuel consumption. 
Next, the efficiency of the proposed algorithm is evaluated through existing 
benchmarks that have been transformed to conform with the integrated problem. 
Although no direct comparison is possible, the result are close to the existing ones 

Figure 7. The CPU time versus the number of customers.
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that amplifies the validity of the proposed algorithm. Lastly, the effect of the 
uncertainty in customers’ collection quantities on the optimum solution is 
studied, we conclude that more uncertainty in customers’ collection quantities 
results in more costly solutions as expectation diverges more from reality.

The main contribution of this work is three-fold. First, the developed model 
considers the minimization of both travel time and fuel consumption that 
reflects better the real needs encountered in real-life situations compared to 
the classic VRP. Second, the integration of fuzzy collection quantities to the 
model to express better the real-world situations and the analysis of their effect 
on the vehicles’ payload. Third, the developed optimization algorithm easily 
integrates the fuzzy concepts with two criteria and succeeds to handle the NP- 
hard nature of the problem.

Since energy saving is a great challenge in transportation and logistics, there 
is much ground for further research with respect to both new problem variants 
and solution approaches. The developed solution model is limited to situations 
where the vehicles serve the customers ignoring collision problems. The next 
step is to study the problem considering the motion planning while the 
vehicles move concurrently with different velocity profiles. Concerning fuel 
consumption, the model of this work focused on the correlation with distance 
and payload, since they both considerably affects energy consumption. In this 
regard, it is quite interesting to study the real-life route factors affecting fuel 
consumption (weather conditions, terrain, roads’ slope, driver’s behavior etc.)

Future work will also be devoted to the consideration of traffic conditions in 
order to simulate more realistic situations. Traffic conditions, such as conges
tion, will be considered, since they significantly affect the vehicle speed. Since 
traffic congestion is time-varying and non-uniformly distributed, a prediction 
schedule based on historical data is essential.
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