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ABSTRACT
Internet of things network lifetime and energy issues are some 
of the most important challenges in today’s smart world. 
Clustering would be an effective solution to this, as all nodes 
would be arranged into virtual clusters, while one node will 
serve as the cluster head. The right selection of the cluster 
head will reduce energy consumption dramatically. This con-
cept is more crucial for the internet of things, which is being 
widely distributed in environments such as forests or the smart 
agriculture sector. In this paper, an Energy Efficient Minimum 
Spanning Tree algorithm (EEMST) is presented to select the 
optimal cluster head and data routing based on graph theory 
for a multihop Internet of Things. This algorithm calculates the 
Euclidean distance-based minimum spanning tree based on a 
weighted graph. As a result, we use a weighted minimum 
spanning tree to choose the optimal cluster head and accord-
ingly determine the shortest path for data transmission 
between member nodes and the cluster head. The proposed 
EEMST algorithm provides the possibility of intracluster multi-
hop routing and also the possibility of intercluster single-hop 
routing. The simulated experimental results approve a signifi-
cant improvement of the proposed algorithm in the IoT sys-
tems’ lifetime compared to the baselines.

ARTICLE HISTORY 
Received 10 September 2020  
Revised 6 October 2021  
Accepted 7 October 2021  

Introduction

Internet of Things (IoT) refers to a distributed system of interconnected 
instruments, wireless devices, people, agents and animals (Azad, 
Navimipour, and Rahmani 2020; Pourghebleh and Hayyolalam 2020; Elias et 
al. 2016; Peyravi and Keshavarzi 2009). Each element in the network has a 
unique identifier. A user-to-user and/or user-to-device communication qual-
ity and channels are one of the major issues to be assured in the IoT area 
(Keshavarzi, Haghighat, and Bohlouli 2017). Hence, people can closely 
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interact with physical world according to real-time activity of sensor nodes. 
These nodes are low-power and multifunctional devices that could monitor 
various environmental factors such as ocean environment (Vo et al. 2021) and 
physical conditions such as pressure, temperature, sound and pollution.

Wireless Sensor Networks (WSNs) are crucial and fundamental require-
ments for implementing the vision of the IoT. It enables the information 
exchange between different parts of an IoT system. Limitations of battery 
power, storage capacity, bandwidth and processing separate this kind of net-
work from other types. In terms of battery consumption, redundant data 
transferring tasks cause higher energy loose in the network. Therefore, it is 
vital to minimize redundant data transfer in order to decrease energy con-
sumption and accordingly increase the network lifetime. WSNs have numer-
ous applications, especially in cases where the use of traditional networks is 
not possible (Afshoon et al. 2020).

However, we use the term sensoric IoT for the network of IoT devices that 
consist of lightweight sensors, which have a short lifetime and are being used 
for monitoring the difficulty in reaching regions such as forests and/or smart 
farming areas (Behera et al. 2019; T. Han et al. 2019). It should be mentioned 
that the sensoric IoT consists of numerous sensor nodes that each node 
typically has been provided with a power source, usually a battery, a radio 
transmitter and a microprocessor. In general, the batteries in light weight 
sensors are nonrechargeable, so the energy efficiency is a major challenge in 
such networks (Nguyen et al. 2021). Consequently, new approaches play a key 
role in providing energy efficiency and increased lifetime of sensoric IoT 
devices (Hu et al. 2019; Praveen Kumar and Rajasekhara Babu 2019, 2019a). 
In this regard, various techniques, such as topology control (Li, Zhenjiang, and 
Vasilakos 2013; Zeng et al. 2013; X. M. Zhang et al. 2015), routing (Busch, 
Kannan, and Vasilakos 2012; Du et al. 2007; Meng et al. 2016) and security 
(Jing et al. 2014; Ozdemir and Xiao 2009), have been undertaken by research-
ers. One of the approaches that largely has been successful in the field of 
energy efficiency is the use of a hierarchical structure (T. Han et al. 2019; Hu et 
al. 2019; Cao et al. 2008; F. Chen et al. 2015; K. Han et al. 2013; Keshavarzi, 
Haghighat, and Bohlouli 2021).

Energy efficiency can be achieved in topology control by hierarchical 
arrangement of nodes that results in avoiding energy consumption because 
of direct long-distance communications (Keshavarzi, Haghighat, and Bohlouli 
2020). In this regard, clustering of nodes is an important technique in relation 
to a hierarchical structure, which reduces bandwidth loss, congestion and IoT 
network error. This is because of less concurrent information transfer between 
the environment and the base station or sink for a reduced number of nodes 
(Lee and Cheng 2012). However, an efficient mathematical modeling of cluster 
head (CH) selection in IoT is not efficiently addressed in the state-of-the-art 
research.
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Arranging regional nodes as a sort of a cluster results in efficient commu-
nication between nodes in the same cluster and its CH. Then, CHs collect 
information being sent by the nodes inside a corresponding cluster and often 
compress this information and then CHs send the collected information to the 
base station or sink. Therefore, selecting the proper CH can significantly 
reduce energy consumption and increase the lifetime of IoT (Liu et al. 2015; 
Xu et al. 2015; Behera et al. 2019; T. Han et al. 2019; Praveen Kumar and 
Rajasekhara Babu 2019a, 2019). Selecting the proper CH is as important and 
effective as the algorithm used for clustering because of the reduced connec-
tion traffic in the network and accordingly increased energy efficiency and 
network lifetime. The CH selection approaches can be grouped into two 
various types (Jafarizadeh, Keshavarzi, and Derikvand 2017):

The first method is introduced with clustering algorithms. The second 
group includes methods that propose algorithms on selecting the CH and 
are developed based on one of the first-order algorithms. They optimize the 
CH node selection process. It should be stated that output of these methods in 
practice is more efficient than the first method because most of the second- 
order algorithms are based on artificial intelligence techniques of solving 
optimization problems and methods that use analytics to realize an optimum 
solution (Jafarizadeh, Keshavarzi, and Derikvand 2017). In addition to clus-
tering and CH selection techniques, energy efficiency routing techniques are 
required because of the limited computing, storage and battery power 
resources in IoT (Behera et al. 2019; Praveen Kumar and Rajasekhara Babu 
2019a; Saravanan and Madheswaran 2014). Tree-based routing is used due to 
its energy efficiency in IoT (X. Wang and Qian 2012; J. Zhang et al. 2012; 
Zheng and Zhengbing 2010). In tree-based techniques, before the date is being 
transmitted, they select a root. In order to make a connection between modes, 
these techniques construct a hierarchical root between nodes. This tree-like 
IoT nodes’ path can be Minimum Spanning Tree (MST) (Behera et al. 2019; 
Saravanan and Madheswaran 2014).

Given a connected and undirected graph, a spanning tree of that graph is 
a subgraph that connects all the vertices together. A single graph can have 
many different spanning trees. An MST or minimum weight spanning tree 
for a weighted, connected, undirected graph is a spanning tree with a weight 
less than or equal to the weight of every other spanning tree. The weight of a 
spanning tree is the sum of weights given to each edge of the spanning tree. 
In general, the MST connects all sensor nodes in order to reduce energy 
consumption. This could happen by packet shortening the distance of 
packet transfers and/or reducing the number of packets to be transmitted 
(Saravanan and Madheswaran 2014). Although many works paid attention 
to CH selection, they usually considered very few parameters and neglected 
vital parameters such as total energy of all clusters’ nodes and total distance 
of a candidate node to all other alive nodes that exist in that cluster. 
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Considering these parameters as criteria can decrease energy consumption 
and increase the lifetime of IoT systems. We propose a novel approach 
based on the graph theory to determine the CH node in IoT, which is 
approved through our experimental results to increase the IoT network 
lifetime expectancy in comparison with other methods. In particular, we 
notate an IoT in the form of a graph G V; Eð Þ, where V demonstrates a set of 
IoT nodes and E (E � V � V) corresponds to the links between IoT nodes 
(Zheng and Zhengbing 2010). It should be stated that the graphs are 
connected, simple, finite, nondirectional and do not consist of multiple 
edges or any loop,

G V; Eð Þ undirected if for all v;w 2 V: v;wð Þ 2 E , w; vð Þ 2 E.
In the EEMST algorithm, at first, the MST based on the Euclidean distance 

is being built for the composed weighted graph of the multihop network and 
these spanning trees in addition to selecting the optimal CH are also employed 
for data routing from member nodes to the CH node.

The structure of this paper is organized as follows. In Section 2, some of the 
previous successful works, each with a different approach, have been intro-
duced. In section 3, the description of the proposed algorithm, the creation of 
a weighted graph, the MST, and selection of the CH node are explained in 
detail. In section 4, updating the energy level of the nodes is explained. In the 
next section, we describe the simulation of the proposed algorithm and 
evaluate the output performance; the final part is related to the conclusion 
and future works.

Related Work

As stated earlier, in the first-order algorithms, the primary purpose was the 
clustering, but implicitly, a method was introduced for selecting the CH node. 
LEACH (Heinzelman, Chandrakasan, and Balakrishnan 2000) is one of the 
most common algorithms in this area. This algorithm consists of two steps: (1) 
the setup phase, in which each node is being selected as CH with a certain 
probability, and (2) the stable state phase, in which each existing node in the 
cluster transfers collected data to the corresponding CH. After collecting data, 
each CH transfers the data directly to the base station. The probability of each 
node to become CH independently depends on a possible value, low-battery 
nodes.

Moreover, the PEGASIS well-known protocol (Lindsey and Raghavendra 
2002) is one of the LEACH developments that uses a chain of nodes to start 
data transmission from the most far node considering that each node would 
send its data to the most closed neighbor. This algorithm balances the energy 
consumption inside a chain, but results in an increased data transmission 
delays and is consequently not suitable for large-scale networks. HEED, a 
distributed clustering method, is proposed for long-lifetime ad hoc networks 

1780 V. DORYANIZADEH ET AL.



(Younis and Fahmy 2004). This protocol allows single-hop communication 
inside every cluster and multihop communication between CHs and the base 
station.

Selecting the CH depends on the cost of intracluster communications and 
the remaining energy, unlike LEACH, which selects clusters randomly, the 
remaining energy is used to select the primary set of CHs and the cost of 
intracluster communications is used in order to decide to join a cluster. This 
cost is based on the closeness of the node or node degree to the neighbor. In 
addition to the abovementioned algorithms, other methods for selecting the 
CH node have been introduced. Varghese (Varghese 2016) proposed an 
algorithm to select the CH using various parameters such as high energy, 
high throughput and minimum distance from the base station, besides con-
sidering the potential of each node.

In the second-order methods, some general approaches, such as evolution-
ary algorithms, machine learning, fuzzy systems, etc., are used. For example, in 
Pal et al. 2015, the genetic algorithm is used to select the CH and the fitness 
function is composed based on the parameters such as remaining energy, the 
number of CHs, the total intracluster communications distances and the total 
CH distances to the base station. Fuzzy logic is also another approach to select 
a CH and in Gajjar, Sarkar, and Dasgupta 2014 and Barolli et al. 2012, the 
fuzzy logic-based CH selection method has been proposed for WSNs. An ant 
colony optimization technique has also recently been used to solve many of the 
optimization problems of different areas of the WSN and has provided a good 
return. In Sharma et al. 2014, an algorithm based on an ant colony technique is 
introduced. The authors have used ACO in IoT routing and generate the 
optimal route using the probable approach and the amount of pheromone 
from the source node to the sink. In this algorithm, the CHs are randomly 
selected as the LEACH setup phase. A particle congestion optimization tech-
nique is another well-known optimization technique that is effective for 
selecting CH nodes. In Ni et al. 2015, a new method for selecting a CH is 
introduced, which uses the traditional PSO algorithm to select the CH and 
fuzzy clustering (Chiu 1994) for initial clustering of the nodes.

In Jafarizadeh, Keshavarzi, and Derikvand 2017, the authors use the Naïve 
Bayes function, as a data mining technique, to determine the CH node in a 
WSN. Parameters such as the remaining energy of the node and the total local 
distance of the member nodes to the CH node are used to select the appro-
priate CH. An intracluster spanning tree (Lachowski et al. 2015) can also 
optimize the energy efficiency. Furthermore, a clustering algorithm is pro-
vided in C. Li et al. 2011 by means of spanning trees. In this way, they claim 
that they have succeeded in increasing the scalability of their clustering algo-
rithm and accordingly extending their network lifetime. The BASA-WMST 
method is proposed in Saravanan and Madheswaran 2014, which is a Bee 
Algorithm-Simulated Annealing Weighted Minimal Spanning Tree and is a 
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hybrid evolutionary algorithm for data routing in IoT. In this method, there is 
random deployment of sensor nodes in the field. The nodes are divided into 
clusters and the best possible number of clusters is estimated along with the 
optimal data route. This algorithm calculates the MST from the weighted 
graph for a multihop network; the weighted MST is used to determine the 
shortest path between the member nodes of the cluster. The most important 
algorithms for solving shortest path problems are as follows (Chapuis et al. 
2017):

• Breadth-first search and depth-first search refer to different search orders; 
for depth-first search, instances can be found where their naive implementa-
tion does not find an optimal solution or does not terminate.

• Dijkstra’s algorithm solves the Single-Source Shortest Path problem if all 
edge weights are greater than or equal to zero. Without worsening the runtime 
complexity, this algorithm can, in fact, compute the shortest paths from given 
start points to all other nodes.

• The Bellman-Ford algorithm also solves the Single-Source Shortest Path 
problem, but in contrast to Dijkstra’s algorithm, edge weights may be negative.

• The Floyd-Warshall algorithm solves the All Pairs Shortest Path problem.
• The A* algorithm solves the Single-Source Shortest Path problem for non- 

negative edge costs.
The weights of the edges of the network are not constant and change 

according to the energy levels of sensor nodes and the tree is optimized 
using the bee algorithm-simulated annealing algorithm. In Hussain and 
Islam 2007, an Energy Efficient Spanning Tree (EESR) algorithm was pro-
posed, which supports multihop routing in homogeneous networks and 
increases the network lifetime. The EESR considers the location of the sensor 
nodes and base station and produces a series of routing paths consisting of the 
appropriate number of rounds. The results show that the EESR algorithm 
outperforms in relation to increasing the network lifetime. Another CH 
selection for sensoric IoT has been proposed in J. Chen and Shen 2008, 
which is entitled More Energy-efficient LEACH for Large-scale IoT 
(MELEACH-L) and is divided into 4 various steps. These steps are sequential 
and run each after another. The first step starts with the CH selection, followed 
by the backbone and spanning tree constructions. In the last step, the data are 
being collected. They used the Energy-aware Virtual Backbone Tree (EVBT) 
algorithm (Zhou, Marshall, and Th 2005) in the second and third steps for 
spanning tree construction.

Similarly, there is also a Base station Controlled Dynamic Clustering 
Protocol (BCDCP). In this method, CHs are being connected by means of 
the spanning tree and sink functions (Muruganathan et al. 2005). As an 
improved version of the BCDCP, Huang, Xiaowei, and Jing 2006 proposes 
the Dynamic Minimal Spanning Tree Routing Protocol (DMSTRP). This 
protocol is dedicated for large WSNs and uses MSTs. This protocol replaces 
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clubs in the intra- and interclusters. Furthermore, data fusion is used in this 
protocol along with the tree-like path and reduced collision. In W. Wang et al. 
2011, the CTPEDCA protocol is introduced the use of the full distribution in 
hierarchical IoT. CTPEDCA has combined the spanning tree strategy and 
clustering. The CHs are being selected using the same strategy as the LEACH 
protocol. In each round, once the CHs are selected, they construct a spanning 
tree. A CH with the highest energy consumption is being selected as a root of 
the spanning tree. The CHs deliver aggregated data along the tree and finally, 
the root node delivers data to the base station.

In Praveen Kumar and Rajasekhara Babu 2019a, the authors proposed a 
hybrid optimal CH selection approach for WSN–IoT that uses Moth Flame 
Optimization (MFO) and Ant Lion Optimization (ALO) algorithms. The main 
objective in this work is to select CH by retaining the energy of the node and 
making a balance in the temperature and workload of IoT devices. In this 
work, the CH selection models have been investigated by means of the 
distance and energy, latency, load and temperature constrained selection. In 
the distance constrained selection method, target nodes should be located in 
the specific distance to the CH. The same applies to the energy constrained 
selection in terms of energy discharging in IoT networks. It should be stated 
that the delay, temperature and loads should be minimized as well. To solve 
these issues, they proposed a hybrid approach. The performance of the afore-
mentioned hybrid approach has enhanced the lifetime of the WSN–IoT 
network.

Another approach is given in Behera et al. 2019, which uses rotational 
adjustment of the CH position between various nodes through comparing 
the higher energy consumption. The parameters that are being considered in 
this method are initial and remained energy of the individual node as well as 
an optimal number of CHs. The remained energy of non-CH devices is being 
evaluated in the final round. Accordingly, the priority of selecting the CH in 
the next round is given to a node with higher energy consumption. This 
results in having a longer alive network and preventing it to die in terms of 
energy. Their results through the simulation show improvement in the net-
work lifetime, remained energy, throughput and sent packets to the base 
station.

In Praveen Kumar and Rajasekhara Babu 2019, the self-adaptive whale 
optimization algorithm (SAWOA) has been proposed. This method considers 
CH selection with respect to the energy and uses clustering protocols in the 
WSN-IoT. Similarly, energy consumption, distance and latency of nodes as 
well as temperature and load of nodes in the IoT Network have been con-
sidered and key factors. The key consideration here is selection of a node as 
CH with the maximum energy and minimum distance and latency. In terms of 
IoT devices, load and temperature are also being considered. The main 
important achievement of this work is higher lifetime of the network using 
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this selection method. In Table 1, a number of clustering and CH selection 
algorithms proposed in this section and the EEMST algorithm will be 
compared.

The Proposed Algorithm (EEMST)

As it is stated earlier, related works for selecting the CH are classified into two 
categories. In the second category’s algorithms, clustering is done by one of the 
existing clustering algorithms. Here, the main idea is about CH selection of 
our proposed algorithm (EEMST), which belongs to the second category and 
in the clustering phase K-means algorithm, one of the most popular clustering 
algorithms is used. The description of the EEMST algorithm is as follows.

Describing the EEMST Algorithm

The EEMST algorithm consists of four steps, which are described below.
Step 1. The weighted graph construction
In this step, an edge-weighted complete graph is constructed, where its 

vertices are IoT devices and the weight of each edge is the Euclidean distance 
between its devices. In each iteration, for each cluster, a weighted graph is 
constructed from alive nodes. Figure 1 shows a weighted graph for a cluster 
with 7 nodes.

Step 2. The construction of the MST
In this step, in each iteration, the MST is constructed for each weighted 

graph of previous step. If the number of alive nodes in one cluster would be 
more than one, this is a tree with the least total weight of edges between the 
spanning trees of that graph. The prime algorithm (Prim 1957) is used for 
MST construction. Figure 2 shows the MST of Figure 1.

Step 3. Calculating the fitness function and selecting the optimal CH
The third step consists of the CH selection. In the process of CH selection, 

the fitness value for all candidates is calculated and based on it, the best CH is 
selected. We have considered all essential characteristics that a CH should 
have and combine them in a feature using a fitness function. In the following, 
first essential parameters are described and then the fitness function is defined.

Essential Parameters in Selecting a CH

The proposed algorithm belongs to the second category of CH selection 
algorithms, where in the first phase, the clustering is done and in the second 
phase, the CH is selected. After clustering, each node belongs to a cluster. In 
the second phase, each node is a CH candidate. For each CH candidate, the 
essential parameters that should be considered in evaluating its fitness are 
shown in Table 2.
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Table 1. Comparison of clustering algorithms and CH selection in IoT.

Algorithm

Intra-/ 
intercluster 

routing
CH selection 
parameters Advantages Disadvantages

LEACH 
(Heinzelman, 
Chandrakasan, 
and 
Balakrishnan 
2000)

Single-hop 
/Single- 
hop

Selection of the CH 
is random 
regardless of the 
remaining energy 
of the nodes.

1. Distribution of energy 
loads on network sensors 
2. Avoiding rapid 
discharge of the battery

1. Not considering the 
remained energy of 
nodes in the selection of 
the CH 
2. Nodes with less energy 
also have the chance to 
be CH

PEGASIS 
(Lindsey and 
Raghavendra 
2002)

Multihop/ 
Single- 
hop

1. Reducing the overhead of 
clustering using a chain 
method 
2. Reducing energy 
consumption 
3. Reducing data transfer 
to BS

1. High latency in the final 
transfer of data to the 
base station 
2. Not suitable for large- 
scale networks

HEED(Younis 
and Fahmy 
2004)

Single-hop 
/multihop

1. Intracluster 
communication 
cost 
2. Remaining 
energy

1. Cause the little overhead 
of messages 
2. Ensure the connection 
between the clustered 
network and the effective 
increase in the lifetime of 
a network

1. If the CHs are too far 
away, energy 
consumption is 
significant. 
2. It needs to be aware of 
the entire network in 
order to determine the 
cost of intracluster 
communications

Naïve Bayes 
(Jafarizadeh, 
Keshavarzi, 
and 
Derikvand 
2017)

Single-hop 
/Single- 
hop

1. Remained energy 
of the node 
2. Total local 
distance of a 
member node to 
the CH

1. Increasing network 
lifetime 
2. Use of the Bays 
consistent loss function in 
data mining is very 
suitable for obtaining 
minimum and maximum 
values

1. Death of the first nodes in 
elementary rounds 
2. Lack of consuming 
energy distribution on 
nodes 
3. Discharging the battery 
of CH rapidly

Hybrid 
Algorithm 
(Praveen 
Kumar and 
Rajasekhara 
Babu 2019a)

Single-hop 
/Single- 
hop

1. Delay, distance 
and Energy in the 
WSN 
2. The load of IoT 
devices as well as 
the Temperature

1. Prolonging network 
lifetime 
2. Improved CH selection 
performance among IoT 
devices in the WSN–IoT 
network 
3. Preserved energy of 
devices by minimized 
delay and distance 
4. Balanced load and 
temperature of IoT 
devices

1. Using single-hop routing 
causes increasing energy 
consumption 
2. Doesn’t consider 
number of alive devices in 
the cluster, total energy 
of clusters’ alive devices 
and total node distances 
to alive nodes in the CH 
selection

SAWOA 
algorithm 
(Praveen 
Kumar and 
Rajasekhara 
Babu 2019)

Single-hop 
/Single- 
hop

1. Energy, distance 
and delay of 
sensor nodes in 
WSN 
2. Load and 
temperature of 
IoT devices

1. Enhancing lifetime of the 
network by balancing the 
number of alive nodes 
and normalized energy of 
the network

1. Using single-hop routing 
causes an increase in 
energy consumption 
2. Does not consider the 
number of alive nodes in 
the cluster, total energy 
of clusters’ alive nodes 
and total node distances 
to alive nodes in the CH 
selection

(Continued)
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After the calculation of these parameters, the fitness value of each node to be 
a CH is calculated using equation 1, 

FðiÞ ¼ Ei
XNi

j¼1
Ej � f

XNi

j¼1
dijMST

XNi

j¼1
dij � diB � NiMSTNi: (1) 

Each node with a fitness value being more than other nodes of the same cluster 
is selected as the CH for that cluster. Thus, a node that its distance to the base 
station and total distance of it to other alive nodes that are neighbor of it in 
MST are minimum, and also the remaining energy of it and the number of its 
neighbors in MST are maximum, is the best selection to be a CH. The value of 
the fitness function is calculated for all sensor nodes and the node is qualified 
to be CH in the current round, for which this value is the highest.

Step 4. Data transferring
In this phase, all nodes that belong to a cluster transfer their data to their 

respective CH and the CH will then send the received data to the BS. Since the 
MST is constructed in each cluster, this tree is used to transfer data to the CH 
in addition to selecting the optimal CH. Instead of sending each node’s 

Table 1. (Continued).

Algorithm

Intra-/ 
intercluster 

routing
CH selection 
parameters Advantages Disadvantages

R-LEACH 
(Behera et al. 
2019)

Single-hop 
/Single- 
hop or 
Multihop

1. Initial energy 
2. Remained 
energy of the 
individual node 
3. Optimal 
number of CHs in 
the network

1. Extended network lifetime 
through controlling 
energy dissipation of the 
network 
2. Enhancing the 
throughput, remained 
energy and sent packets 
to the base station

1. Does not consider the 
number of alive nodes in 
the cluster, total energy 
of clusters’ alive nodes 
and total node distances 
to alive nodes in the CH 
selection

EEMST 
Algorithm

Multihop/ 
Single- 
hop

1. Remaining energy 
of the node 
2. Total energy of 
clusters’ alive 
nodes 
3.Total node 
distances to alive 
neighboring 
nodes in the MST 
4. Total node 
distances to alive 
nodes in cluster 
5. Node distance 
to the base 
station 
6. The number of 
node neighbors 
in the MST 
7. Number of 
alive devices in 
the cluster

1. Increasing network 
lifetime 
2. Preventing the rapid 
discharge of the node 
battery 
3. Distribution of 
consuming energy on 
clusters’ nodes 
4. Using intracluster 
multihop routing 
5. Using more parameters 
to select the CH 
6. In addition to selecting 
the CH, provide a method 
for data routing

1. Does not consider 
temperature of devices as 
a parameter in CH 
selection 
2. Does not have high 
performance for large 
WSN
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Figure 1. A weighted graph for a cluster with 7 nodes.

Figure 2. The MST of Figure 1.

Table 2. The essential parameters that are used in evaluating each candidate fitness.
Parameter Notation

The remaining energy of node i Ei
The cluster that node i belong to it Ci
The number of alive nodes that belong to Ci Ni
Total energy of other alive nodes that belong to Ci PNi

j¼1
Ej

The distance of node i to each node such as j that is neighbor of it in MST dijMST

Total distances of node i to all alive neighbor nodes in the minimum spanning tree PNi

j¼1
dijMST

The distance between two nodes i and j that belong to the same cluster dij

Distance of node i to the base station diB
The number of alive neighbors of node i in the MST NiMST
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information directly to its CH, it transfers them to the parent in the MST and 
the data are transmitted in the hierarchical of MST to reach the corresponding 
CH. When the CH receives all corresponding data, it eventually transfers the 
collected data to the base station. It is also possible to have a multihop 
communication in each cluster and single-hop communication between CHs 
and the base station. Figure 3 shows the apparent appearance of the MST 
formed between the nodes of each cluster. To illustrate this, each cluster is 
shown with a special color and the CHs are represented with a larger symbol 
than the cluster member nodes (see Figure 3).Figure 4

Updating the Energy Level of the Nodes

Due to the fact that sending and receiving the data increase the consumption 
of node energy, the energy consumed per device should be estimated and 
remaining energy level of devices should be updated accordingly. In this paper, 
the energy model in Lee and Cheng 2012 is used, but due to using the MST to 
send data from member nodes to the CH in each cluster, it is necessary to 
revise the energy model of member nodes. Indeed, in addition to the CH, each 
member node receives data from other nodes too. Thus, the lost energy of the 
member nodes and CH is calculated using equation 2, 

Eðl;dÞTX ¼
l� ETX

elec þ l � εfs � d2 ;d0d0
l� etx

elec þ l � εmp� ¼ d4 ;d �¼ d0

�

(2) 

Figure 3. The constructed MST for all clusters.
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where E l;dð Þ
TX is the lost energy for the transmitter node, d corresponds to 

the Euclidean distance of the transmitter and the receiver node in the 
MST, ETX

elec;εfs;εmp and d0 are constant values, which are being defined at 
the beginning of the network life, and l is the length of packet in bits. The 
value of l is constant and is determined in the beginning of the network 
life. The Euclidean distance between two nodes x1;y1

� �
and x2;y2ð Þ is 

calculated based on equation 3, 

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 � x2Þ
2
þ ðy1 � y2Þ

2
q

: (3) 

The lost energy value of the receiver node (parent, member node) is calculated 
based on the following equation: 

EðlÞRX ¼ l*ERX
elec; (4) 

where ERX
elec is the fixed value that is defined at the beginning of the 

network life and l is the packet length (bits) and is constant all over the 
network life. This is also being defined at the beginning. The amount of 
the lost energy of the CH node for receiving information from a node is 
also being calculated based on equation 4. The CH should then send the 
information to the base station, where it also consumes energy. To 
calculate this consumed energy value, equation 2 is used, with a difference 
that d is the Euclidean distance between the CH and the base station. As 
shown in equation 5, due to the CH and receiver, node (parent) may have 
more than one child and the value of lost energy consumed for receiving 
information from all children should be multiplied by the number of 
children (node’s neighbors), 

EðNumberOfchildÞ
RX ¼ NumberOfchild*ERX

elec: (5) 

Also, both the CH and the receiver node (parent) consumed some energy 
for data aggregation before transferring the data. This energy value is a 
constant and is denoted as EDA. Accordingly, the lost energy for the CH 
and the receiver node (parent) is calculated based on the following 
equations: 

EdisCH ¼ EðlÞRX þ Eðl;dTOBSÞ
TX þ EDA; (6) 

EdisParent ¼ EðlÞRX þ Eðl;dÞTX þ EDA; (7) 

where E lð Þ
RXis the amount of lost energy of the CH node for receiving informa-

tion from a node, Eðl;dTOBSÞ
TX is the lost energy of the CH node for sending the 

information to the base station, d is the Euclidean distance of the CH and the 
BS and EDA is the energy for data aggregation. In equation 7, E lð Þ

RX is the lost 
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energy value of the receiver node, Eðl;dÞTX is the lost energy for the transmitter 
node, d is the Euclidean distance of the transmitter and receiver nodes in the 
MST and EDA is the data aggregation energy. If a CH would be the only alive 
node in the cluster, the energy for data collecting (EDA) will not be deducted 
from its energy. Now, the energy level of the nodes should be updated as stated 
in the following, so that in the next rounds, this energy is to be used. Based on 
G. Wang, Wang, and Tao 2009, the remaining energy of each node at the end 
of each round will be equal to 

ERes ¼ E � Edis: (8) 

This will be finished, when all nodes are dead and the network will be down.

Figure 4. Flowchart of the EEMST algorithm.
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Performance Evaluation

For evaluating the proposed, we conduct several experiments. In the following, 
we first describe the simulation environment and tools. Then, we determine 
the assumptions and default values that have been used for the simulated 
network configuration. Later, the evaluation metrics are determined. Finally, 
the simulation results and comparison results are depicted.

Simulation Setup

The EEMST algorithm is implemented in MATLAB. In order to evaluate the 
network lifetime in different situations, it can be considered with the number of 
different clusters. Also, since the location of the base station has a significant 
impact on the network lifetime, different locations for establishment of the base 
station are considered. In order to ensure accuracy of the simulation, the results 
were obtained at each stage of 30 iterations and then averaging was performed.

Assumptions and Default Values

The initial assumption and configuration values of the simulated network are 
depicted in Table 2.

Performance Evaluation Parameters

For evaluating the performance of the proposed EEMST algorithm, following 
criteria are used:

(1) Network lifetime
(2) The remaining energy of the nodes
(3) Total number of data packets that a BS receives
(4) Total energy consumed by CHs.

Performance Evaluation in Terms of Network Lifetime
To evaluate our proposed method, first, we conducted several experiments to 
investigate the impact of the different network configuration in the EEMST 
algorithm on the network lifetime. In the first one, the base station coordinates 
were (100,100), initial energy was 2 J and network area was 200*200 (config 1). 
In this algorithm, we explored the impact of the number of clusters on the 
network lifetime. The results of this experiment are depicted in Table 3.

In the second experiment, we repeated the previous configuration with a 
new configuration, where the base station coordinates were (200,200), the 
initial energy was 2 J and the network area was 200*200 (config 2). Table 4 
depicts the results of this experiment.
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Tables 5 and 6 show the results of third and fourth experiments, respec-
tively. In the third experiment, the coordinates of the base station were 
(275,200) (conFigure 3). These were (300,300) (config 4) in the fourth experi-
ment. Another parameters were the same as the first experiment.Table 7

As the results in Tables 3–6 approve that when a BS coordinate is considered 
in the center of a network area or at the edge of the area, any increase in the 
number of clusters results in the increased network lifetime. Indeed, when the 
number of clusters increases, the intracluster distance decreases and this leads to 
the reduction in the energy required for intracluster communications. However, 
in a network with a base station outside the sensors area, the lower number of 
clusters shows better performance. In this case, the intercluster communication 
decreases and therefore, the required energy also decreased. Therefore, among 
the examined locations, the network with the BS in the center is better than the 
BS on the edge or outside of the sensors area. Indeed, if the BS is located in the 
center, required energy for sending messages to the BS is being decreased.

We compared our proposed algorithm (EEMST) with three baseline papers. 
These algorithms were LEACH (Heinzelman, Chandrakasan, and 
Balakrishnan 2000), Naïve Bayes (Jafarizadeh, Keshavarzi, and Derikvand 
2017), BASA-WMST (Saravanan and Madheswaran 2014) and Hybrid algo-
rithm (Praveen Kumar and Rajasekhara Babu 2019a). The results of this 
comparison are depicted in Figures 5 to 12.

Figure 5 shows the results of comparison between EEMST and the LEACH 
algorithms with the term of network’s lifetime in the stated configuration. As 
is shown in this figure, the network’s lifetime in the proposed algorithm has 
significantly improved compared to the LEACH algorithm. Indeed, in EEMST, 
the CH is selected such that the energy of nodes is consumed uniformly. This 

Table 3. Comparing the network lifetime of the EEMST algorithm 
for different numbers of clusters, (xs,ys) = (100,100) and E = 2 J 
(config. 1).

Number of clusters Network lifetime First node dead

5 6791.8 2254.867
10 7661.567 1986.933
15 8303.8 1782.4
20 8646.733 1686.533

Table 4. Comparing the network lifetime of the EEMST algorithm 
for different numbers of clusters, (xs,ys) = (200,200) and E = 2 J 
(config. 2).

Number of clusters Network lifetime First node dead

5 6279.333 1184.333
10 7141.6 695.6333
15 7588.633 448.1667
20 7914.467 356.6667
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lead to the increase in the lifetime of the network, while in the LEACH 
algorithm, CH is randomly selected. This results in unbalance energy con-
sumption of CHs and reducing lifetime of the network.

As is seen in Figure 6, the EEMST algorithm outperforms the Naïve Bayes 
algorithm in terms of network lifetime, since the Naïve Bayes algorithm only 
considers residual energy and total distance of all member nodes to the cluster 
head, while our proposed algorithm considers other properties such as the 
number of alive nodes in each cluster and sum of remaining energies of other 
clusters’ nodes. Also, Figure 7 shows that our proposed algorithm has better 
performance than the BASA-WMST algorithm, since in each cluster, the com-
munication is multihop and each node sends its data to the neighbor in MST. 
Thus, all nodes involve in data transmission and the CH consumes lower energy. 
Also, in selection of CH essential characteristics such as node energy, the distance 
of the node from other nodes and the location of node in MST are considered. 

Table 5. Comparing the network lifetime of the EEMST algorithm 
for different numbers of clusters, (xs,ys) = (275,200) and E = 2 J 
(config. 3).

Number of clusters Network lifetime First node dead

5 5232.9 774.8333
10 5418.4 309.7333
15 5580.4 220.7
20 5490.433 158.3

Table 6. Comparing the network lifetime of the EEMST algorithm 
for different numbers of clusters, (xs,ys) = (300,300) and E = 2 J 
(config. 4).

Number of clusters Network lifetime First node dead

5 2558.8 337.7
10 2179.533 114.2333
15 1836.333 59.93333
20 1637.933 56.1

Table 7. The initial assumptions of the algorithm.
Variables Parameters Values

S Network area 100 × 100 m2 

200 × 200 m2 

1000 × 1000 m2

n Number of nodes 100
(xs,ys) Base Station coordinates (50,50), 

(100,100), (200,200), (200,275), (300,300), 
(500,500)

C Number of clusters 5, 10, 15, 20
l Data package length 4000 bit
d0 Energy model threshold ffi 87.71
Eelec Energy of electronics 50nJ/bit
EDA Data aggregation energy 5nJ/bit
efs Amplifier coefficient (d < d0) 10pJ/bit/m2

eamp Amplifier coefficient (d ≥ d0) 0.0013pJ/bit/m4

E Initial energy 2 J, 0.5 J, 0.6 J
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Also, Figure 8 presents the network lifetime of our proposed algorithm compared 
with the BASA-WMST algorithm. Our approach outperforms the BASA-WMST 
algorithm since our approach is multihop and balances energy consumption 
between all nodes, while BASA-WMST is single-hop and energy consumption 
patterns of its nodes are not the same.

Figure 5. Comparing the network lifetime of EEMST and LEACH algorithms for C = 10, S 
= 200 × 200, (xs,ys) = (100,100) and E = 2 J (config. 5).

Figure 6. Comparing the network lifetime of EEMST and Naïve Bayes algorithms for C = 10, S 
= 100 × 100, (xs,ys) = (50,50) and E = 2 J (config. 6).
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The Performance Evaluation in Terms of Energy
Figure 9 shows the comparison results of the EEMST algorithm with the 
LEACH algorithm in terms of remaining energy. This comparison shows 
that the EEMST algorithm outperforms the LEACH algorithm in terms of 
energy consuming. Indeed, in the proposed algorithm, it has been tried to have 
energy consumption balanced between all nodes of each cluster and thus, CHs 
and other nodes are more alive.

Figure 7. Comparing the network lifetime of EEMST and BASA-WMST algorithms for C = 10, S 
= 1000 × 1000, (xs,ys) = (500,500) and E = 0.6 J (config. 7).

Figure 8. Comparing the network lifetime of EEMST and hybrid algorithm for C = 10, S 
= 100 × 100, (xs,ys) = (50,50) and E = 0.5 J (config. 8).

APPLIED ARTIFICIAL INTELLIGENCE 1795



Performance Evaluation for the Amount of Received Data Packets by the BS
Figure 10 shows the total number of received packets at the BS in each round. 
As it has been shown in this figure, the total number of received packets in 
EEMST is more than that in the LEACH algorithm, since the proposed algo-
rithm is multihop and each node sends data to its neighbor in MST. Indeed, by 
applying the multi-hop mechanism, the energy consumption pattern of all 
nodes in the network is similar, which leads to robustness in our network.

Figure 9. Comparing the remaining energy of the network nodes in the EEMST algorithm and 
LEACH algorithm for C = 10, S = 200 × 200, (xs,ys) = (100,100) and E = 2 J (config. 9).

Figure 10. Comparing the total number of received data packets at the BS in the EEMST algorithm 
and LEACH algorithm for C = 10, S = 200 × 200, (xs,ys) = (100,100) and E = 2 J (config. 10).
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The next evaluation results of the EEMST algorithm performance for 
the number of received data packets by the BS are shown in Figure 11. As 
is seen in this figure, the proposed algorithm outperforms other algo-
rithms in terms of the total number of received packets by the BS.

The previous depicted figures show that the number of received packets by 
the BS is dependent on the coordinates of BS and the number of clusters. As 
the base station moves farther from the network area, the fewer number of 

Figure 11. Comparing the number of data packets received at different locations of the base 
station in the EEMST algorithm and LEACH for C = 5 and C = 10, S = 200 × 200, (xs,ys) = (100,100) 
and E = 2 J (config. 11).

Figure 12. Comparing the total energy consumption of CHs in the EEMST algorithm and the LEACH 
algorithm for C = 10, S = 200 × 200, (xs,ys) = (100,100) and E = 2 J (config. 12).
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packets will be received in the BS. Also, at farther distances, the network with a 
fewer number of clusters has better performance than the network with more 
clusters. Therefore, according to the results, the network with more clusters 
and the location of the BS in the 100, 100 (center of the network area) will 
received the most data packets.

Performance Evaluation for Energy Consumption of CHs
Figure 12 shows the comparison of total energy consumption by CHs in the 
EEMST algorithm and comparison of it with the LEACH algorithm. As it is 
shown in this figure, CHs in the EEMST algorithm in different rounds use less 
energy than LEACH algorithm CHs. The optimal selection of CH and 
intracluster multihop communication has two resons for this matter. Indeed, 
since nodes of each cluster transfer their data to their nearest neighbor’s node 
(parent) in the MST and the data are transmitted node to node to reach the 
corresponding CH, the CH consumes less energy for receiving and collecting 
data than intracluster single-hop mode.

Conclusions

To maximize energy efficiency and thereby increase the lifespan of the 
IoT network, we studied optimal CH selection in this paper. By utilizing 
weighted graphs and Euclidean distance-based MST, we optimized the 
data routing between the CHs and the member nodes. It should be noted 
that specific criteria were taken into account during the selection pro-
cess. The criteria include a node’s remaining energy, its distance to the 
base station, its number of neighbors in the MST and the total distances 
between the candidate node and its alive neighbors in the MST. Node 
criteria such as the number of neighbor nodes within the MST and the 
distances between the neighbor nodes ensure that each node commu-
nicates with the closest neighbor node within the MST. Energy is being 
saved in this case because intracluster communication is being reduced. 
The energy required for intercluster communications is reduced as well 
by selecting the closest CH to the base BS based on the node distance to 
the base station. The proposed algorithm applies multihop communica-
tions in each cluster single-hop communication between CHs and the 
base station. The experimental results demonstrated that using the 
weighted minimum spanning tree for routing and cluster head selection 
led to balancing energy consumption between all nodes and conse-
quently increasing network lifetime.
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Future Works

As a future work, we plan to improve the accuracy of our selection by 
incorporating more accurate weights. This can be achieved by the probability 
aspect for nodes or selecting CHs. Furthermore, we plan to use hierarchical 
optimization of graph geometry in order to reduce energy consumption.
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