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Abstract

The main purpose of this paper is the visualization of convex surface data to present a smooth,
visually pleasing and interactive convexity preserving surfaces. The rational cubic function with
three free parameters is extended to rational bi-cubic partially blended function to preserve the
shape of convex surface data. The function involves twelve free parameters in each rectangular
patch. Data dependent constraints are derived for four of these parameters to preserve the shape
of convex surface data while other eight are left free to user for the refinement of convexity

. . . . 1 . .
preserving surface of data. Moreover, the scheme under discussion is C', flexible, simple, local
and economical as compared to existing schemes
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1 Introduction

The study of curves and surfaces is a key element in computer aided geometric design (CAGD)
that has been around for quite some time. The methods of CAGD have arisen from the need of
efficient computer representation of practical curves and surfaces used in engineering design.
Spline interpolation is a powerful tool in Computer Graphics, CAGD and Engineering as well.
Therefore, in these fields, it is often desirable to generate a convexity preserving interpolating
curve and surface according to the given convex data. The aspiration of this paper is to preserve
the hereditary attribute that is the convexity of data.
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Convexity is a substantial shape characteristic of the data. The significance of the convexity
preserving interpolation problems in industry cannot be denied. A number of examples can be
quoted in this regard, like the modelling of cars in automobile industry, aero-plane and ship
design. A crumpled surface is an unwanted characteristic. Human aesthetic sense demands
convexity preserving nice and smooth surfaces without wiggles.

Designing well shaped smooth surfaces also arise in manufacturing the TV-screens. In order to
accomplish with the demands of the customer, as flat as possible TV-screens are most appreciated.
In the surface designing sense we can say that the screens must preserve the convexity.

Butt (1991) discussed some other areas to demonstrate the importance of convexity of convex
data, like, designing telecommunication systems, nonlinear programming arising in engineering
problems, approximation of functions, optimal control and parameter estimation.

The problem of convexity preserving interpolation has been considered by many authors.
Asaturyan (1990) developed a global scheme for the convex surfaces. In the scheme, each
rectangular grid was divided into nine sub rectangles. The scheme is not local. Any change made
in x direction of single rectangle edge causes a change throughout the grid of all remaining edges
of sub rectangle. Asaturyan et al. (2001) constructed a six degree piecewise polynomial
interpolant for the space curves to satisfy the shape-preserving properties for collinear and
coplanar data.

Brodlie and Butt (1991) developed a piecewise rational cubic function to preserve the shape of
convex data. The authors inserted extra knots in the interval where the interpolation loses the
convexity of convex data that is the drawback of this scheme. Carnicer et al. (1996) analyzed the
convexity preserving properties of rational Bézier and non-uniform rational B-spline curves from
a geometric point of view and characterized totally positive systems of functions in terms of
geometric convexity preserving properties of the rational curves.

Clements (1992) developed a C* parametric rational cubic interpolant with tension parameter to
preserve the convexity. Sufficient conditions were derived to preserve the convexity of the
function on strictly left/right winding polygonal line segments. Costantini and Fontanella (1990)
preserved the convexity of data by semi global method. The scheme has some research gaps like
the degree of rectangular patches in the interpolant were too large, the resulting surfaces were not
visually pleasing and smooth.

Dodd et al. (1983) presented a method to preserve the convexity of the surface along the rectangle
grid lines but in the interior of the grids, the convexity of the surface was not preserved by
quadratic splines. They produced undesirable flat spots due to vanishing of second order mixed
partial derivatives on the boundary of the rectangles. Sufficient conditions for a tensor-product
Bézier surface to be convex were derived by Floater (1994). The convexity condition was
generalized to C' tensor-product B-spline surfaces. These sufficient conditions were in the form of
inequalities which involved control points. The schemes (Costantini and Fontanella, 1990; Devore
and Yan 1986; Dodd, 1983; Floater, 1994) failed to preserve the convexity of convex data when
data with derivatives was given. The rational spline was represented in terms of first derivative
values at the knots and provided an alternative to the spline-under-tension to preserve the shape of
monotone and convex data by Gregory (1986).
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Hussain et al. (2011) developed a surface C° interpolation for convex and positive data. The
authors used a rational bi-quadratic spline function with eight shape parameters to preserve the
convexity of convex surface data. Hussain and Maria (2008) developed a rational bi-cubic
function with four free parameters to preserve the shape of convex surface data. Data dependent
sufficient conditions were derived on the free parameters to preserve the convexity of convex data.
Hussain et al. (2008) used a rational bi-quartic partially blended function with eight shape
parameters to visualize the convex surface data. The authors derived data dependent conditions on
parameters to preserve the shape of convex surface data.

Hussain and Maria (2006) discussed the problem of visualization of convex surface data. A
piecewise rational bi-cubic function with two free parameters was used to preserve the shape of
convex surface data. Maria and Hussain (2008) proposed a local convexity preserving scheme for
3D convex data arranged over rectangular grid. Constraints on free parameters in the description
of rational bi-cubic partially blended patches with eight free parameters were derived to preserve
the shape of convex 3D data. The schemes (Hussain et al., 2011; Hussain and Maria, 2008;
Hussain et al., 2008; Hussain and Maria, 2006; Maria and Hussain, 2008)) are local but
unfortunately did not provide the liberty to the user for the refinement of surfaces as desired.

McAllister and Roulier (1981), Passow and Roulier (1977) and Roulier (1987) considered the
problem of interpolating monotonic and convex data in the sense of monotonicity and convexity
preserving. They used a piecewise polynomial Bernstein- Bézier function and introduce additional
knots into their schemes. Such scheme for quadratic spline interpolation was described by
McAllister and Roulier (1981) and this idea was more developed by Schumaker (1983) who used
piecewise quadratic polynomial which was very economical but the method generally inserts an
extra knot in each interval to interpolate.

The rational Bernstein-Bézier cubic interpolation, cubic and bi-cubic Hermite schemes are
discussed in comprehensive form Farin (1996), Hoscheck and Lasser (1993). The rational cubic
function can be extended to rational bi-cubic function (for tensor product patches) and rational bi-
cubic partially blended function (for coon patches).The former is hard to compute and implement
whereas the latter is easy to work out and execute. Moreover it is computationally efficient and
time saving due to less number of conditions applied on shape parameters, no need of extra knots
in the interpolant and does not require any modification in data.

In this paper, we extend the rational cubic function with three free parameters to rational bi-cubic
partially blended function. There are twelve free parameters in each rectangular patch of rational
bi-cubic partially blended function. Data dependent sufficient constraints are developed for four
free parameters to visualize the shape of convex surface data while the other eight are left free to
user’s choice to refine the shape of convex data. The proposed scheme has a number of attributes
over the existing schemes.

e In (Hussain et al. (2011), Schumaker, (1983)), the smoothness of surface interpolation is

C° while in this paper the surface interpolant attained C' .

e The developed scheme has been demonstrated through different numerical examples and
observed that the scheme is not only local, computationally economical, easy to
compute, time saving but also visually pleasant as compared to existing schemes
(Hussain et al. (2011), Hussain and Maria (2008), Hussain et al. (2008), Hussain and
Maria (2006), Maria and Hussain (2008)). In contrast to the schemes (Asaturyan (1990),
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Asaturyan et al. (2001), Carnicer et al. (1996), Clements (1992), Costantini and
Fontanella (1990)) are global.

e Surfaces can be made more visually pleasing and smooth (still preserving the
convexity), as desired by the designer, by merely adjusting some of the shape
parameters in the description of the rational bi-cubic partially blended interpolant. It has
more freedom for the user and without effecting the data. In contrast to the schemes
Hussain et al. (2011), Hussain and Maria (2008), Hussain et al. (2008), Hussain and
Maria (2006), Maria and Hussain (2008) were not flexible to designer to refine the
convexity surfaces.

e Data dependent sufficient constraints on shape parameters are attained which guarantee
to preserve the convex surface. The constraints on shape parameters are not dependent to
each other.

e No additional points (knots) are inserted in the interpolant. In contrast, piecewise
polynomial Bernstein- Bézier function methods of McAllister and Roulier (1981),
Passow and Roulier (1977) and Roulier (1987), the quadratic spline methods of
Schumaker, (1983) and the cubic interpolation method of Brodlie and Butt (1991) and
Butt (1991) require the introduction of additional knots when interpolant loses the
required shape of data.

e  The schemes Costantini and Fontanella (1990), Devore and Yan (1986), Dodd (1983),
Floater (1994) are unsuccessful to preserve the convexity of convex data when data with
derivatives is given. In contrast no data with derivative constraints are imposed, making
the proposed scheme more flexible.

The remaining part of paper is organized as: A review of rational cubic function is given in section
2. The rational cubic function is extended to rational bi-cubic partially blended function is given in
section 3. Derivatives approximation method is discussed in section 4. The problem of shape-
preserving convex surface is discussed in section 5. Some numerical examples for convex surface
data to support usefulness of the scheme are discussed in sections 6. Finally, the conclusion of this
work is given in section 7.

2 Review of Rational Cubic Spline Function

Let{(x, f):i=0,12,..,n} be the given set of data points such asx, < x, <x, <..<x,. The rational
cubic function with three free parameters see Abbas et al. (2012), in each subinterval
I, =[x,x,],i=0,1,2,...,n—1is defined as:

_P (6)

, (D
q,(6)

S, (x)

with,
p.O)=uf(1-0) +(wf +uhd)01-60)+(wf, —vhd, )6 1-0)+v.f 6,

i il

q.(0)=u(1-6) +wo(1-0)+v6’,

where 0= (x—x,)/h , h, = x

i+l

—x, , and u;,v;, w; are the positive free parameters and d; denotes the
derivative values at knots. It is worth noting that when we use the values of these free parameters
asu, =1,v, =1 and w, =3then the c' piecewise rational cubic function (1) reduces to standard
cubic Hermite spline.
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The piecewise rational cubic function has the following interpolatory conditions,
SGy=f  Sx)=1,
Si,(xi) = dl Sz’(xm) = dl+1

where S/(x) denotes the derivative with respect to'x"'.

(@)

Abbas et al. (2012) developed the following result for the convexity shape-preserving of 2D
convex data.

Theorem [Abbas et al. (2012)]

The Clpiecewise rational cubic function (1) preserves the convexity of convex data, if in each
subinterval I, =[x,,x,,,1,i =0,1,2,....,n, the free parameters satisfy the following sufficient
conditions,

w, > max 10, d,v, ’ d.v, ’ 2u,v, (di+l _Ai) ’ 2w, (Ai _di) . u;v; (dm _di) L u,v, >0
(da=A) (A =d) (d,v,=Aw)  (Av,—du) A (u+v,)
The above constraints are rearranged as:

w, =1, +max{0’( .., .., 2u;, (di+1 _Ai) 2u, (Ai _di) i (di+1 _di)

i+ i

di+1_Ai)’(Ai_di)’ (d‘ V'_Af”i) ’ (Aivi_diui) ’ Ai(ui+vi)

i+l7i

},l,. 20,u,,v,>0
where A, =(f,,, — f)/h .

3 Rational Bi-Cubic Partially Blended Spline Function

We extend a C' piecewise rational cubic function (1) to rational bi-cubic partially blended function
S(x,y) over the rectangular Domain Q = [a,b]x[c,d ] . The partition of arbitrary intervals [a,b]
and[e,d]is defined AT a=x, <X, <X, <..<x,=b, Tic=y, <y <y,<..<y,=d
respectively. The rational bi-cubic partially blended function over each rectangular patch
[x,.,xm]x[yj,yjﬂ}i:0,1,2,...,n—1;j =0,1,2,...,m—11is defined as:

S(x,y)=—A(0)FB’ (p) (3)
where,
0 Sy) Sy
F=| Sty SGoy)  S(y.) @
S(xi405¥) S(xiﬂ’yj) S(xm’)’jn)
A() =(ay(8) a,(8) a,(8)) )
B(p) = (b, (¢) b(9) b,())
with,

{ao(ﬁ) =—1,a,(0) = (1-0)*(1+26).a,(8) = 6*(3-26)
by(9) = =1b,(9) = (1= 9)* (1+20),b,(9) = 9’ 3-29).
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In the above expressionf=(x—x,)/h, ¢=(y- yj)/ﬁj, withh, = x,,, —x,,h, =y, —y,;, the

rational cubic functions S(x,y;), S(x,y,.,), S(x,y)and S(x,

+1°
3 . .
> 1-6"6'L
Sry)=2—
! q,(0)
where,
Ly=u;F, ;
L =w;F ; +u hF;,
Ly=w, F.,; _vi.jhiF;'il.j’
L= v::jFHLj
¢ (@) =u_ (1-6) +w _6(1-0)+v, 6.
3
> -6"6M,
S(x’y'Jr )= =
™ 4,(6)
such that,
M,= Mi,jHE,jH’
M, = Wi.j+1Fi.j+1 + ui.j+1hiE‘,xj+1 >
M, = Wi,j+1Fi+1.j+1 _vi,j+lhiF;'j-1.j+l >
M, = vi‘j+1F;'+1.j+l
GO =u,,,(1-6) +w,  001-60)+v, 6.
3
2. 1=y ¢N,
S(x,y) =+
4;(9)
with,
Ny =i, ;F, ;.
Ny =w, F, +ﬁi,./ﬁjFi,)}’
Ny =W, i F =V, b
N, = Ql,jF},‘/'i»]
q,(0) = ﬁi,j (1-¢) + VA"i,f("(l -9+ ﬁzx.r‘(p}'
3
2 1-9"¢0,
NETIE L
l 4,(9)
with,
0, = ﬁi+l,jE+l,j’
0, = v"\}H].jF‘iH.j +’2i+1,jthii1.j’

y) are defined as:

(6

)

®)

(€))
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A ~ y
F vi+l,jth:'+],j+]’

i+l

=>

0, = it1,j
0, =v,, F

it i Eivn e
0, @) =i, -9+, ol-9)+7, @
4 Determination of Derivatives
Mostly, the derivative Efj, Fl‘]
derived either at the given data set{(x,y,,F, ):i=0,1,2,...n=1; j=0,1,2,..,m —1} or by some

other means. In this paper, these values are calculated by following Arithmetic mean method for
3D data in such a way that the smoothness of the interpolant (3) is maintained. Let us denote E”J

and F;} at the knots are not given. These derivatives must be

and F’; as the first order derivatives with respect to x and y , respectively, at the data point F, ;.

Similarly, let the mixed derivatives be denoted by F;"; .

4.1 Arithmetic Mean Method for 3D Data

A, —A A _ . —A _,)h
Folfj — 0 ( 0,j Lj )h() ’Fn,ff — -y +( n—1,j 11—2./) n—1 ,
(hy +1y) ' ' (o +h,5)
F =058, +A, ) +i=123n-1 j=012...m
(A=A Dh . A=A, Dk
E:‘O — ALO +( 1,0A Ll) 0 7Fvlv\m — Aiymil +( 1.1»1;] 1,1172) m—1
(h() + hl ) (hm—l + hm—Z)

F) =054, ,+A,, ).i=012,..n j=123,...m-1

i

F*, —F'., F —F
Fﬁ%’:l{ byl Gl "“},i:l,Z,...,n—l; i=12,...,m-1,

2] A ~
2 hj—l + hj hi—l + hi
where A, = Frny =i A = Fn—F,
ij h A — .

! J

5 Convexity Shape-Preserving Interpolation

The rational bi-cubic partially blended function (3) does not guarantee to preserve the shape of
convex surface data. So, it is required to assign suitable constraints on the free parameters by
some mathematical treatment to preserve the convexity of convex data.

Theorem 5.1

The rational bi-cubic partially blended function (3) preserves the convexity of 3D convex data, if
in each rectangular patch [x,.,xl.ﬂ]x[yj,yjﬂ],i =0,1,2,...,n=1j=0,1,2,...,m—1; the free

parameters satisfy the following sufficient conditions
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Ui joly joys Uy U 1+1, >0, s Vi Vi 1,’V1+1.j >0

w,, >max{0,D,,1<k<5keZ"}, w,, >max{0,D,,6<k<10,ke Z'},

W, >max{0,D, . 11<k <15,ke Z*}.W,,, >max{0,D,,16 <k <20,k Z'},

t+l J
where,
X X X _ X
_ F:+1 jVi.j _ F;Jrl.jvi.j 2ul JV’ J (EH J Ai,}) 2u, Jv’ J (A F;J)
Dl x s T )’ 3 - X ,D4 >
(F;HJ Aw) (Aivj _F;-j) (EHJ Vi Ai.jui-j) (Ar/vu ljulf)
u. .v..(F.X .—F.X.) F* F* v U, ...V, (F.X L —A )
Ljoij i+l,j iLj i+, j+1 l/+l i+L, j+170, j+1 i 4174, j+1 i+1, j+1 i, j+l
5 = ’ D = N ’D7 = N s Dg = N s
Ai,j (ui,j +vi.j) (F;-H Jj+l Ai.j+1) (Ai,j+l F; ]+1) (F;H ]+1 i,j+1 _Ai.j+1ui.j+1)
X w I v A v A
D ; 1V (Ai. j+ E m) _ U; Vi jm1 (Fm. j+ E j+l) _ F Vi _ E Vi
9~ Mo~ T ~ T »
(Ai.j+lvi,j+l E]+1Ml /+1) Ai.j+1( y/+1 +Vz /+1) (F;JH A,-J) (A,] - l-:j)
A A N A A ~ _ y y y
D. = 214,‘7/.\1[’/( ivj+l -4 ) D = Zuiva’vf (A"vf F’l) _ ij (F! j+ Fw) _ F+1 ,+1V,+1 j
13 = R A [ U PN A 215 T A ( ) M6 T y A ’
(F Vi Ai,jui,j) (Ai,jvi,j - F;‘;jui,j) ALY +vi,j (E+1 j+l Ai+1,j)
y _ N N ~ A y Y
F;H j+lvx+l j 2M:+1 JJ L (E+1,j+1 AH—l,j) 2M:+1 JUiHLj (AH-I J H-l /) u,'+1,jv,'+1 J (F:'.H J+l F:'.HJ)
D; =+ v\’ 18 = SN ~ R Mo == A s By = A
(Am i FL ,) (E+1 Vi) Ai+l,jui+1,j) (Ai+l,jvi+1,j _Elrl,j”m,j) i+, ( Uiy j Vi 1)

The above results are rearranged as:
=a,, +max{0,D, 1<k <5ke Z}, w,,, =B +max{0,D,.6<k<10,ke Z'}, &, >0,8 >0

v?},.’j =7, +max{0,D,,11<k<15ke Z'},W,,, =6, +max{0,D,,16<k <20,ke Z*},7,,>0,5 >0

l+l J

Proof:

Let{(x,,,yj,Fi_j):i:0,1,2,...,n—1;j:0,1,2,...,m—1} be a convex surface data arranged over a
rectangular patch [x,, x,,, ]x[yj, yjﬂ]i =0,1,2,..,n—1;j=0,1,2,...,m—1such that,

F*<F* F <F’ A, <A A <A

H’l'j’ ij+1? i+1,j° i,j+1 (10)
A <EL <AL A J<FL< A, 41 Vi, j
and the free parameters are
; >0y, >0u ,,>0v,,,,>0 (1n
Mi,j>07v >0,d,,,; >0,9,,,>0
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Casciola and Romani (2002) developed the result as: "The bi-cubic partially blended rational
surface patch inherits all the properties of network of boundary curves". According to this fact the
surface patch (3) preserves the convexity if the four boundary curves S(x,y;),S(x,y,,,),S(x;,y)

and S(x,

i+1°

y) are defined in equations (6)-(9) are convex.

The boundary curve S(x, y;) is convex if S (x, y;)>0ie,

8
Z (1—-)* ek—lf)k

SO,y )=t — 50, (12)
! h;(q,(0))’

with,

R=2v?,_( B = )+ En, =2 ).

_4P+6V (H-lj'l Az/”l/)

g :{(P2_3)+6Vi- { S E vy = A ) =20, v, (F,.jl_j—A,-_j)},

l+1jlj [N AN ijoig
{ +h- PZ)J’ZWM{ (A (a4, ))_ui,jvi,j(F;il,j y )}+14M,,V,,(Eil,,vi,,—IVi;xjui,,),

(P
{(P6+
(

R; )+2M/}’j{M/LJ(A[j(u +v )) tj [j(Ejlj Ft‘)(j)]+14uljvlj(F;jlj ’J F"XJ ’J)
{ £ - R‘)+6u {WIJ(A’]VIJ -F; ul/) 2u,]v,](A _Ff-xj)}’
2
1)7:4I)§§+6ui,j( 1/1/ Euzj)’
K =2”13/(Wi..f(Ai,/ —Ej‘_,)+1~",.fju, i~y u)
The rational cubic function S (x, y,)>0, ifZ(l -6)** 6”‘713{ >0andgq,(0)>0.
k=1
8
We have ¢,(6) > 0 if equation (11) is satisfied and Z(I—H)H 6'p, >0if B, >0 k=1,2,.,8.
k=1
Further B, >0 Vkif
0 Eil Vi inl Vi 2u;, Vi (F"i]! _Ai-j) 2”! Vi (Al i~ F!X/)
> max (F,L j Aw’) (Ai.j _Ef;) (F,il Vi Aivj”i.j) (A, Vi~ Eu; !)
iJ x X
uljvlj(E+lj F‘lj)
Af,,- (ui,j +V,.M/.)
(13)
Similarly, the boundary curve S (x, Vi) is convex if (x, yjﬂ) >0ie.,
8
2(1—9)87’“ eklek
SP(x,y,.,) =2 >0, (14)

h(q,(6))°

80



British Journal of Mathematics & Computer Science, 2(2): 72-93, 2012

with,
X X
Q 2vz /+1( l Jj+l (Ft‘-ﬁ—l j+l Ai.j+l)+F 7+1Mt Jj+l F:+1 /+1 i /+1)

Q 4.Ql +6V, ]+l 1+l L+l lj+l lj+lur ]+l

—_— — X —
) _{(Qz 0] )+6Vz i+l z,+1( i1 Vi z,+1uz J+1) 2u, Vi (E+l,j+l Ai,j+1 )} >

l /+l 1]+l 1]+l 1]+l )

Qt = (Q3 +Ql +2M}l L j+l +14M1 L+l 1]+1 (EH j+lv1 Jj+l F;]+1ul j+l)
l /+1 i, /+1 l+1 /+1 i, /+1)
x]+l l]+l x]+l x]+l))

(Q‘) +Q8 Q7 +2‘/Vx LJ+l +14ul L j+l lj+l (Fl‘il Jj+l lj+l Fl‘,xjﬂui,jﬂ)’
1]+l lj+1 1+1 j+l Ij+l)

X X
O = {(Q Qs)+6”, ,+1{ xj+1 ,,+1V, 41 - F i, ,+1) 2u, Vi (Ai,j+1 _Fi.j+1 )}’
X
0, =40, +6”L L+ (A[,j+1vi,j+1 —F ) >
X X X
Q8 2“1 /+1( l/+1 (Ai,jﬂ E/+1)+E j+ 1/+1 EH /+1 1/+1)

8
The rational cubic function S (x, y ) >0, if z 1-6)>%* 0HQ,( >0and ¢,(6)>0.

k=1

8
We have ¢,(6) > 0if equation (11) is satisfied and Y_(1-6)**6"Q, >0ifQ, >0 k=12,...8.

k=1
Further 9, >0 Vkif,
E+1 ,+1V1 jH Eil Lj+ lj+1 2”! /+1 lJ+1(EJXr1 Jj+l Al»jﬂ) 2”! /+1vz J+1(Ai J+ EXJH)
(Eil Jj+l AI,j‘H) (Ai,j+l EXJH) (Eil Jj+l l/+1 Al /+1ul /+1) (Al Jj+ lj+l E)(j+lul j+l)
W, jp > TaX
uz /+1vl Jj+ (E+1,/+1 E}+)
Ai./'-f—l( 1 j+l +vz /+l)
15)
Similarly, the boundary curve S(x;, y)is convex if S (x,, y) > 0 i.e.,
8
2(1_¢)8—k (pk-1
S (x,, y) =+ >0, (16)

hy(q,(9))’
with,
R 2V ( IJ(E,)}Jrl_ i,

R, =4R +60,(F).0,, -4, i, ).

R = {(R2 ~R)+60, {i, (F6, -4, a,)-22, 9, (2, -4, ).
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Wi.j (Ai.j (ﬁi,j +{;i,j )) 5D

R4 - (R3 +R1 _R2)+2Wr.1 ’ N +14ul.fvi.j (F;)J*flﬁi,j l)/ﬁl /)
lJl/(Frﬁl Fr/)
(A (4. +7,
W“/ ( v (u/'/ ’ V"f )) + 1412,'/.\/‘ J (Fi‘/H‘;t»/ /‘/u/ J )
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Similarly, the boundary rational curve S(x,,,,y) is convex if S® (x,,,, y) > 0 i.e.,
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S(Z)(xi+l’y):k:1—>0’ (18)
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6 Numerical Examples

Example 6.1

The convex surface data set taken in Table 1 is obtained from
F(x,y)= x4 yz(y12 +1), x,yel[0,1.5]

The surface in Fig.1 is generated by bi-cubic Hermite spline that does not preserve the convexity
of convex surface data. Fig.2 (a) and Fig.2 (b) represent different view of Fig.1. It is to note that
these figures do not preserve the shape of data. To overcome this flaw, Fig.3 is produced by the
scheme developed in section 5  with the values of free  parameters
w,; =014, ,=0.1,v,, =013, =0.1 to preserve the shape of convex surface data. Fig.4 (a) and

Fig.4 (b) are representing the xz- and yz-view of Fig.3. It is clearly shown that these figures not
only preserve the shape of convex data but also visually pleasant.

Table 1. Convex surface data

y/x 0 0.3 0.6 0.9 1.2 1.5

0 0.0000 0.0900 0.36078 1.0388 14.2790 294.1800
0.3 0.0000 0.0900 0.36078 1.0388 14.2790 294.1800
0.6 0.0000 0.0907 0.3615 1.0396 14.2800 294.1800
0.9 0.2287 0.3187 0.5895 1.2675 14.5080 294.4100
1.2 12.8390 12.9290 13.2000 13.8780 27.1180 307.0200
1.5 291.9300 292.0200 292.2900 292.9700 306.2100 586.1100
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Fig. 1. Bi-cubic Hermite spline with u, , =4, , =1, v, =V,
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b)
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Fig. 2. Bi-cubic Hermite spline; a) xz-view of Fig. 1 b) yz-view of Fig. 1

yadis x-ais

Fig. 3. Convexity preserving rational bi-cubic partially blended surface
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a)

b)

05

yais

Fig. 4. Convexity preserving rational bi-cubic partially blended surface; a) xz-view of Fig. 3
b) yz-view of Fig. 3

Example 6.2

The data set taken in Table 2 is generated by following function,

Fz(x,y):x4+y4, —-4<x,y<4.

The Fig.5 (a), Fig.5 (b) and Fig.5 (c) give three different views of the surface generated by bi-
cubic Hermite spline. It is easy to see that these figures do not preserve the convexity of data.
Fig.6 (a) is generated by convexity preserving rational bi-cubic partially blended function with the
values of free parametersu, , =0.1,4, , =0.1,v,; =0.1,%, , =0.1 to preserve the shape of convex

3D data. Fig.6 (b) and Fig.6 (c) represent the xz- and yz-view of Fig.6 (a). It is to note that these
figures are smooth and depict the convexity.
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Table 2. Convex 3D data

y/x -4 2 0 2 4
-4 512 272 256 272 512
-2 272 32 16 32 272
0 256 16 0 16 256
2 272 32 16 32 272
4 512 272 256 272 512
a)
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\;5«»_’303*’0’ X007
e, <5 4 e ,’55525.
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yas Yeaxis
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Fig. 5. a) Bi-cubic Hermite scheme with u, , =4, , =1, v, , =V, =1, w,; =W, , = 3 (without

iJ
Theorem 5.1); b) xz-view; ¢) yz-view
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b)

100

xeais

¢)

y-axis

Fig. 6. a) Convexity preserving rational bi-cubic partially blended surface; b) xz-view;
¢) yz-view

Table 3. Convex surface data

y/x 0.1 0.2 0.3 0.4 0.5 0.6

0.1 9950.1 621.98 12294 38.967 16.02  7.777
0.2 9800.9 612.74 121.19 38.48 15.877 7.7583
0.3 9553.7 597.37 11823 37.604 15.572 7.658
04 9211  576.03 114.08 36.347 15.105 7.4754
0.5 8776.3 548.93 108.78 34.719 14.48 7.2103
0.6 8253.9 516.33 102.39 32.735 13.701 6.8635
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Example 6.3

The data set taken in Table 3 is generated by following function,

F(x,y)=

4
Gy #DCosx =\ eq0.1,0.6]

Fig.7 is generated by bi-cubic Hermite spline. It is easy to see that Fig.7 does not preserve the
convexity of convex surface data. Fig.8 represents yz-view of Fig.7. To remove this defect, Fig.9
is generated by convexity preserving rational bi-cubic partially blended function with the values of

free parametersu, ; =0.5,i, ; =0.5,v, ; =0.5,7, , =0.5 to preserve the shape of convex 3D data.
The yz-view of Fig.9 can be seen in Fig. 10.
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Fig. 7. Bi-cubic Hermite spline with u, , =4, , =1, v, ; =7,
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Fig. 8. yz-view of Bi-cubic Hermite spline

90



British Journal of Mathematics & Computer Science, 2(2): 72-93, 2012

z-axis

axs
Xeaxis ¥

Fig. 9. Convexity preserving rational bi-cubic partially blended surface
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Fig.10. yz-view of Fig.9
7 Concluding Remarks

In this paper, we have extended a C ' piecewise rational cubic function with three free parameters
to rational bi-cubic partially blended function with twelve free parameters in each rectangular
patch to preserve the shape of convex data. The free parameters are arranged in such a way that
four of them are constrained parameters to preserve the shape of convex data while the remaining
are left free for user 's choice to refine the surface as desired. No extra knots are needed in the
scheme. The scheme is more flexible in terms of convexity preserving due to free adjustable
parameters in the interpolant as compared to existing schemes. The effectiveness of the scheme
has been demonstrated through different numerical examples and observed that the scheme is not
only local and computationally economical but also visually pleasant.
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