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More than one billion people face disabilities worldwide, according to theWorld Health Organization (WHO). In Sri Lanka, there
are thousands of people suffering from a variety of disabilities, especially hand disabilities, due to the civil war in the country. *e
Ministry of Health of Sri Lanka reports that by 2025, the number of people with disabilities in Sri Lanka will grow by 24.2%. In the
field of robotics, new technologies for handicapped people are now being built to make their lives simple and effective. *e aim of
this research is to develop a 3-finger anatomical robot handmodel for handicapped people and control (flexion and extension) the
robot hand using motor imagery. Eight EEG electrodes were used to extract EEG signals from the primary motor cortex. Data
collection and testing were performed for a period of 42 s timespan. According to the test results, eight EEG electrodes were
sufficient to acquire the motor imagery for flexion and extension of finger movements. *e overall accuracy of the experiments
was found at 89.34% (mean� 22.32) at the 0.894 precision. We also observed that the proposed design provided promising results
for the performance of the task (grab, hold, and release activities) of hand-disabled persons.

1. Introduction

Due to population aging and the country’s civil war, the
prevalence of disability in Sri Lanka rose between 1981 and
2001 [1, 2]. In the 2001 census, it was estimated that 0.3
million people had a disability. Disabilities related to vision,
hearing, speaking, hands, legs, and other physical and
mental health disabilities have the highest prevalence esti-
mates per 10,000 populations [3]. According to recent
studies, 7% of Sri Lanka’s total population (approximately
1.4 million people) suffers from some form of disability [4].
*e respondents in this research were primarily those with
hand disabilities.

Robotics technology is rapidly evolving in order to
make people’s lives easier and more efficient. In this field,
various machines and robot designs are manufactured to
assist handicapped people who suffer from disabilities such
as blindness, broken legs or arms, and dislocated body
parts. Many robotic arms are being designed for the

purpose of providing care to physically disabled people [5],
and some have already been commercialized [6]. Recent
advancements in neural prosthetics have the ability to help
disabled people to regain control of their motor functions
and speech [7, 8].

Brain-computer interface (BCI) is known as a multi-
disciplinary domain involving subjects such as neuroscience,
digital signal processing, and machine learning [9]. BCI is a
rapidly growing technology that assists disabled people [10].
BCIs allow capturing brain signals with the use of skin
electrodes and they are appealing in prosthetic device
control such as robot arms. Most traditional methods of BCI
include motor imagery, P300, and Steady-State Visual
Evoked Potentials (SSVEP) [11, 12]. Biosignal-based control
systems are the next step to achieve more accuracy and can
be classified in different ways [13]. Biosignals or bioelectrical
time signals are referred to as biomedical signals which
represent collective electrical and mechanical signals ob-
tained from organs in the human body. *e best-known
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bioelectrical signals are electroencephalography (EEG),
electrocardiography (ECG), electromyography (EMG),
mechanomyography (MMG), electrooculography (EOG),
galvanic skin response (GSR), and magnetoencephalogram
(MEG).

Most of the robot designs introduced are not based on
the human body’s anatomical behavior. It is a challenge to
design a robot hand that acts as an anatomy of the human
hand. *is paper provides a scientific approach to the de-
velopment of an anatomical robot hand model for hand-
disabled people.*e objectives of this research are as follows:

(1) To find a possible solution for the development of a
3-finger robot hand based on the anatomy of the
human hand.

(2) To acquire and process the EEG signals related to
hand movements.

(3) To control the robot hand model according to the
motor imagery.

3D printing technology was used for the physical de-
velopment of the robot hand model. For the finger design,
the anatomy of the thumb, index, and middle fingers was
considered. *e finger flexion and the extension movements
were inspired by the extensor tendons of the human hand.
*e theoretical background of the research is carried out in
Section 2. Section 3 describes the related works in the BCI
field. Section 4 explains the design and implementation of
the proposed system. Section 5 demonstrates the test results
of the proposed system, and Section 6 discusses the out-
comes and limitations of the research. Finally, Section 7
concludes the research and proposes some future works.

2. Theoretical Background

2.1. Anatomy of the Human Hand. *e human hand
(Figure 1) has a complex anatomical structure consisting
of bones, muscles, tendons, skin, and the complex rela-
tionships between them [15, 16]. Human hand composed
of 27 bones, arranged in five serial kinematic chains to
form the fingers. *e fingers are numbered as follows:

(1) *umb finger
(2) Index finger
(3) Middle finger
(4) Ring finger
(5) Little finger

Each finger (2–5) consists of a metacarpal bone located
in the hand and three phalanges named the proximal,
medial, and distal phalange (in the order from finger base to
fingertip). *e thumb only consists of proximal and distal
phalanges; it does not have a medial phalange. *e
remaining eight hand bones are the carpals that are located
in the wrist [17]. *e name of each joint is based on the
bones they linked. In the fingers, the two interphalangeal
(IP) joints are distinguished by the prefixes as follows:

(1) DIP (distal interphalangeal)

(2) PIP (proximal interphalangeal)
(3) MCP (metacarpal phalanx)

Fingers movement’s action starts from pyramidal and
nonpyramidal cells in the motor cortex. Pyramidal cells as
the major output neurons send long axons down the
spinal cord. Primary motor cortex neurons fire 5–100ms
before the onset of a movement [18]. Finger movements of
the human hand [19] are composed of three actions as
follows:

(1) Flexion finger movement
(2) Extension finger movement
(3) Idle finger movement

*e anatomy of the human hand was considered for the
development of the thumb, index, and middle fingers of the
robot hand model. Natural finger flexion and extension are
performed by the linearly coupled movements among the
metacarpal phalanx (MCP), proximal interphalangeal (PIP),
and distal interphalangeal (DIP) joints [20, 21]. Table 1
depicts the different motion of angles for DIP, PIP, and
MCP of the human hand.

*e first objective of this research was to the develop-
ment of a robotic hand model that is functioning as a human
hand. *e anatomical behavior explained here referred to
the development of the finger (thumb, index, and middle)
structures. *e working principle of the extensor tendons
was studied to find a solution for the working mechanism of
flexion and extension of robot fingers. *e bending angles of
each robot finger joint were contemplated by using the real
bending angles of the human fingers. *e method for motor
control has therefore been developed according to the
bending of each joint.

2.2. Electroencephalography Signals and International 10–20
Electrode Placement Protocol. *e brain-computer interface
(BCI) is a system that facilitates communication between the
brain and the machine [8]. *e BCI device is capable of
recording, interpreting, and generating corresponding
commands on the connected computer to perform its
purpose. *e functions of the typical BCI system are based
on the sequential execution of several procedures, such as

Distal phalanges

Intermediate phalanges

Proximal phalanges

Metacarpals

Carpals

Figure 1: Anatomy of the human hand [14].
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the acquisition of signals, preprocessing, and extraction of
features, classification, translation, and feedback to the
controller. In this research, we were primarily focused on the
acquisition of EEG signals in the BCI signal acquisition
process (EEG-BCI).

Electroencephalography (EEG) is a method used to
measure the electrical activity of the human brain. EEG uses
surface electrodes to measure the electrical signals of the
human brain [22]. *e International Federation of Clinical
Neurophysiology (IFCN) adopted the standard method for
EEG electrode placement known as 10–20 electrode
placement protocol [23, 24]. *e international 10–20 pro-
tocol standardized the physical placements and designations
of 21 electrodes on the human scalp. Figure 2 illustrates the
placement locations of the electrodes from the side view and
plan view. Using the reference points on the skull in the
Nasion, preauricular points, and Inion, the head is divided
into proportional positions to provide adequate coverage of
all the human brain regions [26].

*e most well-known rhythmic activity generated from
the human brain is the alpha waves (α) (8–13Hz) which
generates during wakeful relaxation [27]. *e theta
rhythms (θ) (4–7Hz) are associated with memory pro-
cessing when it appears in the frontal cortex [28] and
spatial navigation when in the parietal cortex. Previous
studies discovered that neurophysiological phenomena
called event-related desynchronization (ERD) or syn-
chronization (ERS) are detectable from EEG signals when
motor imagery is performed [29]. ERD or ERS is also a
high-frequency band-specific [30] but can be observed
from mu rhythms (µ) (8–12Hz) or beta rhythms (ß)
(13–30Hz) of the EEG signals [31]. *e amplitude of the
EEG rhythms is about 100 µV when measured on the scalp
and about 1–2mV when measured from the surface of the
human brain. Motor imagery features [32] of the EEG
signals appear in the frequency range of 6–33Hz. *e
artifacts caused by the transmission lines lie within the
range of 50–60Hz and the eye artifacts within a frequency
of 2–5Hz of EEG data.

Preprocessing is a technique that is done to minimize
signal noise and to add some filtering and other measures to
eliminate errors that are caused by endogenous sources (eye,
muscle, and heart) and exogenous sources (power-line
coupling and impedance mismatch) [33]. Preprocessing is
typically achieved by low-pass, high-pass, band-pass, or
notch filtering. *e use of such filters may, however, exclude
useful elements of EEG signals having the same frequency
band as the artifacts.

*e second objective of this research was the acquisition
and processing of EEG signals related to finger movements.
EEG acquisition and electrode positioning techniques are
discussed here and have been used to meet the research

objectives. Since hand and finger movements are related to
the primary motor cortex of the human brain, the 8-elec-
trode EEG helmet was chosen to be worn to cover the
primary motor cortex region. Electrode placements (FC3,
FC4, C1, C2, C3, C4, Cz, and CPz) were suggested according
to the international 10–20 electrode placement protocol.*e
EEG preprocessing performed in the design section (Section
4) of this paper was carried out based on the theoretical
background of the signal behavior discussed here.

3. Related Works

Using noninvasive EEG, Xiao and Ding [34] have evaluated
multiple movement-related features under the same task
that is distinguishing individual fingers from single hand.
*ey have used 128 EEG channels, and decoded individual
fingers with noninvasive EEG that has the potential to in-
crease the number of control features, allowing for the
advancement of more sophisticated noninvasive BCI
applications.

Javed et al. [35] have proposed a new approach for
classifying four-finger motions of the right hand based on
EEG data. *ey have used a 14 channel electrode headset to
acquire the EEG signals. *e gathered EEG signals have
initially filtered to preserve the alpha and beta bands, which
provide the most detail about movement.

A BCI system suggested by Gannouni et al. [36] has
distinguished differences between the five individual fingers.
As a result, a multiclassification problem based on an en-
semble of one class-classifier has been implemented, with
each classifier predicting the intention to move one finger.

Alazrai et al. [37] have suggested an EEG-based BCI
method for detecting finger motions, including the flexion
and extension movements of the index, middle, ring, and
little fingers, as well as four thumb-related movements,
including thumb adduction, thumb abduction, thumb
flexion, and thumb extension.

Using electroencephalography, Ketenci and Kayikcioglu
[38] have investigated the effect of theta brainwave on
movement identification in four right-handed participants
who conducted extensions with their right hand fingers (EEG).
Muscle signals have been used to derive movement and rest
epochs from a continuous EEG recording. *e common av-
erage and Laplacian reference methods have been used to pick
and reference channels have located over the sensorimotor
region.*e presence of the theta band in the frequency domain
has been shown using the power spectral density function.

We have referred most recent research articles related to
the EEG and BCI through Google Scholar. With systematic
review, we have gained knowledge regarding the develop-
ment of our robot hand model using the BCI technologies.
Table 2 depicts the recent studies and the number of elec-
trodes used in works.

4. Materials and Methods

*e objectives of this research were to find a possible so-
lution for the development of a three-finger robot hand
model that works the same as the anatomy of the human

Table 1: Motion angle of the MCP, PIP, and DIP joints.

Finger joints Motion angle/(θ)
MCP (metacarpal phalanx) 0< θ< 100
PIP (proximal interphalangeal) 0< θ< 105
DIP (distal interphalangeal) 0< θ< 085
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hand, acquire and process the EEG signals related to the
hand movements, and control the robot hand model
according to the motor imagery. *is section introduces the
design and development of each objective. As the functions
explained in the theoretical context of this paper, we de-
veloped the EEG helmet as the first step.

4.1. Design andDevelopment of EEGHelmet. *e acquisition
of the EEG signal, which relates to the mental execution of
hand movements, is associated with the primary motor
cortex of the human brain. Electrodes are therefore required
to be installed to cover the motor cortex region of the human
head. In this research, we used Ag/AgCl coated 8-channel
electrode caps (d� 10mm). Experiments were carried out by
adopting eight EEG electrodes attached to a fabric helmet
according to the international 10–20 electrode placement
protocol for FC3, FC4, C1, C2, C3, C4, Cz, and CPz. Table 3
depicts the coordination for EEG electrodes on the human
scalp according to the 10–20 electrode placement protocol:
where θ: inclination angle, φ: azimuth angle, r: radius of the
subject’s head, x: positive is the direction of the neck, y:
positive is the direction of the right ear, and z: positive is the
direction of the sky.

x � −r(sin θ sinφ), (1)

y � r(sin θ cosφ), (2)

z � r(cos θ), (3)

Equations (1)–(3), respectively, represent the x-direction, y-
direction, and z-direction of the subject’s head. Figure 3 shows
the physical view of the EEG electrode helmet after wearing it
to the subject’s head while performing the experiments.

4.2. Hardware Selection for the EEG Acquisition. *e hard-
ware selection for the acquisition of EEG was a key objective
in the design section. OpenBCI specializes in developing
low-cost, high-quality biosensing hardware for brain-com-
puter interfacing. An OpenBCI [41] printed circuit board
(PCB) is equipped with sensors to detect and measure
electrical activities in the brain (EEG), muscles (EMG), and
heart (EKG). In this research, EEG signals were captured
using the OpenBCI 8-channel Cyton biosensing module and
transferred to the EEG data analyzing interface (EEGDAI) for
signal processing and classification. Furthermore, EEGDAI
was analyzed data according to the motor imagery, and
controlled signals were passed towards the Arduino micro-
controller. For this research, an Arduino ATmega 2560
microcontroller was used [42, 43].*e next step was to design
and develop the EEG data analyzing interface (EEGDAI).

4.3. Development of the EEG Data Analyzing Interface
(EEGDAI). *e EEG data analyzing interface (EEGDAI)
was developed to acquire EEG signals, filter, and analyze

Table 2: Number of EEG channels used in related studies.

Reference Year published No. of EEG channels used
Xiao and Ding [34] 2013 128 channels
Javed et al. [35] 2017 14 channels
Johar et al. [39] 2018 14 channels
Lokman, Ozkurt, and Najeeb [40] 2018 14 channels
Alazrai, Alwanni, and Daoud [37] 2019 13 channels
Ketenci and Kayikcioglu [38] 2019 19 channels
Gannouni et al. [36] 2020 64 channels
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Figure 2: *e international 10–20 electrode placement protocol: (a) side view; (b) plan view [25].
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received signals. EEGDAI (Figure 4) was developed using
the MATLAB GUI [44] Application tool and each filtering
process was performed by implementing the GUI callback
functions. A popular tool for BCI system design is BCILAB
[45], an Open-source MATLAB toolbox, and EEGLAB
plugin developed by C. Kothe at the Swartz Center. BCI-
LAB contains many EEG signal processing methods and
includes a graphical user interface to aid in the develop-
ment of the EEGDAI system.

4.4. EEG Preprocessing and Classification for Motor Imagery.
Signal artifacts [46] are more significant while collecting
EEG data from the data acquisition process. Artifacts are
known as unwanted signals which originate from envi-
ronmental noise, experimental error, and physiological ar-
tifacts [47]. Many techniques were developed in both the
time and frequency domain for correcting or removing the
artifacts from EEG rhythms [48, 49]. *ere is also evidence
of physiological artifacts, which is bioelectrical signals from
other parts of the human body such as heart, muscle activity,
eye blink, and eyeball movement that are registered in the
EEG rhythms [50, 51].

*e surface Laplacian algorithm (SLA) was used for the
spatial filtering process; the SLA smoothed the signal and
reduced the artifacts caused by ocular artifacts, cardiac

artifacts, and power-line interferences.*e features of motor
imagery [32] in EEG signals are appearing in the 6–33Hz
frequency range. *e mu (µ) (8–12Hz) and beta (ß)
(13–30Hz) rhythms were used to distinguish EEG signals
[52] that are related to motor imagery tasks (hand move-
ments). Artifacts caused by the transmission lines were laid
within the 50–60Hz range, and the eye artifacts with the
frequency of 2–5Hz range were found in the recorded EEG
data. *erefore, signals were filtered by using the “Band-
pass” filtering with the band-pass of 6–35Hz to eliminate
artifacts caused by transmission lines and eyes. Figure 5
illustrates the flow of the signal processing and classification
process of the proposed design.

After EEG acquisition was completed, the “Artifact
remove” process was performed to eliminate the artifacts
from the original source. “Band-pass” filtering process was
used to filter the mu and beta rhythms that were received
from the “Artifact remove” process. *en, mu (µ) and beta
(ß) rhythms were sent to the “Feature extraction” process to
extract and identify the handmovements.*e classified EEG
data from the “Feature extraction” process were passed to
the decision controller, which was used to generate the
control decisions for the robot hand prototype. *e decision
controller and the hand model were connected with the
controlling unit of the robot hand.

Table 3: Electrode positioning of the subject’s head.

EEG channel Inclination (θ) Azimuth (φ) X position Y position Z position
FC3 −46.0 −22.50 −24.0 −58.0 +61.0
FC4 +46.0 +22.50 −24.0 +58.0 +61.0
Cz 0 0 0 0 +88.0
CPz +23.0 −90.0 +34.0 0 +81.0
C1 +11.5 +54.0 −14.0 +10.0 +86.0
C2 +23.0 +45.0 −24.0 +24.0 +81.0
C3 +46.0 +45.0 −45.0 +45.0 +61.0
C4 +57.5 +45.0 −52.0 +52.0 +47.0

Figure 3: Physical view of the electrode helmet.
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One of the major research objectives of this research was
the acquisition and processing of EEG related to hand
movements. Design and development of EEG helmet,
hardware selection for the EEG acquisition, development of
the EEG data analyzing interface, and EEG preprocessing
and classification for the motor imagery were the steps taken
to achieve the abovementioned objective.

4.5. Development of the Robot Hand Model and Decision
Controller. *e main objectives of this section were to
develop a robot hand model based on the anatomical be-
havior of the human hand and develop a controller to make
decisions for manipulating the robot hand model. In the
development of the robot hand model, the bending angles of
each interphalangeal joint of the human hand and the op-
erating theory of the extensor tendons were taken into
account.

3D printing is a new wave of technological advance-
ment in the field of architecture, design, and manufacturing
[53]. *e MakerBot Replicator Z18 3D printer device was
used for the development of each part of the robot hand
model. Each finger was developed by referring to the
anatomy of the human hand. *e robot hand model
consisted of thumb, index, and middle fingers. *e index
and middle fingers were developed with DIP, PIP, and
MCP joints. *e thumb finger was constructed with the
DIP and MCP joints. *e working mechanism of the
robot hand model was developed using the thread and a
mechanical system. Each speed-reduction motor (GA12-
N20) was attached to a plastic thread by using a pulley.
When the motors were rotated, the threads were sub-
jected to tension force or compression force. A stainless

Figure 4: *e EEGDAI platform with signal acquisition, preprocessing, and ERP image window.
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Figure 5: Program flowchart of the proposed system.
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steel bearing (6 mm) was used to overcome the friction
between the finger joints (DIP and PIP). When the
motors were rotating clockwise, fingers were subjected to
flexion movement and when the motors were rotating
anticlockwise, fingers acted as the extension movement.
Figure 6 shows the architecture of the fingers of the
proposed hand design.

In this research, plastic threads were used as extensor
tendons and speed-reduction motors were used for tension
and release of the plastic threads. Each joint was attached to a
bearing in order to minimize the friction between the joints.
Figure 7 illustrates the prototype of the robot hand model
that has been developed. As shown in the figure, the plastic
threads were driven through the robot’s fingers. *e dif-
ferent rotation angles of the motors were chosen for the
different bending angles of the robot hand. *e specifica-
tions of the robot hand model are described in Table 4.
According to the table, the bending angles of the robot
fingers were observed in the same way as the actual bending
angle of the human fingers.

*e next step was the development of the robot con-
troller. Figure 8 illustrates the system development block
diagram for the robot hand controller.

EEG electrodes that connected to the OpenBCI module
were used to extract the EEG signals. After signals were
extracted, a feature extraction process was performed.

Feature extraction process: the common spatial pattern
(CSP) technique, which is a well-known feature extraction
technique, was used to extract appropriate features from
eight EEG signals. *ese features reflect the most significant
energy at the related electrodes in the mu (µ) and beta (ß)
bands, which are most likely to contain significant motor
imagery data.

Classification process: the support vector machine
(SVM) is a classic approach for pattern recognition in the
BCI system that uses the optimal discriminant hyperplane to
distinguish groups, and it was used to classify four types of
patterns in this research. We used OpenVibe Classifier
Trainer for the classification process.

Decision controlling process: the robot controller was
composed of Arduino ATmega 2560 microcontroller and
L298N motor drivers. *e direction of the motor turn was
controlled using the IN1, IN2, IN3, and IN4 pins of the
motor drive unit. *e duty cycle of each motor was adjusted
by setting the PWM (pulse-width modulation). Table 5
depicts the truth table for the function of the motor for
rotating in the clockwise and anticlockwise direction. *ree
motors were used according to the truth table for manip-
ulating each finger.

*e schematic diagram of the proposed system is shown
in Figure 9. As shown in the diagram, the system consists of a
microcontroller unit (U1), motor driver unit (U2 and U3),
BCI unit (U4), EEGDAI platform (U5), and DC motor unit
(M1, M2, and M3). *e OpenBCI module passed the
electrical signals to the EEGDAI, and it was classified signals
by finger movements. *e motor control signals according
to the signal classification process were generated by the
decision controller. *en, M1, M2, and M3 motors were
driven according to the motor imagery.

5. Results

*e results of this research were based on the EEG data
recorded by healthy subjects to observe wave behavior based
on motor imagery. EEG data were collected at 256Hz
sampling frequency with 32 sample counters per buffer using
an Ag/AgCl coated 8-channel electrode. We observed that
electrodes had a minimummean impedance of 5.28 kΩ and a
maximummean impedance of 5.81 kΩ. *is corresponds to a
mean precision of 0.89 since we expected the mean imped-
ance to be 5 kΩ. Five channels for mu-rhythms and eight
channels for beta rhythms were extracted from the original
data to determine the activity of the motor imagery. *e mu-
rhythms are the range of 8–12Hz EEG oscillations reported
from the scalp electrodes corresponding to the brain senso-
rimotor region (C1, C2, C3, C4, and Cz). *e beta rhythms
ranged from 13 to 30Hz, and wave signals were extracted
from the original data related to the primary motor cortex
region of the brain (FC3, FC4, C1, C2, C3, C4, Cz, and CPZ).

For the testing, 27 healthy subjects were selected from
different age groups and genders. All subjects were new to
BCI uses and found no illness related to brain activities. Each
test subject completed an experiment in 42 s time duration.
A single experiment was performed in five test activities
(resting, idle, flexion, hold flexion, and extension). *e
activities and actions of the test subject during the experi-
ment are described in Table 6.

Each test activity of the experiment was performed as
follows:

Test 1. Here, the “rest” activity was performed for 6 s of time
duration. In the “rest” state, the subject did not perform any
activity such as flexion, extension, or idle. *e mu and beta
rhythms formed in the first step were very small, and in some
test subjects, it only contained signals while relaxing. Fig-
ure 10 illustrates the processed mu and beta waveforms
during the experiment.

Test 2. In the second experiment, the subject was in the
“idle” state for 7 s of time duration, and the subject has not
performed either flexion or extension. Here, the processed
output waveform (Figure 11) was the same as in the resting
state, but the averaged mu and beta rhythms were consid-
erably larger.

Test 3. *is experiment was considered as the “flexion” state.
Flexion movements of the subject’s fingers were performed
for 7 s of time duration.*e output signal of the mu and beta
rhythms were varied as shown in Figure 12.*emu and beta
rhythms on the graph show the variation between idle and
flexion movements.

At the flexionmovement, the mu and beta rhythms had a
varied behavior. Sudden EEG variation caused high power
detection. Higher power is denoted by red color in 2D
topography. Figure 13 shows the ERD/ERS topographical
view of the mu and beta frequencies during flexion activity.
As shown on 2D topography, higher power was detected on
the primary motor cortex region of the brain, in which
motor imagery is associated with finger movements.

Advances in Human-Computer Interaction 7



Test 4. In this step, the subject performed a “Hold” activity
for the 15 s time duration. All the fingers on the subject’s
hand were fully flexed and were concentrated to keep finger
flexion. In the fourth experiment, the mu and beta rhythms

were abnormally varied on some subjects due to the in-
stability of concentration when performing the task.

Test 5. In the “extension” state, the subject carried out an
extension movement for 7 s of time duration. Figure 14
illustrates the waveform generated during the “extension”
activity, and Figure 15 demonstrates the ERD/ERS topo-
graphical view of the mu and beta frequencies while per-
forming the activity. When the subject performed in
“extension” activity, high power concentration was reflected.
As shown in the figure, all electrodes were detected with high
power in the central lobe region. *is change was detected
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Figure 6: Architecture of the finger model of the robot hand: (a) index and middle finger; (b) thumb finger.

Figure 7: Physical view of the robot fingers and hand prototype.

Table 4: Specifications of the robot hand model.

Finger L1 (mm) L2 (mm) L3 (mm) θ1 (°) θ2 (°) *read length (mm)
Index 60 35 30 0–105 0–75 135
Middle 60 40 30 0–105 0–75 150
*umb 50 — 40 0–85 — 98
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Decision controller

Robot hand
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Figure 8: Architecture of the signal analyzer and decision
controller.

Table 5: Mapping intent to robot control.

Enable IN1 IN2 Motor function
False N/A N/A Motor is off
True False False Motor is stopped
True False True Turning clockwise
True True False Turning anticlockwise
True True True Motor is stopped
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due to the high concentration after performing the hold
flexion.

Table 7 depicts the observation of the controller output
signals which were attached to the robot hand model. In the
first, second, and fourth experiments, the motors were acting
as the “Low”mode, in whichmotors were not performed in a
rotated either clockwise or anticlockwise direction. In the
third experiment, fingers of the robot hand model were
flexed due to the motors rotating in a clockwise direction. In
the fifth experiment, motors were rotated in an anticlockwise
direction; therefore, robot hand fingers were performed on
extension motion.

*e output signal of the motor control is shown in
Figure 16. As shown in the image, a positive high

represents the clockwise direction of the hand model. *e
negative high demonstrates the anticlockwise direction of
the motors.

Table 8 depicts the experiment results for 27 test subjects
(male: 52%, female: 48%) on five experiments. We used four
age groups (15–30, 31–40, 41–55, and >55) for the experi-
ment. Figure 17 depicts the average accuracy for both male
and female test subjects based on the age categories in
Table 8. According to the results, higher accuracy shows for
both male and female test subjects in the 15–30 age group.
*e age group above 55 showed lower accuracy due to the
weak mu and beta rhythm power during the EEG acqui-
sitions. As the test subjects grew older, we observed that the
system’s accuracy dropped.
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Figure 9: *e hardware schematic diagram of the proposed system.

Table 6: Activity descriptions of the experiment.

Time (s) Activity Actions of the test subject
00–06 Resting Relaxing, does not perform any activity or thoughts
06–13 Idle Focused to do not perform any activity
13–20 Flexion Focused to perform flexion movement of the fingers
20–35 Hold flexion Focused to keep fingers at flexion state
35–42 Extension Focused to perform extension movement of the fingers
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Figure 18 illustrates the confusion matrix of the ex-
periment results [54]. Equations (4) and (5) [55] describe the
accuracy and precision of test results that derived from the
confusion matrix: where TN is the number of correct

predictions of a negative case, TP is the number of correct
predictions of a positive case, FP is the number of incorrect
predictions of a positive case, and FN is the number of
incorrect predictions of a negative case.

Resting

(a)

Resting

(b)

Figure 10: *e behavior of the mu and beta rhythms at resting state.

(a)

(b)

Figure 11: *e behavior of the mu and beta rhythms at idle state.
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(a)

(b)

Figure 12: *e behavior of the mu and beta rhythm at the flexion state.

(a) (b)

Figure 13: *e ERD/ERS topographical view of the mu and beta frequencies during flexion activity.

(a)

(b)

Figure 14: *e behavior of the mu and beta rhythms at the extension state.
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*e overall accuracy of the experiment was found
89.34% and the precision at 0.894. We have observed that
test 4 was at the lowest mean value (m� 20.8) due to a lack of
mental focus during the experiment.

Accuracy �
􏽐
​
(TP + TN)

􏽐
​
(TP + FP + FN + TN)

, (4)

Precision �
􏽐
​
TP

􏽐
​
(TP + FP)

, (5)

6. Discussion

Due to the civil war of the country and injuries, there has
been a lack of innovations in Sri Lanka, making it difficult to
find a solution for handicapped people. In this research
paper, we designed and developed a possible solution of an
anatomical robot hand model that is functioning by eight
EEG channels. We found that the majority of studies were

focused on at least 13 EEG channels after conducting a
comprehensive review of recent studies led by other re-
searchers. We used eight EEG electrodes in this research
(FC3, FC4, C1, C2, C3, C4, Cz, and CPz), which cover the
most effective region of the primary motor cortex of the
human brain. Experiment results suggested that the pro-
posed design worked at 89.34% accuracy. *erefore, con-
trolling an anatomical structured robot hand model is
possible with eight EEG channels. We also observed that it is
advantageous since the use of fewer EEG channels means
less expense.

A three-finger (thumb, index, and middle) robot hand
model was developed in this research. However, a five-finger
model was needed to act like a real human hand. It was also
essential to use EEG signals to control each finger based on
the user’s desires. According to the observations, eight EEG
channels were adequate to control the flexion and extension
of robot fingers. Eight EEG signals, on the other hand, do not
have enough spatial resolution to be used to control indi-
vidual finger movements. *erefore, complex movements
like a real human hand will have to be modified with this

(a) (b)

Figure 15: *e ERD/ERS topographical view of the mu and beta frequencies during extension activity.

Table 7: Finger movement vs. motor control behavior.

Time (s) Test no. Activity Motor controller Accuracy (%)
00–06 1 Resting Low 84.44
06–13 2 Idle Low 82.96
13–20 3 Flexion High, clockwise 81.48
20–35 4 Hold flexion Low 77.03
35–42 5 Extension High, anticlockwise 87.40
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Figure 16: *e behaviors of the motor control signal for a single-trial at 42 s of timespan.
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practice. Eight EEG electrodes are insufficient to cover the
entire primary motor cortex and sensorimotor region of the
brain when designing complex BCI systems. In real life, the
hold flexion motion is essential for holding objects. In this
research, we discovered that when performing test 4, the
mean value is lower (m� 20.8) than in other experiments,
which is a disadvantage.

*e authors’ next step is to design a robot hand model to
control each finger joint (DIP, PIP, and MCP) according to
the motor imagery. *e next proposed design model is to
develop a five-finger robot hand that has the same ana-
tomical structure and behavior as a human hand. We also
expected to put the results to the test with real-world objects.

7. Conclusions

In this research, we proposed a possible BCI solution for
controlling a robot hand. *e proposed hand model was
developed using the anatomical behavior of the human
hand. *e physical design of the robot hand model was
developed using 3D printing technology. *e mechanism of
the finger flexion and extension was achieved with the aid of
the working principle of the extensor tendons.*erefore, the
fingers were driven using a thread mechanism to perform
the flexion and extension movements. EEG acquisition was
performed and controlled the speed-reduction motors
according to the motor imagery.

*e experiment was carried out for 42 s of the time
period. *e proposed system was observed to be working at
89.34% accuracy (precision� 0.894). According to the test

Table 8: Experimental results of the test subjects.

Test subject Age (years) Gender Test 1 Test 2 Test 3 Test 4 Test 5 Accuracy (%)
Subject 1 15 Male 1.0 1.0 0.8 1.0 1.0 96
Subject 2 18 Female 1.0 1.0 0.8 0.8 0.8 88
Subject 3 19 Male 1.0 1.0 1.0 1.0 0.8 96
Subject 4 21 Female 1.0 0.8 0.8 0.8 1.0 88
Subject 5 22 Female 1.0 1.0 0.8 0.8 1.0 92
Subject 6 22 Male 1.0 1.0 1.0 0.8 1.0 96
Subject 7 23 Female 1.0 0.8 1.0 0.8 1.0 92
Subject 8 24 Male 1.0 1.0 1.0 0.8 0.8 92
Subject 9 25 Male 1.0 0.8 0.8 1.0 1.0 92
Subject 10 27 Female 1.0 0.8 0.6 1.0 1.0 88
Subject 11 31 Male 0.8 0.8 0.8 0.8 1.0 84
Subject 12 32 Female 0.8 1.0 0.6 0.6 0.8 76
Subject 13 33 Female 1.0 0.8 0.8 0.8 0.8 84
Subject 14 36 Male 0.8 0.8 1.0 1.0 0.8 88
Subject 15 36 Female 0.8 1.0 1.0 0.8 0.8 88
Subject 16 38 Female 0.8 1.0 1.0 0.6 1.0 88
Subject 17 39 Male 0.6 0.8 0.8 0.6 0.8 72
Subject 18 40 Female 1.0 0.8 0.8 0.8 0.6 80
Subject 19 40 Male 0.8 0.6 0.6 0.8 1.0 76
Subject 20 42 Male 0.6 0.6 0.8 0.8 0.8 72
Subject 21 42 Female 0.8 0.6 0.8 0.8 1.0 80
Subject 22 45 Male 0.8 1.0 1.0 0.6 0.8 84
Subject 23 49 Female 0.6 0.6 0.6 0.6 1.0 68
Subject 24 54 Male 0.6 0.8 0.6 0.8 0.8 72
Subject 25 56 Female 0.6 0.6 0.6 0.8 0.6 64
Subject 26 57 Male 0.6 0.6 0.8 0.4 0.8 64
Subject 27 59 Male 0.8 0.8 0.8 0.4 0.8 72

0.94
0.80 0.76

0.68

0.90 0.83
0.74

0.64

15–30 31–40 41–55 >55

Male

Female

Figure 17: Accuracy of experiments by age groups.
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Figure 18: Confusion matrix of the test results.
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results, eight EEG channels were sufficient to acquire the
motor imagery for flexion and extension movements of
human fingers. *is proposed design provided promising
results for the performance of the task (grab, hold, and
release activities) of hand-disabled persons.

Data Availability

*e data used to support the findings of this study are
available from the corresponding author upon request. *e
data are not publicly available because the research is part of
an ongoing project.
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