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Abstract
Optical multi-layer thin films are widely used in optical and energy applications requiring
photonic designs. Engineers often design such structures based on their physical intuition.
However, solely relying on human experts can be time-consuming and may lead to sub-optimal
designs, especially when the design space is large. In this work, we frame the multi-layer optical
design task as a sequence generation problem. A deep sequence generation network is proposed for
efficiently generating optical layer sequences. We train the deep sequence generation network with
proximal policy optimization to generate multi-layer structures with desired properties. The
proposed method is applied to two energy applications. Our algorithm successfully discovered
high-performance designs, outperforming structures designed by human experts in task 1, and a
state-of-the-art memetic algorithm in task 2.

1. Introduction

Optical multi-layer films have been widely used in many applications, such as broadband filtering [1],
photovoltaics [2], radiative cooling [3], and structural colors [4]. The design of optical multi-layer films is a
combinatorial optimization problem that requires one to choose the best combination of materials and layer
thicknesses to form a multi-layer structure. Researchers and engineers often make such designs based on
their physical intuition. However, a completely human-based design process is slow and often leads to
sub-optimal designs, especially when the design space is enormous. Thus, computational methods for
designing optical multi-layer structures, including evolutionary algorithms [5–7], needle optimization [8],
and particle swarm optimization [9], have been proposed to tackle this problem. All of these previous
methods frame the optical design task as an optimization problem and aim to synthesize a structure that
meets user-specified design criteria. However, these methods for optical design are based entirely on heuristic
search, i.e. they do not learn a model to solve the design problems. When the heuristic approach is
sub-optimal for a task, the search process may fail to identify a high-performance design.

In contrast, deep reinforcement learning (DRL) is a learning framework that learns to solve complex tasks
through an trial-and-error process. It is proven to be highly scalable for solving large-scale and complicated
tasks [10, 11]. Researchers have successfully applied DRL to various combinatorial optimization problems
[12–15]. Unlike heuristic-based search, reinforcement learning methods learn a model using the reward
signal [16] and do not depend on hand-crafted heuristics. On some combinatorial optimization tasks, DRL
has been shown to outperform classic heuristic search methods [17]. Recently, researchers applied DRL on
designing optical devices with a structure template [18, 19], where the number of layers is fixed. However,
when designing the optical multi-layer films, we often do not know the optimal structure template. Thus, the
previous DRL approaches are not suitable for multi-layer designs. In addition to DRL, deep learning-enabled
inverse design methods have seen great development in recent years [20–22]. These inverse design models
learn a mapping between design targets and design parameters using a static training set, which allows users
to efficiently retrieve designs that match design targets. However, if a design target does not lie within the
training datasets used for training the inverse design model, we will not be able to obtain the corresponding
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Figure 1. Two energy applications of optical multi-layer films. For solar thermal panels, we can use multi-layer films as
ultra-wideband absorbers to enhance light absorption efficiency. For incandescent light bulbs, we can coat multi-layer films on
them to improve luminous efficiency by reflecting infrared light while transmitting visible light.

design using the inverse design model. For our performance optimization task, the optimal design is often
not covered by a static training dataset. Otherwise, it would mean that the optimization task has already been
solved through the training dataset collection process. Thus, reinforcement learning is more suitable than
deep-learning-based inverse design methods when users want to optimize the design performance.

Because the multi-layer optical design task is equivalent to a sequence generation problem, we propose a
DRL method called optical multi-layer proximal policy optimization (OML-PPO) that can generate
near-optimal multi-layer structures. The proposed method uses a state-of-the-art DRL algorithm PPO to
train a deep recurrent neural network that outputs near-optimal optical designs. We introduce two novel
designs for the deep recurrent neural network to allow it to efficiently explore the design space. With an
ablation study, we show that the proposed neural network architecture enables the RL agent to explore the
design space efficiently.

We applied the proposed method to two optical design tasks that are relevant to energy applications
(figure 1): (1) ultra-wideband absorbers that can enhance light-harvesting efficiency, e.g. for thermal
photovoltaics and photothermal energy conversion; and (2) incandescent light bulb filters that can improve
light bulb efficiency in emitting visible light. On the task of designing ultra-wideband absorbers, we show
that OML-PPO can reliably discover high-performance designs. A 5-layer structure with 97.64% average
absorption over the wavelength range (400, 2000) nm is discovered by OML-PPO, outperforming a
previously reported structure using the same number of layers with 95.37% average absorption. When
applied to generate absorbers with more layers, OML-PPO discovers a 14-layer structure that achieves
near-perfect 99.24% average absorption. We also applied our method to design a 42-layer incandescent light
bulb filter and achieved an enhancement factor of 16.60, which is 8.5% higher than a 41-layer structure
designed by a state-of-the-art memetic algorithm. Our results demonstrate that the proposed algorithm is
efficient at discovering near-optimal designs and is scalable to complicated design problems. We summarize
our contributions:

(a) We frame the multi-layer optical design task as a sequence generation problem and develop a DRL
method (OML-PPO) for solving this task.

(b) We propose a novel deep sequence generation network that allows efficient exploration of the optical
design space.

(c) On two optical design tasks, we demonstrate that our method is effective in discovering near-optimal
solutions for complicated design tasks.

2. Related work

Researchers have developed reinforcement learning methods for solving various combinatorial optimization
problems. In [12], the authors trained a pointer network [23] to solve the traveling salesman problem (TSP).
Khalil et al [13] combined graph embedding and RL for solving a diverse set of combinatorial optimization
problems including the minimum vertex cover, maximum cut, and TSP. Chen and Tian [24] proposed a
method to learn policies that can rewrite the heuristics in existing solvers for combinatorial optimization
problems. Lu et al [17] showed that RL-based method could outperform a classic operation research
algorithm in terms of both average cost and time efficiency.

Many real-life applications can be formalized as sequence generation problems [15, 25–27]. In [25], the
authors integrated RL and seq2seq to automatically generate a response by simulating the dialogue between
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two agents. In [27], the authors proposed a model-based variant of PPO to deal with the large-batch, low
round setting for biological sequence design [27]. Mirhoseini et al [15] combined graph neural networks
with RL for sequentially placing devices on a chip. These previous works all trained sequence generation
models using policy gradient algorithms. In this work, we introduced a sequence generation network
architecture tailored to the optical design task. Additionally, we combined local search with DRL for
finetuning the thicknesses of the generated layers.

Deep-learning-based inverse design [20–22] has been gaining popularity in recent years. In [20], the
authors trained convolutional neural networks to directly predict design parameters using the design target
as the input to the network. Liu et al [22] trained a generative adversarial network (GAN) to inversely design
optical devices by generating 2D shapes of the optical structure. However, these approaches all rely on a
curated training set that contains diverse examples. When our goal is to push the performance limit of certain
devices, the near-optimal structures is unlikely to be within the training data distribution. Thus, these static
methods are not appropriate for optimizing design performances. Our proposed method tackles this problem
by actively searching the design space to generate high-performance designs via reinforcement learning. In
[28], the authors also developed an active search process by adding additional high-quality data to augment
the initial training set. However, their approach requires the users to retrain the neural network with the
augmented dataset while our RL-based method accomplishes the design task within one training process.

3. Methods

Multi-layer films can be treated as sequences. Each layer is represented as sl = (ml,dl). We can represent such
a structure with N layers as S = {(m0,d0),(m1,d1),(m2,d2), . . . ,(mN−1,dN−1)}, whereml and dl denote the
material and the thickness of the lth layer (counting from the top), respectively. When designing optical
multi-layer films, we hope to synthesize a sequence that has the desired target spectral response T̃ . Thus, the
design task is equivalent to a sequence generation problem, where we generatem and d in each step.
Generation tasks such as dialogue generation [25], molecule generation [26], and biological sequence
generation [27] have been widely studied by machine learning researchers. In these works, researchers train a
neural network as a generator for synthesizing sequences. Because we do not have ground-truth data for
optimal design tasks, we apply reinforcement learning [16] to train the sequence generator.

3.1. Sequence generation network
To generate the optical layer sequences, we use a recurrent neural network (RNN) [29]. Unlike simple
feed-forward neural networks, RNNs maintain a hidden state h that contains useful information from the
history of the sequence. Thus, RNNs are suitable for tasks that require memorizing history and have been
widely used in sequence generation tasks [30]. Gated recurrent units (GRUs) [31] and long short-term
memory networks (LSTMs) [29] are two popular variants of RNNs. Researchers have previously found that
the empirical performance of GRUs and LSTMs is similar. Because GRUs have a simpler structure than
LSTMs and require fewer parameters to train, we choose to use a GRU for generating the optical multi-layer
structures. Similar to sampling words from a dictionary when generating a sentence, we sample the material
ml from a fixed set of materialsM for each layer. Though the thickness dl is intrinsically a continuous
variable, we choose to sample the thickness from a set of discrete valuesD to reduce the size of the
exploration space. Later, we apply quasi-Newton methods [32] to finetune the layer thicknesses of the
generated structure for further performance improvement.

Our optical multi-layer sequence generation network consists of a GRU and two multi-layer perceptrons
(MLPs) [33]. At generation step l, the GRU takes its own output from the previous step sl−1 = (ml−1,dl−1)
and the previous hidden state hl as the inputs to compute the hidden state hl. This auto-regressive generation
process allows the GRU to remember what has been generated so far. To generate the material and thickness
for layer l, the hidden state hl of the GRU is inputted to two MLPs. One of the MLPs outputs logits vector
σml ∈ R|M|+1 corresponding to all possible materials and an end-of-sequence token (EOS). The other MLP
outputs a thickness logits vector σdl ∈ R|D| corresponding to all allowable thicknesses in the setD. Then, we
transform these logits vectors with the softmax function to obtain proper probability distributions. Finally,
the material and thickness are sampled from their corresponding distributions. The generation process will
stop either when the length reaches the maximum length L set by the user or when the EOS token is sampled.
Thus, the number of layers N of a generated structure is always lower than or equal to the maximum
sequence length L. The process for generating a sequence is illustrated in figure 2.

3.1.1. Non-repetitive gating
The aforementioned material sampling procedure does not prevent the situation where the same material is
sampled for adjacent layers. However, such consecutive layers of the same material are equivalent to a single
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Figure 2. Optical multi-layer design as sequence generation. The generation process will stop when either the EOS token is
sampled, or the length of the sequence reaches the maximum allowed length L.

thicker layer. Thus, allowing the sequence generator to generate the same material for adjacent layers leads to
redundant computation. Moreover, doing so increases the exploration space size and makes the search
problem harder. Thus, we introduce a non-repetitive gating function that removes the logit element
corresponding to the most recently sampled material to prevent the sequence generator from generating the
same materials in a row. This gating function is a matrix INR ∈ R|M|×(|M|+1) formed by removing the row
corresponding to the most recently sampled material from an identity matrix. When multiplied with the
logits vector σml , the element corresponding to that material will be removed, i.e. σ ′

ml
= INR ·σml ∈ R|M|.

Then, we pass the transformed logit vector σ ′
ml
to the softmax layer to obtain the sampling probability. By

doing so, we set the sampling probability for the recurring material to 0. With the non-repetitive gating, the
generated material sequence is guaranteed to have different materials for adjacent layers. Note that, we do not
apply the gating function for the first generation step because there is no previously sampled material.

3.1.2. Auto-regressive generation of material and thickness
Because the proper thickness of a layer should depend on the material, we input the sampled materialml to
the thickness MLP in addition to the hidden state hl. A similar approach has been applied in RL problems
where the actions are dependent on each other [11]. Instead of using a one-hot vector to represent the
material, we train a material embedding matrix emb ∈ R|M|×d together with the sequence generator
network. Each row embm ∈ Rd of the embedding matrix is a continuous representation of one material,
where d is the embedding size. Using an embedding allows us to use a large number of materials without
significantly increasing the dimensionality of the material representation. The material embedding vector for
the sampled material embml is concatenated with the hidden state hl to form the input [embml ,hl] to the
material MLP.

The full sequence generator architecture is plotted in figure 3(a). To understand the effect of
non-repetitive gating and modeling the dependency between the material and the thickness, we compare the
proposed OML-PPO architecture against a baseline architecture Experiment section.

3.2. Reinforcement learning training
We train the sequence generation network with reinforcement learning. The goal of reinforcement learning is
to maximize expected cumulative rewards G= E[

∑∞
t=0 γ

trt] by learning a policy πθ(a|s) that can map a state
s to an action a. Here, γ is the discount factor that penalizes future rewards and rt is the reward at step t. The
sequence generation network described above serves as the policy.

We represent the state at the lth generation step as the concatenation of the last layer information and the
GRU hidden state, i.e. sl = [(ml−1,dl−1),hl]. The actions al correspond to the material and thickness (ml,dl)
of the current layer. We set the reward to be 0 for all generation steps except the final step. At the final step
(i.e. the structure S has been completely generated), we compute the spectrum of the generated structure
with an optical spectrum calculation package TMM [34] and assign the final reward based on how well the
structure spectrum matches with the target spectrum. We also tried to calculate the spectrum following every
generation step and assign intermediate rewards. However, this dense-reward approach is slow and does not
lead to improved performance. Thus, we only report the final-only approach here. We set the discount factor
γ= 1. Thus, the cumulative reward G for the generated sequence S is simply the reward at the final step,
which is defined as one minus the mean absolute error between the spectrum of the generated structure and
the target spectrum:

G(S) = 1− 1

K

∑
k=0

1

J

J−1∑
j=0

|TS(λj, δk)− T̃(λj, δk)|, (1)
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GRU
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GRU

MLP MLP

vector transfer

concatenation non-repetitive gating

sampling categorical distribution

embedding
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Figure 3. Neural network architectures for generating optical multi-layer films. (a) We show one generation step in the plot. The
hidden state hl of the GRU is passed to two MLPs to output material and thickness probabilities, respectively. The actual material
and thickness for layer l are sampled from categorical distributions parametrized by pml and pdl . Built-upon the baseline
architecture, our proposed model adds a non-repetitive gating function and auto-regressive connection between the sampled
material and the thickness MLP. (b) Illustration of how the non-repetitive gating works. Here we suppose there are a total of five
materials. Thus, the gating matrix is of dimension 5× 6.

where TS(λj, δk) is the spectrum of the generated structure S at wavelength λj under incidence angle δk.
Because T ∈ [0, 1], the cumulative reward is always non-negative. The reward value will become higher as the
spectrum TS gets closer to the target spectrum T̃ until it reaches 1 when the structure spectrum perfectly
matches with the target spectrum.

During training, the sequence generator πθ actively generates new structures and receive rewards. Our
goal is to maximize the expected rewards for structures sampled from the sequence generation network:

J(θ) = ES∼πθ
[G(S)]. (2)

Based on the calculated rewards for generated sequences, the agent adjusts its parameters θ with gradient
ascent so that future rewards can be improved. Here, we use a policy gradient algorithm to compute the
gradient∇θJ(θ) for updating the sequence generator πθ. From the policy gradient theorem [16, 35], we have

g=∇θJ(θ) = ES∼πθ
[A(S)∇θ logPθ(S)] , (3)

where Pθ(S) =
∏N−1

l=0 pθ(ml|sl−1,hl−1) · pθ(dl|ml, sl−1,hl−1) is the probability of sampling a structure S from
the generator network πθ and A(S) is the estimated advantage function [36], which measures the
performance of the generated sequence S compared against the average performance of structures sampled
from πθ.

Instead of directly updating the sequence generator using equation 3, we use a state-of-the-art policy
gradient algorithm proximal policy optimization (PPO) [35] to compute the policy gradient from a surrogate
objective function:

g=∇θES∼πθ
[min(r(θ)Aθv(S), clip(r(θ),1− ϵ,1+ ϵ)Aθv(S))] , (4)

where r(θ) = Pθ(S)
Pθold (S) is the importance weight that measures the distance between the policies before and

after the gradient update. The clip function disincentivizes large update steps to the policy, where ε is a
hyperparameter that affects the actual update size. Here, the advantage Aθv is estimated by generalized
advantage estimation (GAE) [36], which achieves a good balance between bias and variance of the estimated
gradients. θv is the model parameters for a critic network that is trained together with the sequence
generator. Compared to the vanilla policy gradient and actor-critic algorithms, PPO is more sample-efficient
because it allows multi-step updates using the same batch of trajectories. Previous results show that PPO can
achieve state-of-the-art performance on many tasks [35]. With the computed policy gradient, the sequence
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Sequence 
Generator PPOTMM

repeat until convergence

Finetune

Figure 4. Pipeline of the sequence generator training process. We first generate multi-layer structures using the sequence
generator πθ . The spectrum of the generated structures are simulated by the TMMmodule. Next, PPO algorithm is applied to
compute the policy gradient g for updating the sequence generator model. We keep pushing the best discovered structure into a
buffer with size 1. This process is repeated until convergence. Finally, we finetune the layer thicknesses to obtain the design.

generator model parameters are updated using the Adam optimizer [37]. The model training process is
summarized in figure 4. Similar to the active search approach in Bello et al [12], we output the best structure
discovered throughout the entire training process as the final design. The pseudocode that summarizes our
design generation process is given in algorithm 1.

Our model is implemented using PyTorch [38] and Spinning Up [39]. The data used in this study and
our code are publicly available3.

Algorithm 1: OML-PPO.

Input: target T̃, number of epochs K, batch size B, maximum length L
Output: Optical multi-layer sequence S∗

1 Initialize sequence generator parameters θ
2 Initialize critic network parameters θv
3 Initialize best design S∗

4 for k= 1, …, K do
5 Si ∼ SampleDesign(L,B,θ)
6 S∗← SelectBest({Si},S∗, T̃)
7 θ,θv← PPOUpdate({Si},θ,θv)
8 end
9 S∗← QuasiNewton(S∗, T̃)

4. Experiment

We applied the proposed method to two optical design tasks that are relevant to energy applications, i.e. (1)
designing ultra-wideband absorbers and (2) designing incandescent light bulb filters. The designed
ultra-wideband absorbers can help solar thermal panels to absorb the sunlight more efficiently and the light
bulb filter can enhance incandescent light bulb efficiency in emitting visible light while suppressing the
radiation in the infrared range that represents energy loss. We also did an ablation study to understand the
effect of non-repetitive gating and auto-regressive materials/thickness sampling.
Performance evaluation: In task 1 ultra-wideband absorber design, we measure the quality of the

designed structure by average absorption. In task 2 incandescent light bulb filter, we calculate the visible light
enhancement factor to measure the performance of designed structures.

4.1. Task 1: ultra-wideband absorber
Firstly, we apply our algorithm to the task of designing an ultra-wideband absorber for the wavelength range
(400, 2000) nm. We choose the target spectrum as a constant 100% absorption under normal light incidence
angle (i.e. the light is shining at the absorber at a right angle) to represent an ideal broadband absorber. This
task has been previously studied by Yang et al [1] based on physical models, where the broadband absorption

3 https://github.com/hammer-wang/oml-ppo.
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Table 1. Available materials for constructing the ultra-wideband absorber.

Ag Al Al2O3 Cr Fe2O3 Ge HfO2 MgF2

Ni Si SiO2 Ti TiO2 ZnO ZnS ZnSe

(a) (b)
Figure 5. Normal incidence spectrum for the best discovered absorber structures with 5 and 14 layers. R: reflection, T:
transmission, A: absorption. We design the multi-layer thin film to have high absorption over the entire wavelength range. (a)
Normal incidence spectrum for the 5-layer structure. (b) Normal incidence spectrum for the 14-layer structure.

is achieved by overlapping multiple absorption resonances and with an overall graded-index structure to
minimize reflection. The authors designed a 5-layer structure using MgF2, TiO2, Si, Ge, and Cr. The
simulated average absorption of their structure over the wavelength range is 95.37% under normal incidence.
If not specified otherwise, we assume normal incidence when reporting average absorption.

We hypothesize that, when choosing from a larger set of materials than used in the previous work [1], it
is possible to design a structure with higher average absorption than the human-designed structure. Thus, we
expanded the original material set [1] to include 11 more materials (16 total). The set of materials is listed in
table 1. We set the available discrete thicknessesD to be {15, 20, 25,…, 200} nm with a total of 38 different
values. When training the sequence generator, we set the learning rate to 5× 10−5 and the maximum length
to L= 6. The material embedding size d is set to 5, i.e. embm ∈ R5. The generator is trained for a total of 3000
epochs with the batch size set to be 1000 generation steps. We repeat the training for 10 runs with different
random seeds. The best structure discovered in each run was recorded and finetuned using the quasi-Newton
method.

It is worth noting that our algorithm can yield very similar structures as that reported in [1], i.e. it can
search for and find the structure designed based by human experts. One of such structures is {(MgF2,
112 nm), (TiO2, 55 nm), (Ti, 30 nm), (Ge, 30 nm), (Cr, 200 nm)} with an average absorption of 96.12%,
which has exactly the same material composition as the one reported previously [1]. However, the best
structure discovered by the algorithm, exhibiting a higher average absorption of 97.64%, is {(SiO2, 115 nm),
(Fe2O3, 70 nm), (Ti, 15 nm), (MgF2, 124 nm), (Ti, 148 nm)}. The spectrum under normal incidence are
plotted in figure 5(a).

We plot the best absorption values before and after finetuning of all ten runs in figure 6. After finetuning,
the average absorptions for the discovered structures across all runs were improved. We found that the
algorithm is robust to the randomness during training as 8 out of the 10 runs achieved an absorption that is
higher than 95% after finetuning.

In an additional experiment, we explore whether the algorithm can design a structure with more layers to
achieve even higher absorptions. We set the maximum length L= 15 and sample layer materials from MgF2,
TiO2, Si, Ge, and Cr. The best discovered structure has 14 layers with an average absorption of 99.24%. The
structure configuration is summarized in table 2. We plot the normal incidence spectrum structure in
figure 5(b). The structure discovered by OML-PPO reaches close-to-perfect performance under normal
incidence and has high absorption over a wide range of angles.

4.2. Task 2: incandescent light bulb filter
To further test whether our method is scalable to more complicated tasks, we apply the proposed method for
designing a filter that can enhance the luminous efficiency of incandescent light bulbs [40, 41]. The idea is to
reflect the infrared light emitted by the light bulb filament so that its energy can be recycled. To this end, we

7



Mach. Learn.: Sci. Technol. 2 (2021) 025013 HWang et al

Table 2. RL designed 14-layer structure with 99.24% average absorption.

ID Material Thickness ID Material Thickness

1 MgF2 123 nm 8 Si 15 nm
2 TiO2 32 nm 9 Cr 17 nm
3 MgF2 21 nm 10 Ge 15 nm
4 Si 15 nm 11 TiO2 33 nm
5 TiO2 15 nm 12 Cr 29 nm
6 Si 15 nm 13 TiO2 81 nm
7 Ge 15 nm 14 Cr 116 nm

(a) (b)
Figure 6. Absorption values before and after finetuning. finetuning improves the average absorption of every structure discovered
in each run. (a) Average absorption values before and after finetuning for each individual run. (b) Box-plot for ten average
absorptions values.

(a) (b)
Figure 7. Results on the incandescent light bulb design. (a) Target spectrum and the average reflectivity of structures designed by
OML-PPO and the memetic algorithm. (b) Emissive power spectrum. A good design will have high emissive power in the visible
range (380, 780) nm. f is the view factor that equals the proportion of emitted light from the light bulb filament that can reach the
light bulb filter. We report results under view factors 0.95 and 1.

set the target reflectivity to be 0% in the range (480, 700) nm, and 100% outside this range (figure 7(a)). In
this way, the infrared light, which cannot contribute to lighting, will be reflected back to heat up the emitter.

A similar design has been previously studied [6, 41]. We choose the same seven dielectric materials as the
available materials: Al2O3, HfO2, MgF2, SiC, SiO2, and TiO2 [6]. Similar to our previous experiment, we
train our policy for 10 runs with different random seeds. Here, we set the maximum allowed length L= 45
and the learning rate to be 5× 10−5. The number of epochs and batch size are 10,000 and 3000, respectively.
The best discovered structure is reported in table 3.

In figure 7, we compare the average reflectivity normalized over all incidence angles (0
◦
–90

◦
) of the

42-layer structure designed with our algorithm and the 41-layer structure designed by a memetic
algorithm [6]. Our structure has a higher average reflectivity in the infrared range (>780 nm) than the
41-layer structure.

8
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Table 3. RL designed incandescent light bulb filter with 42 layers. The total thickness is 8.54 µm.

ID Material Thickness ID Material Thickness ID Material Thickness

1 SiO2 289 nm 15 SiC 210 nm 29 SiC 117 nm
2 SiN 268 nm 16 SiN 168 nm 30 MgF2 224 nm
3 MgF2 185 nm 17 MgF2 200 nm 31 SiC 122 nm
4 SiN 189 nm 18 SiC 227 nm 32 MgF2 235 nm
5 SiC 214 nm 19 SiN 242 nm 33 SiC 127 nm
6 SiN 214 nm 20 MgF2 222 nm 34 MgF2 230 nm
7 MgF2 210 nm 21 SiC 228 nm 35 SiC 234 nm
8 SiN 206 nm 22 MgF2 216 nm 36 MgF2 218 nm
9 SiC 205 nm 23 SiC 229 nm 37 SiC 235 nm
10 SiN 183 nm 24 MgF2 203 nm 38 MgF2 220 nm
11 MgF2 184 nm 25 SiC 101 nm 39 SiC 231 nm
12 SiN 179 nm 26 MgF2 209 nm 40 MgF2 216 nm
13 SiC 203 nm 27 SiC 121 nm 41 SiC 233 nm
14 SiN 273 nm 28 MgF2 225 nm 42 Al2O3 95 nm

Table 4. Visible light enhancement. Our RL-designed structure achieved 8.5% higher visible light enhancement than the structure
designed by a memetic algorithm.

Model Enhancement factor

OML-PPO 16.60
Memetic [6] 15.30

Table 5.Highest absorption values discovered by each algorithm across 10 runs. The mean average absorption values and standard
deviations of the 10 runs are reported.

Model Average absorption

OML-PPO 94.98%± 0.99%
Only gating 94.05%±1.39%
Only auto-regressive 91.55%±1.14%
None (baseline) 91.03%±0.87%

(a) (b)
Figure 8. Training trajectory of OML-PPO and other baseline algorithms. (a) Average absorption trajectory. (b) Maximum
absorption trajectory. The non-repetitive gating enables the model to converge to better solutions than models without the gating.
The shaded area corresponds to one standard deviation.

We quantitatively evaluated the performance of the designed filter by calculating the enhancement factor
for visible light (400–780 nm) under a fixed operating power. The results are reported in table 4. Details
about the calculation of enhanced factor is included in supplementary materials.

4.3. Ablation study
On the ultra-wideband absorber design task, we conducted an ablation study to understand the effect of
non-repetitive gating and auto-regressive generation of materials and thicknesses. We trained four different
models: (1) OML-PPO with both non-repetitive gating and auto-regressive generation, (2) non-repetitive
gating only, (3) auto-regressive generation only, and (4) neither non-repetitive gating nor the auto-regressive
generation. For each model, we repeated the training for ten times. The maximum absorption values
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discovered by each model before finetuning are reported in table 5. Both non-repetitive gating and the
auto-regressive material/thickness generation improve the performance of the baseline model.

In figure 8, we plot the average absorption and maximum absorption of the structures generated in each
epoch over the entire training trajectory. The effect of non-repetitive gating is more significant than
auto-regressive material/thickness generation as the OML-PPO and the only-gating variants both
significantly outperform the other two variants. The non-repetitive gating significantly improves the model
convergence during training. When non-repetitive gating and the auto-regressive sampling are combined
together, the model achieves the best performance.

5. Conclusion

We introduced a novel sequence generation architecture and a deep reinforcement learning pipeline to
automatically design optical multi-layer films. To the best of our knowledge, our work is the first to apply
deep reinforcement learning to design multi-layer optical structures with the optimal number of layers not
known beforehand. Using a sequence generation network, the proposed method can select material and
thickness for each layer of a multi-layer structure sequentially. On the task of designing an ultra-wideband
absorber, we demonstrate that our method can achieve high performance robustly. The algorithm
automatically discovered a 5-layer structure with 97.64% average absorption over the (400, 2000) nm range,
which is 2% higher than a structure previously designed by human experts. When applied to generate a
structure with more layers, the algorithm discovered a 14-layer structure with 99.24% average absorption,
approaching perfect performance. On the task of designing incandescent light bulb filters, our method
achieves 8.5% higher visible light enhancement factor than a structure designed by a state-of-art memetic
algorithm. Though the spectral requirements of our two examples are simpler than some other real-life
applications [42], we expect no intrinsic difficulty when applying our algorithm to tasks that require more
complicated spectra. Because the reward function used in our method can be easily calculated for any
arbitrarily complicated spectrum, we believe that our algorithm can be directly applied to many other
multi-layer thin film design tasks with more complex spectral requirements. Moreover, with the recent
development of GPUs and TPUs, reinforcement learning algorithms could become more salable than
evolutionary approaches for solving complicated design tasks.

Through an ablation study, we showed that customizing the sequence generation network based on
optical design domain knowledge can greatly improve the optimization performance. Our results
demonstrated the high performance of the proposed method on complicated optical design tasks. Because
the proposed method does not rely on hand-crafted heuristics, we believe that it can be extended to many
other multi-layer optical design tasks such as lens design and multi-layer metasurface design by modifying
the action space of the sequence generation network. However, for complex designs that require micro-nano
structures [43], simulating the optical response can be computationally expensive. Since most deep
reinforcement learning methods have a high sample complexity, it is important to develop sample-efficient
reinforcement learning algorithms before such methods can be widely adopted for optical design tasks
involving micro-nano structures.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI:
https://github.com/hammer-wang/oml-ppo.
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