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Abstract
We provide a Biot–Savart inversion scheme that, for any two-dimensional, or bulk with planar
crystallization, high-temperature superconducting (HTS) sample, determines current density 
maps with a higher resolution and accuracy than previous procedures and at a fraction of its 
computational cost.

The starting point of our scheme is a Hall scanning microscopy map of the out-of-plane 
component of the magnetic field generated by the current. Such maps are noisy in scans of 
real samples with commercial-grade equipment, and their error is the limiting factor in any 
Biot–Savart inversion scheme. The main innovation of our proposed scheme is a singular
spectrum analysis (SSA) filtering of the Hall probe maps, which cancels measurement errors 
such as noise or drifts without introducing any artifacts in the field map.

The SSA filtering of the Hall probe data is so successful in this task that the resulting 
magnetic field map does not require an overdetermined QR inversion, allowing Fourier 
inversion of the Biot–Savart problem.

Our implementation of SSA filtering of the Hall scan measurements, followed by Biot–
Savart inversion using the fast Fourier transform (FFT), is applied to both simulations and real 
samples of HTS tape stacks. The algorithm works in cases where ill conditioning ruled out 
the application of Fourier inversion, and achieves a finer resolution for a fraction of the cost 
of the QR inversion used to date. The computation passes physical and statistical validity tests 
in all cases, and in three-dimensional samples it is shown to yield the average, with a depth-
dependent weight, of the current density circulating in the different layers of the sample.
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1.  Introduction

The growing success and applications of high-temperature 
superconducting (HTS) bulks and long tapes make ever more 
interesting the resolution of the inverse Biot–Savart problem 
on them, i.e. finding maps of their circulating current from 
measurements of the magnetic induction field around them, as 
a precise, nondestructive quality control procedure.

It is well known that, for currents induced in planarly crys-
tallized HTS blocks, stacks and tapes by both external magn
etic fields and current carrying conditions, Hall scan mapping 
of the out-of-plane component of the trapped magnetic field 
allows the determination of the distribution of the currents if 
one can solve the inverse Biot–Savart problem posed by this 
field. Research in this topic has been conducted for two dec-
ades in order to be operative not only for research but also 
in the standard characterization of HTS supplies manufac-
ture ([1–7]). Researchers have been studying this problem for 
years ([8–14]), and have identified the main limiting factors 
of this approach to be, in order of importance: the propagation 
to the computed map of currents of inaccuracies in the magn
etic field measurements, the computational cost in time of the 
inversion, and the amount of required memory. The cost in 
terms of time and resolution for obtaining a useful map of the 
critical current density distribution, and the mechanical com-
plexity of the data collection and mathematical treatment have 
led our research to develop and incorporate new enhanced 
procedures to obtain high-resolution, reliable and accurate 
current maps in static and dynamic conditions by using low-
cost but very robust hardware components.

The advances we report in this work are mathematical and 
statistical in nature, and they have led to a significant improve-
ment in the use of low-cost, commercial-grade Hall scanning 
systems. We have found that the filtering of the magnetic field 
measurements, on the basis of the novel technique of singular 
spectrum analysis (SSA), produces a greatly improved reduc-
tion of error, without introducing artifacts, in the Hall probe 
measurements when compared to filtration with previous 
techniques. Even when the inversion problem has a high reso-
lution and is not well conditioned, this technique allows Biot–
Savart inversion by means of a fast Fourier transform (FFT) 
procedure with a significantly reduced computational cost, 
yielding maps of electrical currents with finer resolution and 
greater accuracy compared to previous inversion procedures.

The authors have implemented for MATLAB and Octave 
this SSA filtering technique, complete with Fourier inversion 
of the Biot–Savart problem for two-dimensional or planarly 
crystallized HTS materials, further SSA improvement of the 
achieved solution, and a double physical and statistical test of 
the margin of error of this computation.

The purpose of this work is to document and discuss this 
inversion procedure. It is illustrated by applying the algorithm 
on simulated, inhomogeneous along the OZ axis samples, 
where the averaging effect of the algorithm is checked, and 
to real samples where we obtain detailed maps of the planar 
current density, pointing out the location of current inhomoge-
neities caused by defects in the sample.

2. The Biot–Savart inversion

2.1.  Discretization and QR inversion

The critical current density J circulating in an HTS tape or 
bulk sample S  is the rotational of the magnetization M sup-
ported in the sample (see the appendix in [2]). This current 
creates outside the sample a static magnetic induction field B 
through the Biot–Savart law

B =
µ0

4π

∫

S

J × r
r3

=
µ0

4π

∫

S

3M · r
r5 r − M

r3 ,
�

(1)

which can be determined by measurement with a Hall probe. 
The determination of the magnetization M, or equivalently of 
the current density J = ∇× M, constitutes the inverse Biot–
Savart problem.

The inverse Biot–Savart problem can be solved in HTS 
samples that are thin films by the linearization algorithm that 
was originally introduced in [1], and was extended to bulks 
with planar crystallization by the authors in [8–10]: subdi-
vide the sample in a rectangular grid of m × n small elements 
∆ij , assume that the magnetization has a constant value Mij  on 
each element, measure the vertical component of the magn
etic induction field Bz on a second rectangular grid of points 
above the sample, and the Biot–Savart law (1) turns into a 
linear system of equations

Bz(Pkl) =
∑

i,j

GijklMij� (2)

with coefficients that can be computed from the geometry of 
the problem, according to (1)

Gijkl =
µ0

4π

∫

∆ij

3z2 − r2

r5 .� (3)

The authors’ sample discretization and linearization of the 
Biot–Savart inversion is illustrated in figure  1. By reading 
them column-wise, the rectangular tables of values formed by 
the magnetization values Mij , respectively the magnetic field 
measurements Bz(Pkl), may be reshaped into column vectors 
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M, respectively Bz. The set of equations (2) then becomes a 
linear system

GM = Bz ,� (4)

where G  is now a rectangular Toeplitz matrix, i.e. it has coeffi-
cients Grc = Gijkl for any i, j, k, l such that k − i = r, l − j = c, 
and the independent term Bz can be measured, e.g. with a Hall 
probe.

The key to the extension of this linearization to bulk sam-
ples is planar crystallization, which means that the current 
density J in the bulk sample is still planar, i.e. the magnetiza-
tion M only has a vertical component M. One must further 
assume that the magnetization M, or equivalently the current 
density J = (Jx, Jy, 0) are constant along the vertical axis z, 
i.e. they are the same in all planar layers and do not depend 
on z.

The hypothesis of homogeneity along the vertical axis z 
is plausible in the case of thin samples. It does not hold in the 
case of thick bulks, even if they have planar crystallization 
([15]), but in such cases the homogeneous extension of the 
algorithm returns the average along the z-axis of the current 
density J, averaged with a weight function w(z) = 1

h−z . Here 
h is the height of the measurement of Bz above the sample top, 
the sample with thickness g ranges from z = −g (bottom) to 
z = 0 (top), so h − z is the depth of the layer with respect 
to the Hall probe. This is a well-posed problem because the 
Biot–Savart problem is invertible for such z-homogeneous 
currents, and is still informative of the position of defects in 
the sample (see [11, 12] and the simulations in section 3.3).

Let us recall the conclusions of the error analysis for 
linear Biot–Savart inversion schemes from [9], as they will be 
reinterpreted in section 3.2.

The initial step at which errors appear, and should be lim-
ited, is the measurement of the magnetic field Bz. This source 
of error turns out to be the limiting factor for the resolution at 
which the current maps can be computed, so it pays to make 
the measurement system as precise as possible.

The propagation of relative error from the independent 
term Bz of the system (4) to its solution M is bounded by 
a factor called the condition number of the system matrix, 
cond(G) (see [16]):

‖∆M‖
‖M‖

= c
‖∆Bz‖
‖Bz‖

� cond (G)
‖∆Bz‖
‖Bz‖

,� (5)

where M, Bz over their respective grids are written as column 
vectors, ∆M,∆Bz are the vectors formed by the error at each 
term, the norm ‖.‖ is the standard Euclidean norm, and c is the 
actual factor by which the relative error is multiplied when the 
system is solved.

The analysis in [9] for inverse Biot–Savart systems (4) 
shows that the error factor cond(G) depends chiefly on:

	 (i)	�The size of the elements into which the sample has been 
subdivided, as illustrated in table 1.

	(ii)	�The distance from the sample to the grid where the magn
etic induction field Bz has been measured, as illustrated in 
table 2.

Figure 1.  Discretization scheme: subdivision of a region containing the sample in a rectangular/orthoedrical grid (blue), and Hall probe 
measurement in a second rectangular grid above the sample (red). On the vertical axis, the sample with thickness g and its subdivision both 
range from z = −g (bottom) to z = 0 (top), while the Hall probe measurement grid is in the plane z = h.

Table 1.  Variation of the condition number of the system (4) with 
the resolution of the discretization grid for a sample of size 14 × 20 
mm2, with sample thickness 1 mm and a measurement height of Bz 
of 0.5 mm.

m × n 41 × 53 81 × 101 121 × 151

cond(G) 100 3.5 · 104 1.4 · 107

Table 2.  Variation of the condition number of the system (4) with 
the thickness of the sample and height of measurement of Bz. Case 
(0.1, 0.1) breaks the trend because of poorer sensitivity towards 
current in boundary elements.

Sample thickness (mm) 0.1 1 3 10

cond(G) height  =  0.1 mm 11.9 4.9 6.0 6.5

cond(G) height  =  0.5 mm 6791 35 393 56 549 73 257

Meas. Sci. Technol. 30 (2019) 015010
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The first factor in the growth of the condition number, its 
increase as the size of the discretization elements decreases, 
favors the selection of discretizations of the sample which are 
coarser than the measurement grid of Bz. The resulting linear 
systems (4) become overdetermined, and better conditioned 
for it. But Fourier inversion is impossible for overdetermined 
systems, so even a modest amount of error in the measurement 
of Bz makes Fourier inversion feasible only for current maps 
with a very coarse resolution.

The second factor in the growth of the condition number, 
its increase with the distance between the elements in the 
sample and the points where Bz is measured, means that the 
magnetic field Bz ought to be measured as close to the sample 
as possible. Or, conversely, the increased measurement dis-
tance makes it more important to filter away the errors in the 
measurement of the magnetic field.

On the other hand, the condition number of the system (4) 
does not change its order of magnitude with the thickness of 
the sample, as seen in table 2 for a typical discretization grid of 
81 × 101 elements, covering a rectangle of size 14 × 20 mm2, 
and with the height of measurement at two likely settings for 
it on a commercial-grade Hall probe.

All these factors driving the propagation of errors from 
the measurement of the magnetic induction field to the Biot–
Savart inversion to achieve J have led independent implemen-
tations of the inversion-by-linearization scheme ([2, 9]) to 
make the same choices: the selection of a discretization grid 
of the HTS sample that is coarser than the measurement grid 
for Bz, resulting in an overdetermined linear system, that is 
solved via a QR (typically Householder) scheme because this 
procedure minimizes the propagation of error; hence the name 
of QR inversion applied to these schemes.

This resolution of the linear system (4) is computationally 
costly, because inversion on an m × n grid requires resolu-
tion of a linear system of size (m · n)× (m · n) whose matrix 
has no zero coefficients, thus the complexity of the problem 
is O((mn)3) and its memory requirement is O((mn)2), 
straining the capacity of modern desktop computers even for 
a 200 × 100 grid.

2.2.  Fourier inversion

The Biot–Savart formula determining the magnetic field B 
created by an electrical current J or, equivalently, a magneti-
zation M such that J = ∇× M, can be seen as a convolution 
with a Biot–Savart kernel. This convolutional nature is passed 
to the discretization of the inverse Biot–Savart problem if the 
discretization and measurement grids are chosen equal, i.e. 
the linear system (4) is square. The system matrix G  then 
becomes a Toeplitz matrix, and the inversion of (4) can be 
performed through a discrete Fourier transform and deconvo-
lution scheme developed in [4–6].

If one uses the FFT algorithm to perform these (inverse) 
transforms, the map of the magnetization M, and equivalently 
of the current density J, is obtained at a dramatically reduced 
cost: for a discretization and measurement grid of m × n 
points (respectively with a fixed step ∆x in both dimensions), 

the QR inversion procedure requires O((mn)3) arithmetic 
operations to be solved (respectively O(( 1

∆x )
6) operations), 

while the FFT is computed in (mn) log(mn) operations. 
Moreover, the QR inversion needs to store (mn)2 coefficients 
(respectively O(( 1

∆x )
4) coefficients) for the matrix G  alone, 

requiring slower out-of-core algorithms for QR inversion once 
the memory requirements exceed the computer’s capacity (on 
a current desktop PC computer this limit is reached at around 
m = n = 250). In contrast, the Fourier inversion algorithm 
requires only O(mn) variables to be stored in the computer 
memory.

The Fourier transform is an isometry (see [17]), so its 
application does not change the condition number (5) of the 
system. If the coefficients of the Biot–Savart kernel are com-
puted analytically, the only noticeable addition of error of the 
Fourier inversion compared to QR inversion is the extension 
by zero of the magnetic induction field map Bz in areas where 
it is just close to zero.

However, the Fourier inversion scheme has succeeded only 
at relatively coarse resolutions, even when iterative improve-
ments of the solution are added on top of it ([5]).

The reason for this limitation is that all magnetic induc-
tion field measurements, even those made with a Hall probe, 
come with some amount of error on top of the signal, arising 
from causes such as background electric noise or gradual 
drift of the probe’s or amplifier’s settings. When we perform 
the Biot–Savart inversion by any linearization scheme (QR, 
Fourier or any other variant), the rate at which the relative 
error in the measurement propagates to the solution to the 
inverse problem is the condition number cond(G) of formula 
(5). Table 1 shows an instance of how this propagation factor 
grows exponentially with the size of the discretization grid: 
if we conduct a typical Hall probe measurement above the 
sample with a relative error of 0.1%, any linear Biot–Savart 
inversion with a 41 × 53 measurement and discretization grid 
will have a relative error of at least 10% (even if the inversion 
procedure is completely accurate). Biot–Savart inversion for 
a 81 × 101 grid measured to the same accuracy comes with a 
relative error of 3500%.

This is the mechanism through which the accuracy in 
the measurement of the magnetic field becomes the limiting 
factor for the quality of the Biot–Savart inversion. QR inver-
sion can mitigate this problem by making the system (4) 
overdetermined, which lowers cond(G) for a fixed current 
map resolution, but Fourier inversion has no way to navigate 
around this difficulty and can work on a fine resolution only if 
the measurement of the magnetic field Bz can be made much 
more accurate than as originally made by a commercial-grade 
Hall probe.

2.3.  SSA filtering

The natural solution for improving the accuracy of Hall probe 
measurements without increasing their cost and complexity 
is to filter the raw output of the probe. Traditional filtering 
techniques, such as averaging or frequency filtering in Fourier 
space have had a limited success on Hall scans, because their 
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sources of error are diverse in characteristics such as ampl
itude, frequency or basic shape.

Because of this, authors have introduced the technique of 
SSA filtering in Hall probe measurements. SSA is suited to 
the separation of trend (that is, the true signal) and noise even 
in the case of superposition of several types of noise, both 
periodic and nonperiodic. See [18–20] for a description of the 
technique. SSA was developed for the analysis of climatolog-
ical data, and has recently been applied with success to the fil-
tering of sensor signals in mechanical engineering ([21, 22]).

SSA analysis of a sequence of equispaced numerical obser-
vations, which we will treat as a row vector {B1, B2, . . . , BN}, 
is performed as follows:

First, choose a window length l to obtain the trajectory 
matrix: an array M that has l rows, copies of the original 
vector of observations with a delay ranging from 0 to l − 1,

M =




B1 B2 . . . BN−l+1

B2 B3 . . . BN−l+2

. . . . . .

Bl Bl+1 . . . BN


 .� (6)

Next, perform the singular value decomposition (SVD, see 
[16]) on the trajectory matrix M. In the cases of our interest 
it will turn out that the singular values of the trajectory matrix 
decrease very fast.

Afterwards, perform the eigentriple grouping: select a 
subset of singular values, which in our case will be just the 
first k ones, the only ones not close to zero. Set all other sin-
gular values to zero, and this is the SVD of a matrix M̂, which 
is the matrix of rank � k  that most closely approximates the 
original M.

Finally, perform diagonal averaging: the matrix M̂ is 
an approximation of the trajectory matrix M but, while M 
has coefficients Mij = Bm constant over each antidiagonal 
{(i, j)|i + j − 1 = m} as seen in (6) (M is a Hanke matrix), M̂ 
is not constant along each antidiagonal. Replace the entries of 
M̂ on each antidiagonal i + j − 1 = m by their average value 
along all the antidiagonal, and the resulting matrix M̃ is the 
trajectory matrix for a new vector of data {B̃1, B̃2, . . . , B̃N}. 
This resulting vector is the filtered signal (or trend), and the 
difference between it and the original vector of observations 
will be considered noise, and discarded.

Our SSA filtering will depend on two parameters: the 
window length to be used in each series of measurements, and 
the number of eigentriples k, which is the number of singular 
values that we will preserve. The selection of singular values 
can be more complex in a general SSA filtering, but our exper-
imentation has shown that in Hall probe measurements the 
first singular values of the SSA trajectory matrix correspond 
to the signal, and the last ones to the noise, with a marked 
decrease in size ([20]).

In our inverse Biot–Savart problem, the original measure-
ment Bz has the structure of a two-dimensional array coming 
from the rectangular grid of points at which the magnetic 
induction field has been measured. If a Hall probe has been 
used, the role of the two dimensions is not symmetrical 
because the rows correspond to successive measurements of 

the probe, while between a measurement and its following 
neighbor along a column a whole row of measurements of the 
probe has taken place, leaving more time for slow mechanical 
or electrical shifts.

Because of this, we have performed our SSA filtering on 
the Hall probe measurements of Bz on a rectangular grid by 
the following method:

	 (i)	�Perform SSA filtering on each row of the matrix of meas-
ured Bz.

	(ii)	�Zero-level correction: for each SSA-filtered row, move its 
values linearly so that they become zero at the beginning 
and end. In this way we correct long-term shifts in probe 
settings. This step requires the field Bz to be measured far 
enough from the HTS sample so that its approximation by 
zero is accurate.

	(iii)	�Perform SSA filtering on each column of the row-filtered 
and zero-levelled matrix of Bz.

To ensure the consistency of this scheme, the two SSA param
eters of window length l and number of eigentriples k have to 
be kept constant for the filtering of all rows, and then constant 
again for the filtering of all columns.

The optimal values for l, k have been determined exper
imentally in [20] from a set of measurements on HTS tapes 
and stacks of tapes with thickness up to 1 mm for which the 
inverse Biot–Savart computation of M and J has been per-
formed by overdetermined QR inversion. The measure of suc-
cess was the proximity between the Fourier-inverted and the 
QR-inverted M, the latter often being available with a coarser 
resolution.

It turned out that the optimal values for the SSA parameters 
were window length l = 20 and number of eigentriples k = 4, 
both for row and for column filtering. Modest deviations from 
these values for l, k give very similar results, which indicates 
the stability of this filtering technique.

3.  Implementation

3.1.  Computation of current density by Fourier inversion

The algorithm based on the SSA filtering of Bz described in 
section 2.3 and Fourier inversion as explained in section 2.2 
have been implemented by the authors as a MATLAB pro-
gram, with 100% compatibility with its GNU licensed clone 
Octave. It has been run on a typical desktop PC computer 
with a 2 GHz CPU and 8 GB RAM memory. The Biot–Savart 
inversion itself is performed in under 1 s, and the available 
memory supports computation on grids of size 400 × 400 and 
larger. Our verification of the margin of error of each com-
putation follows a double procedure explained in section 3.2 
which requires no additional memory but takes a longer time, 
typically about 30 min for a 200 × 200 inversion.

The authors have implemented our SSA filtering from 
scratch as a MATLAB/Octave program to ease its two-dimen-
sional application. For the SVD decomposition of the trajec-
tory matrix and for the two-dimensional (inverse) FFT the 
routines available in MATLAB or Octave are used.

Meas. Sci. Technol. 30 (2019) 015010
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The scheme that our program follows for a Biot–Savart 
inversion is:

	 (i)	�SSA filtering of measured two-dimensional table of Bz, 
as described in section 2.3.

	(ii)	�Computation of the discretized M from the filtered Bz by 
Fourier inversion, applying the FFT, deconvolution and 
inverse FFT steps of the algorithm introduced in [5].

	(iii)	�Cropping of the edges of the discretized M, which are 
away from the sample and thus any nonzero value on 
them is spurious, and SSA filtering of the resulting M 
to denoise it, with the same procedure and parameters of 
section 2.3.

	(iv)	�Computation of the current density as the rotational 
J = ∇× M, following the four-point difference scheme 
of [9] (i.e. bilinear interpolation and evaluation of deriva-
tives at the element’s barycenter).

3.2.  Validation of the computation and error analysis

After each Biot–Savart inversion, a double strategy is fol-
lowed in order to validate the obtained current density map J 
and estimate its margin of error.

First, we wish to estimate the margin of error that our com-
puted magnetization field M has. As explained before, the 
coefficients of the matrix g are computed analytically, so this 
error arises from the error in the measured and filtered Bz by 
propagation from the independent term to the solution of the 
linear system (4).

As indicated by formula (5), this margin of error is 
bounded by the condition number of the Biot–Savart matrix 
G  of (4). The use of Fourier inversion poses a problem: we do 
not compute the full matrix G  of size mn × mn for an m × n 
discretization grid, but only the auxiliary matrix g whose size 
is 2m × 2n. The size of the matrix G  makes the computation 
of its condition number on the computer used for the inversion 
unfeasible, and the fact that G  is Toeplitz does not provide a 
sufficient simplification of the problem, so the authors have 
chosen instead a statistical approach to estimate the margin of 
error of the inversion (4).

The statistical approach to condition number estima-
tion is as follows: create a large sample of random errors 
∆1Bz, . . .∆NBz, which are possible perturbations of the inde-
pendent term in system (4). The resulting linear systems have 
the solution

G(M +∆iM) = (Bz +∆iBz) , (i = 1, . . . , N)� (7)

i.e. their solution is the original solution of our inversion, M, 
with an added error ∆iM , and the factor by which the relative 
error has been multiplied in the step from Bz to M is for each 
perturbation (compare to equation (5))

ci =

‖∆iM‖
‖M‖

‖∆Bz‖
‖Bz‖

.� (8)

Due to the central limit theorem, the error factors ci follow 
a Gaussian distribution when the amount N  of perturbations 
is large. Therefore, we can find the average c̄ and standard 

deviation σc of the factors ci in the sample, and establish inter-
vals of confidence for the factor c regulating the propagation 
of error from the original measurement of Bz to the computa-
tion of M, defined in (5).

Verification for smaller Biot–Savart matrices G  ([20]) has 
shown that this average value of the propagation of error c̄ 
in random perturbations has the same order of magnitude as 
the condition number of the matrix G , which is by defini-
tion the maximal possible value for this propagation factor. In 
this way, by running our fast inversion scheme a few hundred 
times with uniformly distributed random perturbations added 
to the measurement of Bz, we obtain the order of magnitude 
of the propagation of relative error from Bz to M, and upper 
bounds within prescribed confidence limits for its actual 
value.

Finally, we compute the vertical magnetic induction field 
B̃z that the obtained current density J would produce. This 
magnetic induction field is obtained applying the Biot–Savart 
law, assuming that the current density vector J = (Jx, Jy) is 
constant throughout each element in the discretization. The 
interest of this computation lies in that its starting point is the 
final map of the current density J, so comparing the originally 
measured and recomputed magnetic induction fields Bz, B̃z 
shows whether the cropping of spurious values of M at the 
edges of the grid, the SSA filtering of the cropped M, and 
its numerical differentiation to obtain J have introduced any 
errors after the inversion from Bz to the original values of M.

3.3.  Computations on simulated samples

To perform an initial test of our algorithm, we have applied it 
to two simulated bulk HTS samples with geometry and size 
similar to that of a stack of tapes, both of them with a circu-
lating current that is neither regular nor homogeneous along 
the z-axis. The results and expected margin of error of the 
computations are compared with the original data.

First, we have simulated a bulk HTS sample with dimen-
sions 12 × 60 × 8 mm3, subdivided along its 8 mm thickness 
in four layers: layers 1 and 4 are 0.8 mm thick slices at the 
bottom and top of the bulk, where a regular domain of cur
rent with homogeneous density 1.2 × 108 A m−2 has been 
imposed. Layer 2 is second from the bottom, has a thickness 
of 3.2 mm, and has a single domain of current with density 
108 A m−2 and a 6 × 20 mm2 rectangular hole along all its 
thickness and asymmetrically placed where there is no cur
rent. Layer 3 has a regular domain of current with density 108 
A m−2. See figure 2(a) for this assumed distribution.

Each layer is discretized in a rectangular grid with 
120 × 300 elements in which M is assumed to be constant, 
and by analytic integration of the Biot–Savart law and sum 
over all elements and layers, the vertical component Bz of 
the magnetic induction field that the imposed current density 
would generate is computed in a new rectangular grid of size 
100 × 200 points, with size 36 × 120 mm2, centered on our 
simulated sample, and at a height of h = 0.4 mm above it.

To test our SSA filtering procedure, the computed magnetic 
field Bz is degraded in three realistic ways, with a magnitude 
comparable to that observed in real measurements:
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	 (i)	�A drift in the settings of the measuring probe is simulated 
by considering the rectangular table of values of Bz as a 
list, in the order in which a Hall probe would read them, 
and we add to each value a drift term that grows linearly 
over this list, from 0% to 4% of Bz,max, the maximal value 
of Bz in the original table.

	(ii)	�A noise term, which is a normally distributed random 

variable with average 0 and standard deviation Bz,max
500 .

	(iii)	�After adding the drift and noise terms to Bz, we perform 
a rounding of the resulting values to the nearest multiple 
of 0.035 Gauss to mimic the resolution of our Hall system 
on a typical measurement.

The information fed to the authors’ program consists simply 
of the grid of degraded values of Bz shown in figure 2(b), their 
x, y coordinates, their height above the sample and the total 
thickness of the sample. These data are first SSA-filtered, and 
figure 3 shows the comparison of both the degraded and fil-
tered values of Bz to the original ones. If we regard as vec-
tors the sets of original Biot–Savart integrated values of Bz 
above the sample, of perturbed values of Bz and of SSA-
filtered values, it turns out that the perturbed values of Bz have 
a relative error of 4.97% with respect to the original values 
(in Euclidean norm, i.e. comparing the norms of the vectors 
formed by all values of Bz and by all values of its perturba-
tion), while the values of Bz obtained by SSA filtering the 
perturbed values have a relative error of 4.80% with respect 

to the original values. This means that the main improvements 
introduced by SSA filtering in this case, and typical in Biot–
Savart inversions, are: to smooth the values of Bz in a way that 
approaches their original values, rather than imposing some a 
priori model, and to shift the error in Bz from the central area 
where the current is located to the boundary where it is simple 
to filter out after inversion.

The results of the inverse Biot–Savart computation of M, J 
and its comparison to the originally assumed M are summed 
up in figure 4, showing how the computed current J is in good 
agreement with the weighted average of the assumed J over 
all the sample’s thickness. The hole without current in a deep 
layer is averaged with the regular current in the other layers, 
resulting in a current map with lower density and loops which 
are indented on both sides of the tape; on the left half of the 
domain because the location of the deep hole there decreases 
the current, and on the right half because the layer with a hole 
has a returning current with opposite sign to that of the other 
layers for the entire central quarter (see current map of layer 2 
in figure 2(a)), which has an effect similar to that of the hole 
on the averaged current density as shown by the dotted current 
lines in figure 4(a).

After 1000 random perturbations of the independent term 
Bz in our Biot–Savart inversion, the factor of propagation c of 
the relative error from the magnetic field Bz to the magneti-
zation and current density M, J (the statistical version of the 
condition number presented in equation (5)) is found to follow 

(a)

(b)

Figure 2.  Simulated sample 1 (four layers). (a) Current lines in all layers; position of hole in layer 2 (gray). (b) Vertical magnetic field Bz, 
at height 0.4 mm after perturbation and SSA filtering.
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a normal distribution with average c̄ = 26.31 and standard 
deviation σc = 0.26. Thus the relative error in M is that in Bz 
multiplied by a factor c which with 95% confidence is below 
26.83, and the 6σ bound for the error propagation factor of the 
system is 27.87.

We can check our computed error bound by comparing 
the current density J obtained by our Biot–Savart inversion 
scheme with the original currents that have defined the simu-
lation, averaged with a weight function 1

h−z where h − z is the 
vertical distance between each layer at a height z and Hall 
probe measurements at height h above the sample. This com-
parison at a transversal section of the simulated sample, slicing 
through its middle the hole in deep layer 2, is summarized in 
figure 4(b), which shows only the Jy component because the 
simulated current had Jx = 0 in all layers, and the computed 
current has Jx of a value of two orders of magnitude below 
Jy. Figure  4(b) also illustrates the aggregated nature of the 
error bounds that we provide through the condition number: 
the difference between the correct averaged current density 
and that obtained by our inversion procedure is about 10% 
in the core of the areas where the current is regular, but leaps 
to a relative value of 30% at the edges where discontinuities 
happen (edges of the tape, of the hole, transition points where 
the current inverts its sense of circulation).

Finally, by integration of the Biot–Savart law we compute 
the vertical magnetic field B̄z generated by the z-homoge-
neous current density J that our Fourier Biot–Savart inversion 
has found, and find that its difference in value with the magn
etic field Bz generated by our multilayered simulation is less 
than 0.5% above the sample.

A second interesting test is another simulated bulk HTS 
sample with dimensions 12 × 60 × 8 mm3, subdivided along 

its 8 mm thickness in two layers of equal thickness 4 mm, with 
an imposed circulating current as shown in figure 5(a).

Each layer has a crack, i.e. a segment going orthogonally 
from the y-edge of the rectangle to its central axis of symmetry. 
The cracks on the bottom layer, respectively on the top layer, 
are situated on the left-hand side of the rectangle, respectively 
on the right-hand side, and at 1/4 and 3/4, respectively, of the 
y-length of the sample. Each layer has a single domain of cur
rent, with homogeneous density 108 A m−2, which circulates 
around each layer avoiding its crack. Thus the inhomogeneity 
in the current J along the z-axis lies not in its density, but in 
its direction.

With these starting data we perform the same computations 
as for the first simulated sample: discretization of each layer 
as a rectangular grid of 120 × 200 elements over which M is 
assumed constant; computation of the vertical magnetic field 
Bz generated by this discretized current on a 100 × 200 rec-
tangular grid covering a 36 × 120 mm2 rectangle at a height 
of 0.4 mm above the sample; degradation of this field with the 
same parameters as for the first sample; SSA filtering of the 
degraded Bz values (figure 5(b) shows the map of the resulting 
magnetic field); and Fourier inverse computation to obtain 
the maps of M and current (density and current lines shown 
in figure 5(c), where the latter are compared to lines of the 
weighted z-average of the originally imposed current).

As in the case of simulated sample 1, the current density 
J that has been found has current lines in close agreement 
to those of the 1

h−z-weighted average along the z-axis of the 
originally imposed current, as seen in figure 5(c). The average 
of the originally imposed current has homogeneous density 
108 A m−2, and, as figure 5(c) shows, the current density J that 
our Biot–Savart inversion procedure has found has a margin of 

Figure 3.  Simulated measurement 1 (four layers): central, longitudinal cut of the values of Bz computed by analytic Biot–Savart integration 
of the assumed current distribution (black, continuous line), perturbed by adding error terms to the Biot–Savart integration to simulate the 
Hall probe measurement (blue, dashed line), and SSA-filtered from perturbed values (red, dotted line).
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error below 10% in the stretches where the current is straight 
and homogeneous, and up to 20% in the regions where the 
current has inhomogeneities and sudden turns. The magnetic 
field Bz that the obtained current density J would generate 
according to the Biot–Savart law differs by less than 0.5% 
from the Bz fed to the inversion algorithm above the sample.

The second simulation clarifies a point already apparent in 
simulation 1: our inversion procedure yields the average of the 
current density over the z-axis, with a weighing average 1

h−z 
which is the inverse of the depth of each horizontal layer at a 
fixed value of z (for a sample with thickness g, z ranges from 

−g at the bottom to 0 at the top). This means that, in thick 
samples such as our simulations, current defects in superficial 
layers with small depth are detected much more clearly than 
defects in deep layers, which makes a small contribution to 
the average. This difference in effect between irregularities in 
superficial and deep layers is not introduced by our algorithm, 
but is already present in the weight-averaged current that is 
sought, and even in the magnetic field Bz, as figures 5(b) and 
(c) illustrate. This is one of the manifestations of the impossi-
bility of producing three-dimensional maps of the current J in 
a thick sample, even when the current is planar (see [11, 12]).

(a)

(b)

Figure 4.  Simulated sample 1 (four layers). (a) Above: z-homogeneous current density obtained from Biot–Savart inversion of the map 
shown in figure 2(b), and some current lines. Below: comparison of these current lines (black, continuous) and the current lines of the 
originally imposed current, z-averaged according to weight 1

z−h (red, dotted). (b) Current density obtained from Biot–Savart inversion 
(red, dotted line), and weighted average of the currents that generated the magnetic induction field fed to the inversion procedure (blue, 
continuous line).
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(a)

(b)

(c)

Figure 5.  Simulated sample 2 (two layers). (a) Current imposed in each layer (above: top layer from z = −4 mm to z = 0; below: 
bottom layer, from z = −8 mm to z = −4 mm;). (b) Magnetic field Bz at a height h = 0.4 mm created by the layered current distribution, 
perturbed and SSA-filtered as in simulated sample 1. (c) Above: z-homogeneous current density, and some current lines superimposed, 
from the current found by Biot–Savart inversion of the map of Bz in (b). Below: comparison between the lines of this current (black, 
continuous) and those of the 1

z−h-weighted average of the originally imposed current (red, dotted).
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4.  Application on real samples

As a definitive test of our Biot–Savart inversion scheme, 
this has been applied to two real samples, which are stacks, 
formed by nine layers of HTS tapes. The used tapes were 
manufactured by SuperPower Inc., with the identification 
code SF12050.

The magnetic field measurements have been done using 
a Hall mapping magnetometer that we have built for the 
characterization of superconducting samples. The Hall 
probe is attached to an XYZ Cartesian displacer driven by 
stepper motors which determine the mechanical resolution 
of the scans, with steps of 5 µm in our actual configuration. 
To obtain maps over the surface of the sample, XY scans 
are performed, at a fixed height Z, rastering a Hall probe 
in parallel rows, crossing the tape orthogonally to its main 
axis. To avoid displacements or misalignments between the 
plane of the sample and the XY scanning plane, the Hall 
probe is placed in a flexible strip adjusted to lightly press 
the sample, thus maintaining the sensor area at a constant 
distance. For the experiments presented here we used probe 
CYSJ106C, with an active area of 300 × 300 µm2 that has 
a coating layer of 400 µm. The probes are calibrated using 
a Helmholtz coil. The one used here has a conversion factor 
of 18.80 V T−1, for a supply current in the probe of 1 mA. 
We checked the linearity of the response for supplied cur
rents from 0.5 mA to 10 mA. A Keithley 224 current source 
provides current to the probe with an accuracy of 0.05% 
in the range 1 mA–10 mA. An INA111 low-noise instru-
mentation amplifier is used to read Hall voltage. The Hall 
mapping system precision is 0.01% for a typical full scale 
range of 0.5 T.

The first example, which we will call sample L80, is a stack 
with dimensions 12 × 80 × 0.51 mm3. The stack was cooled 
down in a liquid nitrogen (LN2) bath under a uniform magn
etic field of 1 T. Once the sample was cooled, the magnet was 
switched off and the sample was maintained in the LN2 bath 
and installed in the Hall measurement system. The vertical 
magnetic induction field Bz generated by this current is meas-
ured with a Hall probe on a rectangular grid with 7200 × 250 
points, at a height of h = 0.45 mm above the sample, with 
grid steps of 5 µm in the x (transversal) axis and 250 µm in 
the y (longitudinal) axis. The measured magnetic induction 
field already indicates the presence of inhomogeneities in the 
structure of the sample.

Due to the constraint of error propagation on a very 
fine grid, and the growth in relative terms as the measure-
ments become closer of the rounding by the probe of meas-
ured values, from this measurement we select a subgrid of 
240 × 250 measurements by taking one out of every 30 in 
each row. The resulting grid is subjected to our scheme of 
SSA filtering. Figure 6 shows the effect of SSA filtering on 
the original measurement of Bz, and the resulting filtered map 
of Bz is shown in figure 7(a). Our Fourier inversion scheme 
produces maps of magnetization M and current density J with 
the same resolution of 150 × 250 µm2, shown in figure 7(b). 
The authors’ previous attempts at Biot–Savart inversion with 
our overdetermined QR inversion scheme had reached a cur
rent map with a maximal resolution of 242 × 686 µm2, and 
this resolution had required an out-of-core variant of our 
inversion algorithm working for 26 h on a desktop PC. The 
propagation of error from the measurement of Bz, even after 
several standard noise-filtering schemes such as averaging or 
frequency screening, made this resolution unimprovable.

Figure 6.  Longitudinal cut of the vertical magnetic field Bz values obtained from Hall probe measurement (solid blue), and after SSA 
filtering (dotted red) for sample L80. Only the central part of the cut is shown to zoom in on the effect of SSA filtering: with modest 
aggregate quantitative change (the global vector of values of Bz changes its size by 1.36% after filtering), the original measurement is 
smoothed in a way that is more intrinsic to the measurement than other filtering schemes that ultimately impose a priori models. The claim 
of appropriateness of the filtering is based on the results of the Biot–Savart inversion shown in figure 7(b) which, unlike previous filtering 
schemes, yields a plausible current map even at a high resolution.
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After the statistical study of 1000 perturbations of the 
inversion we find that the relative error propagation follows a 
normal distribution with average value c̄ = 284.78 and devia-
tion σc = 2.15. We conclude that, with 95% confidence, the 
relative error in the resulting map of M is 289 times the rela-
tive error in Bz, and the 6σ upper bound for error propagation 
is 297.71. The computed J is the average, with weight 1

h−z, of 
the current density along the thickness of the stack. The ver-
tical magnetic field that it generates coincides with the origi-
nally measured one with an error of around 2.5% above the 
sample. The time used by a desktop PC running MATLAB for 
this computation is 1 s for the SSA filtering and Fourier inver-
sion, and 87 min for the verification of the margin of error of 
the computation.

From the Bz field map, we can deduce that magnetic induc-
tion decays in the central region of the sample corresponding 
to the valley in the field profile, thus showing the presence 
of a defect along the affected zone. By comparing it with the 

computed current map, we can observe the large density of 
the current at the edges matching the high slope of the magn
etic induction map at the same edges. The sample remains 
essentially a single domain, with no current counter-flows at 
the boundaries of its central valley, and very localized current 
loops surrounding the magnetic induction field peaks. From 
the magnetic measurements we can deduce the critical cur
rent using the value of the current density in the neighbor-
hood of the tape edges where the full penetration condition 
is fulfilled. At these lines, the computed current density is 
2.8 × 108 A m−2 which is in the expected range. It is worth 
noting that this value corresponds to the so-called engineering 
current density, which considers the section of the full tape. 
Considering only the thin (1 µm) layer of the superconductor 
in each tape, this value should be 51 times larger so the actual 
current flowing through the superconductor should be in the 
range of 1.43 × 1010 A m−2. Comparing this value with the 
value given by the manufacturer as a reference, 300 A for 

(a)

(b)

Figure 7.  HTS stack sample L80. (a) Measured magnetic induction field Bz after SSA filtering, at height 0.45 mm. (b) Current density and 
some current lines computed from the magnetic map of (a).
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the tape, we can deduce the value for the current for refer-
ence: 2.5 × 1010 A m−2. The difference is within the expected 
dispersion.

The second example is another stack with dimensions 
12 × 30 × 0.51 mm3. The sample was field-cooled in LN2, 

but the magnetic field was produced by two NdFeB magnets 
aligned along the length of the sample, with the poles facing it 
at a distance of 0.6 mm from the sample surface (Bz = 0.5 T).  
In order to study the effect of magnetic gradients, the magnets 
were aligned alternating their poles. In these experiments the 

(a)

(b)

Figure 8.  HTS stack sample L30. (a) Measured magnetic induction field Bz after SSA filtering, at height 0.51 mm. (b) Current density and 
some current lines computed from the magnetic field of (a).
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Hall probe scans were performed at a height of 0.51 mm (equal 
to the thickness of the sample), and the vertical magnetic field 
Bz was measured on a grid of size 8400 × 250 points, with 
grid steps of 5 µm in the x-axis and 200 µm in the y-axis. The 
grid is approximately centered on the sample.

Taking one out of every 35 measurements in each row in 
order to limit error propagation in the inversion, we produce a 
240 × 250 value grid, with steps of 175 and 200 µm in the x- 
and y-axis, respectively. Our SSA filtering and Fourier inver-
sion scheme are run on this measurement, producing maps of 
the magnetization M and current density J with the same res-
olution of 175 × 200 µm2. Previous attempts at Biot–Savart 
inversion of this sample with the author’s overdetermined QR 
inversion scheme reached a current map with a maximal reso-
lution of 201 × 313 µm2, requiring the out-of-core variant of 
our inversion algorithm working for 37 h on a desktop PC. As 
in the case of the previous sample, the propagation of meas-
urement errors even after filtering made this resolution the 
best available, regardless of the computational time devoted.

The results are shown in figures 8(a) (filtered Bz) and (b) 
(current J). The error analysis concludes that the relative error 
in M is, with 95% confidence, the relative error in Bz multiplied 
by a factor of less than 1142. The measured magnetic induc-
tion field Bz and the one that the obtained current map would 
produce agree with an error of around 2.75% above the sample.

From the field map, we can observe the presence of two 
poles printed in the stack, with unique central peaks of 0.083 
T and 0.086 T, respectively. The symmetry in both printed 
poles corresponds to a nearly homogeneous superconductor. 
Each pole corresponds to a loop of current flowing in the 
opposite sense to that in the other pole, mimicking the mag-
netizing field. The current density reaches its maximum only 
in the central line delimiting the poles, which corresponds to 
the smaller magnetic field region. The engineering current 
density is 3.6 × 108 A m−2, corresponding to a current den-
sity in the superconducting layer of 1.84 × 1010 A m−2. It is 
well in agreement with the typical values corresponding to the 
employed commercial tapes ([23–25]).

5.  Conclusions

The SSA filtering and Fourier inversion scheme proposed here 
can solve the inverse Biot–Savart problem for HTS samples 
with planar crystallization, obtaining two-dimensional maps 
of the induced current J from Hall probe measurements of 
the vertical magnetic induction field Bz above the sample. It 
results in a resolution and accuracy that were hitherto unavail-
able using commercial-grade equipment, with a computa-
tional cost that is only a fraction of that of previous current 
map-yielding inversion schemes.

After measuring Bz at a height of 0.5 mm over the sample, 
resolutions of 150 × 250 µm2 have been achieved for the cur
rent maps on real samples of cm size. The maps are obtained 
instantaneously on a desktop PC. The computation provides 
bounds for its margin of error, showing these maps to be 
accurate. In the case of samples with nontrivial thickness, 

the obtained map corresponds to the average, with a weight 

function 1
depth measured from the height of the Hall probe, 

of the current density J along the sample thickness. A three-
dimensional map of current detailing the differences among 
different layers is unattainable with any linear Biot–Savart 
inversion scheme ([11, 15]). After accepting this, the thick-
ness of the sample does not pose any additional difficulty to 
the Fourier inversion.

The initial SSA filtering of the Hall probe measurement of Bz 
is indispensable to reach the obtained resolutions in the current 
maps. Fourier inversion is a very fast and economic procedure, 
so it already allows with existing hardware the computation 
of current maps with a finer resolution. The limiting factor for 
Biot–Savart inversion is the margin of error in the measurement 
of Bz, which gets multiplied by a condition number to become 
the margin of error in the map of the current density J. This 
condition number grows exponentially with the fineness of the 
map grid, measured in terms of the height at which Bz is meas-
ured. Therefore, the resolution of the Biot–Savart inversion can 
be made finer only by a more accurate measurement, closer to 
the sample, or more efficient error filtering, of Bz. Even then, 
the exponential growth of the condition number of the inver-
sion leaves open the question of whether the resolution of cur
rent maps obtained with the SSA filtering and Fourier inversion 
scheme proposed here can be greatly improved.

In this work we have demonstrated the effectiveness of our 
combined SSA filtering and FFT inversion scheme for deter-
mining current maps in closed circuit samples. The authors 
are confident that the scheme can be used for the computation 
of current maps in samples carrying current that crosses their 
boundary by adapting the discretization strategy of our QR 
inversion scheme of [14], which already finds current maps 
in such a current transport situation, but with a lower acc
uracy and speed than the scheme presented in this work. This 
approach should avoid most of the noise-like oscillations, and 
the imposition of symmetry conditions across the boundary 
of the domain, of the inversion scheme reported in [26]. This 
topic will be pursued further.
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