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Active fault tolerant control based on a neuro fuzzy
inference system applied to a two shafts gas turbine
Nadji Hadrouga, Ahmed Hafaifaa, Noureddine Batelb, Abdellah Kouzoua,
and Ahmed Chaibetc

aApplied Automation and Industrial Diagnostics Laboratory, Faculty of Science and Technology,
University of Djelfa, Djelfa, Algeria; bFaculty of Science and Technology, University of Médéa, Médéa,
Algeria; cAeronautical Aerospace Automotive Railway Engineering school, ESTACA Paris, Paris, France

ABSTRACT
The main aim of the present work is development of an active
fault tolerant control for two shafts gas turbine fault detection
and isolation based on a neuro fuzzy inference system adap-
tive approach. This approach combines the advantages of the
neural networks with the fuzzy inference systems. The reconfi-
guration mechanism of the proposed active fault tolerant con-
trol is performed by detecting the malfunction of the studied
gas turbine in an automatic manner. The obtained experimen-
tal results are presented to illustrate the great interest of the
developed active fault tolerant control approach and to
demonstrate its effectiveness in maintaining the stability with
acceptable performance under the presence of defects in the
presented gas turbine.

Introduction

To achieve the objectives and requirements of the performance, quality
robustness of the industrial process control and monitoring, sophisticated
methods are used. The main purpose of all these sophisticated methods is to
improve the performance, diagnosis, availability, and the operation safety of
these processes. Indeed, it is well obvious that the need for operation safety
and fault diagnosis are even more crucial when it comes to sensitive systems
where a fault can be humanly and financially costly, which is the case of the
gas turbine system presented in this work. Therefore, in order to meet the
above mentioned requirements of the studied system, it is mandatory to
associate it with diagnostic modules for detecting any change in its behavior
compared to the desired behavior, and even in some situations to reconfigure
the operation system to meet the desired behavior.

In fact, a diagnostic strategy is carried out by performing three steps: the
fault detection, the fault localization, and the fault isolation. These steps can
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be incorporated and associated with a faults tolerant control strategy. In
many several previous works that have been achieved, the effectiveness of
this fault tolerant control in several industrial applications has been shown.
Very recently in 2016, Jianglin Lan and Ron J. Patton have proposed a new
strategy based on faults observers for the integration and the estimation of
faults in fault tolerant control system (Jianglin Lan 2016), Simani et al. have
proposed a fault tolerant control applied to a hydroelectric system where they
have proved the effectiveness of this control based on the validations pre-
sented in their work (Simani, Alvisi, and Venturini 2016), Li Bing Wu and
Yang Guang-Hong have applied this type of fault tolerant control in an
adaptive appearance for a class of uncertain nonlinear systems with multiple
delays, where they have demonstrate the robustness of this approach
(Lyantsev et al. 2004), Zhiyao et al. have added a return stat using fuzzy
condition for switching the fault tolerant control for the same class of non-
linear systems under a stochastic faults case (Zhiyao, Tong, and Yongming
2016), Boyuan et al. have synthesized a law of fault tolerant control applied in
the domain of electric vehicle (Boyuan, Haiping, and Weihua 2016),
Salahshoor and Kordestani, in 2014, have designed an active fault tolerant
control system for industrial steam turbine (Salahshoor and Kordestani
2010), Salahshoor et al., in 2010 and 2011, have made detection and diagnosis
system of an industrial turbine using adaptive neuro fuzzy inference system
for classifying defects (Salahshoor and Kordestani 2014; Kulikov, Yu Arkov,
and Abdulnagimov 2013). Nozari et al., in 2012, have proposed a robust fault
detection based on a fault tolerant control applied to an industrial gas turbine
prototype (Jianglin Lan 2016), Guasch et al., in 2000, have proposed a
diagnostic system for a gas turbine based on this type of fault detection
robust control (Guasch, Quevedo, and Milne 2000). In 2011, Berrios et al.
have studied the measurement system under fault detection based on fuzzy
Takagi Sugeno models for a gas turbine installed in a power plant with
combined cycle (Berrios, Núñez, and Cipriano 2011), Ogaji et al., in 2002,
have studied the sensor faults in a gas turbine with two shafts (Ogaji, Singh,
and Probert 2002).

The purpose of this work is to focus on the research of certain fault
characteristics at the time of their occurrence, where the main goal is to
allow deciding which action to take on the system to ensure the continuous
and high performance operating of the considered system and even to stop it
completely in case of major fault, which may include damages and malfunc-
tion of the considered system.

The proposed idea presented in this paper is the development of an active
fault tolerant control applied to a gas turbine with two shafts. This control is
basically based on an adaptive approach of neuro fuzzy inference system to
ensure the fault detection and insulation, if one or more faults affect the
sensors. So, any anomaly or failure of this nature are quickly detected and
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localized to avoid the human and material damage that could affect the
installation of this rotating machine. To represent the dynamic behavior of
the studied gas turbine, an innovative approach, based on an adaptive
configuration of a neuro fuzzy inference system in combination with multi-
ple models of Takagi Sugeno Kang (TSK), was introduced. This representa-
tion allows to characterize the relationship between the system input and
output variables and in the same time to optimize the fuzzy inference rules
that are organized in adaptive network.

The purpose of this work is to propose a fault tolerant control for gas
turbines with two shafts, to ensure the faults conditioning or the controller
reconfiguration, and to keep the presented system under safe operating
conditions. The obtained performance under the proposed control has
been validated by the use of linear dynamic models based on real data
collected on site of the studied gas turbine. Indeed the used active control
tolerant for fault detection and conditioning presented in this work has
shown a great enhancement of the security and the availability of the studied
system, on the other side it has shown that an acceptable performance was
ensured allowing degraded mode system operating. It can be said that the
presented control can greatly help in enriching the modern methods of
monitoring and control of the studied gas turbine.

Active faults tolerant control applied to a gas turbine

The fault tolerant control has two types of control approaches: the passive
approach and the active approach (Guasch, Quevedo, and Milne 2000;
Salahshoor and Kordestani 2014). The present work deals with the active
approach, including a diagnostic module applied to a gas turbine with two
shaft types MS5002C, installed in gas compression station at Hassi Messaoud
in the south of Algeria. Indeed several studies have presented the control of
such systems, unfortunately, most of this work is treated based on conven-
tional control (linear systems) or for systems operating in a restricted domain
(Djaidir, Hafaifa, and Kouzou 2016; Djeddi, Hafaifa, and Salam 2015;
Guemana 2015; Hafaifa 2016; Mohamed, Hafaifa, and Guemana 2016; Shi
and Patton 2015). The objective of this work is to develop an active faults
tolerant control based on a detection algorithm and a fault isolation algo-
rithm while reconfiguring the control law online to maintain the stability and
the performance capabilities of the studied system of gas turbine with two
shafts.

The structure of the proposed active faults tolerant control is shown in
Figure 1. In this configuration, the faults detection and isolation module
is placed in the diagnosis function, where each faults in the system should
be detected and isolated as quickly as possible. On the other side, the
default parameters, the system state/the output variables, must be
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estimated online in real time to ensure the instantaneous controller
reconfiguration.

To achieve an implementation of the proposed active faults tolerant con-
trol structure, a mathematical modeling of the gas turbine with two shaft is
necessary. However, in this section this modeling is presented firstly during
the start-up phase of this studied rotating machine.

It is important to clarify that during the start-up phase of the gas turbine with
two shafts a mechanical torque is required at the input of the air compressor.
This turbine is divided into two mechanically separated section: the high
pressure section (HP) and the low pressure section (LP), as shown in Figure 2.

The first HP turbine section operates at a constant speed with a range of
variable power, and drives exclusively an axial compressor, and the second
LP turbine section can change its speed of rotation independently of the HP
turbine section, where the variations of temperatures of this machine in the
operating phase are given in the TS cycle diagram of the studied gas turbine
with two shafts as shown in Figure 3. Hence the compressor temperature is
calculated by the following equation:

T2 ¼ T1 1þ rp
γa�1
γa � 1

ηc

 !
(1)

With T1 and T2 are the ambient temperature and the compressor tem-
perature, respectively; rP and ηc ¼ T2s�T1

T2�T1
is the compressor efficiency and

γa ¼ Cpa=Cv ¼ 1:4 is the specific heat ratio.
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Figure 1. Structure of the proposed active faults tolerant control.
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The temperature of the gas turbine HP gas exhaust is given by Equation
(2) and the temperature of the gas turbine LP gas exhaust is given by
Equation (3).

T4 ¼ T3 1� ηt 1� 1

rp
γg�1

γg

0
@

1
A

0
@

1
A (2)

where γg ¼ 1:333

T5 ¼ T4 1� ηt 1� T5s

T4

� �� �
(3)

Where the thermal efficiency of turbine is ηt ¼ T4�T5
T4�T5s

, which leads to the

thermal efficiency of the cycle expressed by ηth ¼ T4�T5
T3�T2

.

Active control implementation strategy

The proposed active faults tolerant control presented in this work for the
control of the two shafts gas turbine system is based on the neural networks
and the fuzzy logic, where the two shafts gas turbine is modeled by Takagi
models fuzzy Sugeno (Benyounes, Hafaifa, and Guemana 2016; Topalov et al.
2011). Based on the dynamic models developed in the work of Kulikov et al.
(Kulikov 1989a, 1989b; Li-Bing and Yang 2016), as well as in Hafaifa (2015),
Arkov, Kulikov, and Breikin (2002), Mohammadi and Montazeri-Gh (2015),
Rahmoune (2015), Guemana (2015), Nozari et al., (2012), and Breikin et al.,
(2006), a dynamic linear model of the studied two shafts gas turbine type
MS5002C is considered under the following structure:

Δ _nLP ¼ � 1
Leng

ΔnLP þ Keng

Leng
ΔWf

Δ _nHP ¼ � 1
Lt
ΔnHP þ Kt

Lt
ΔWf

(
(4)

Where the manipulated variables are: nLP the shaft speed of the section LP,
nHP the shaft speed of the section HP, T�

c is the compressor temperature, T�
t

is the turbine temperature, T�
comb is the combustion chamber temperature,

Wa is the air mass flow, F is the force carry on the rotor, P�t is the output
turbine pressure, P�

c:HP is the compressor output pressure, and ΔWf is the
controlling factor. Kengand Kt are the non-linear impact coefficients defined
from the dynamic, the relationship between the LP shaft speed and the HP
shaft speed defined as ΔnLP ¼ K � ΔnHP.

To use this model of the two shaft gas turbine, which is highly nonlinear, a
Taylor series is subsequently used for its linearization at the operating points
of the studied gas turbine. The representation of the model expressed by

520 N. HADROUG ET AL.



Equation (4) can be presented furthermore based on the state space repre-
sentation as follows:

d
dt

ΔX ¼ f ΔX;Δμ; tð Þ (5)

Considering the state variables Δx1 ¼ ΔnLP and Δx2 ¼ ΔnHP, the final equa-
tion of state space can be rewritten as:

d
dt

ΔX ¼ d
dt

Δx1
Δx2

� �
¼ d

dt
ΔnLP
ΔnHP

� �
¼ f1

f 2

� �
(6)

With f1 ¼ � 1
Leng

Δx1 þ Keng

Leng
Δu this is the first equation of the state space for

the machine, Leng is the time constant for the machine, f2 ¼ � 1
Lt
Δx2 þ Kt

Lt
Δu

is the second equation of the state space for the turbine, Lt is the time
constant for the turbine (the wheel space between HP and LP).

On the other side Equation (4), presenting the two shafts gas turbine
system is nonlinear and complex to be used directly in the control. In
order to linearize this system, Jacobian matrices, that are specific to the
studied gas turbine system, have to be determined. The elements of the

first and second order are given by @fi
@x1

jx¼x0 and @fi
@x2

jx¼x0 , or the partial

derivatives represent these Jacobian matrices can be defined by:

@f
@x

jx¼x0 ¼ An�n ¼

@f1
@x1

@f1
@x2

� � � @f1
@xn

@f2
@x1

. .
. ..

.

..

. . .
. ..

.

@fn
@x1

� � � � � � @fn
@xn

2
666664

3
777775

�����������
x¼x0

(7)

The Jacobian matrix of the studied gas turbine is based on the following
model:

A ¼ a11
a21

a12
a22

� �
¼

@f1
@x1
@f2
@x1

@f1
@x2
@f2
@x2

" #�����
x¼x0

¼ � 1
Leng

� 1
K:Lt

� K
Leng

� 1
Lt

" #�����
x¼x0

(8)

Where, A ¼ �0:324
0:39

1:56
�2:23

� �
, B ¼ @f

@u x¼x0u¼u0

���� ¼
Keng
Leng
Kt
Lt

� �
¼ 8144:0

3706:0

� �
.

By applying the model developed in this section, the overall gas turbine
model output is presented in the following form:
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y ¼

ΔT�
comb

ΔT�
t

ΔP�t
ΔP�c:HP
ΔT�

c
ΔWa

ΔF

2
666666664

3
777777775
¼

�0:00044
�0:0098
0:00011
�0:0015
0:025
0:0034
0:3

0:01
0:01
0:000018
0:0027
0:012
0:0001
0:044

2
666666664

3
777777775

ΔnLP
ΔnHP

� �
þ

555:00
459:00
0:6700
3:0000
34:000
�0:034
1791:0

2
666666664

3
777777775
Δwf

(9)

The accuracy of the two shaft gas turbine modeling is performed based on
the actual real on site data used for this modeling and the linearization
method used. Indeed, the performance and the efficiency of these models is
also apparent on their implementation in the control. Some control strategies
are interesting to be studied to demonstrate and to validate the benefits of the
proposed active control approach based on neuro fuzzy inference system for
the detection and the localization of faults in a two shafts gas turbine. Among
these strategies, the linear quadratic (LQR) control systems presented by the
following form:

Δ _x ¼ AΔxþ BΔu
ΔuðtÞ ¼ �KΔxðtÞ

�
(10)

where K is a LQR control vector.
To minimize the performance, index J given by:

J ¼
ð1
0

Δx � QΔxþ Δu � RΔuð Þ dt (11)

Where Q is the symmetric positive definite matrix and R is the Hermitian
symmetric matrix.

For this LQR control system, the following expressions can be obtained:

A� BKð Þ � Pþ P A� BKð Þ ¼ � Qþ K � RKð Þ
) A � Pþ PA� PBR�1B � Pþ Q ¼ 0

(12)

Where P is a hermitian matrix positive definite or a real symmetric matrix.
This allows to obtain the resulting system of the studied gas turbine

around the operating point, and to guarantee the stability of their outputs
using a conventional PID control, in the case where the active fault tolerant
control is not used. This is specified by a set of matrices presented as follows:

Δ _nLP
Δ _nHP

� �
¼ �0:324

0:39
1:56
�2:23

� �
ΔnLP
ΔnHP

� �
þ 8144:0

3706:0

� �
ΔWf (13)

To represent the gas turbine system, to be stabilized by the state feedback
control system u ¼ �Kx, a matrix representation is defined by:
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A� BK ¼ �0:324
0:39

1:56
�2:23

� �
� 8144:0

3706:0

� �
k1 k2½ �

¼ �0:324� 8144:0k1
0:39� 3706k1

1:56� 8144k2
�2:23� 3706k2

� � (14)

Therefore, the characteristic equation of the gas turbine system becomes:

sI� Aþ BKj j ¼ sþ 0:324þ 8144:0k1
�0:39þ 3706k1

�1:56þ 8144k2
sþ 2:23þ 3706k2

����
����

¼ sþ 0:324þ 8144:0k1ð Þ sþ 2:23þ 3706k2ð Þ ¼ 0
(15)

The poles in closed loop are determined as: s ¼ �0:324� 8144:0 k1 and
s ¼ �2:23� 3706 k2, the matrices Q and R are the quadratic performance

index, given by Q ¼ 1
0

0
1

� �
;R ¼ 1½ �, and the resultant solution is K1 ¼

0:9614 0:3017½ � with the poles are: −8947.57, −2.72.
In the following application section, the LQR control results will be

presented in order to compare the active tolerant faults control responses
compared by the results of the LQR control strategy without active tolerant
faults on the examined gas turbine variables, view on the same figures, both
the variation of the turbine with variable settings of the tolerant faults control
and without the tolerant faults. In order to show the fault tolerance of the
proposed control applied to the studied gas turbine.

Gas turbine modeling based on fuzzy neural system

In this section, a two shafts gas turbine modeling is proposed using the fuzzy
neural system to evaluate and to represent the dynamics of this rotating
machine. This approach is based on the use of ANFIS type fuzzy neural
network techniques. This allows to integrate the knowledge expertise, which
is expressed in the form of fuzzy rules, and the knowledge issued from the
actual on site data in the neural network training phase, which will allow to
adjust the parameters of the overall used models structure, subsequently, to
the active fault tolerant control in the studied system.

Adaptive neuro fuzzy inference system (ANFIS)

Recently, several applications of neuro fuzzy systems have been achieved and
developed for the modeling and the control of industrial systems (Benyounes,
Hafaifa, and Guemana 2016; Kulikov, Yu Arkov, and Abdulnagimov 2013;
Mohamed, Hafaifa, and Guemana 2016; Salahshoor, Khoshro, and
Kordestani 2011; Topalov et al. 2011; Zhiyao, Tong, and Yongming 2016).
However, ANFIS systems allow to automatically generate fuzzy rule-based
models based on the inference model of Takagi Sugeno. Indeed, this concept
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was originally proposed by Jang in 1993 (Jang 1993; Jang and Sun 1993) and
made a great success for modeling the complex nonlinear systems. The
ANFIS system configuration adopted in this work, to acieve the active
control, is composed of five layers, as described in Figure 4.

To apply the adaptive neuro fuzzy inference system structure ANFIS
model, shown in Figure 4, a fuzzy inference system of type Sugeno of first
order is considered, with the supposition of two inputs linguistic variables x1,
x2, and one output y, and that the basic rules contains two types of rules:

Rule 1 : If x1 is A1 and x2 is B1 Then y1 ¼ f1 x; yð Þ ¼ p1xþ q1yþ r1
Rule 2 : If x1 is A2 and x2 is B2 Then y2 ¼ f2 x; yð Þ ¼ p2xþ q2yþ r2

(16)

The outputs of the first layer represents the degrees of membership of the
input variables x1 and x2, given by:

Oi
1 ¼ μAi

xð Þ ; i ¼ 1; 2 (17)

Each node in the second layer is a fixed node noted by � and each one
generates as output the product of its inputs, using the fuzzy operator AND
to calculate the degree of activation of the premises, which corresponds to the
degree of membership of the rule concerned:

Oi
2 ¼ wi ¼ μAi xð Þ � μBi xð Þ ; i ¼ 1; 2 (18)

Each node in the third layer is also a fixed node, it achieves the normalization
of fuzzy rules weight. The normalization of weight is obtained according to
the following relationship:

A1 

X1

Membership functions Normalization Output calculation 

A2 

B1 

X2

B2 

N

N

T

T

X1  X2 

Faults 

Σ
f

W1 

W2 

Figure 4. Adaptive neuro fuzzy inference system structure ANFIS.
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Oi
3 ¼ wi ¼ wi

w1 þ w2
; i ¼ 1; 2 (19)

In the fourth layer, each node is adaptive and calculates the outputs of the
rules for determining the substantial parameters by performing the following
function:

Oi
4 ¼ �wi � fi ¼ �wi pixþ qiyþ rið Þ ; i ¼ 1; 2 (20)

The fifth layer which is also in the network is determined by the following
relationship:

Oi
5 ¼ f ¼

X
i

�wi � fi (21)

The ANFIS system applies the learning mechanism of fuzzy neuron on the
fuzzy inference techniques, where their memberships function parameters
are adjusted using the learning algorithm of gradient descent in combination
with less square algorithm.

ANFIS gas turbine model

The monitoring system for two shafts gas turbine presented in this work is
based on the input and outputs variables of the studied rotating machine.
These variables are used based on the choice of neuro fuzzy systems (ANFIS)
configuration to achieve the modeling for the MS 5002C gas turbine, where
the ANFIS system allows in particular to ensure the system operation under
degraded mode under the presence of sensor faults by the synthesis of an
active fault tolerant control strategy. So the gas turbine system is modeled by
Equations (7), which represents all the manipulated input–output relations,
given in the following equation:

ΔTcomb ¼ ANFIS1ðΔWf ;ΔWa;ΔTc;ΔFÞ
ΔTt ¼ ANFIS2ðΔWf ;ΔTcomb;ΔPc;ΔTc;ΔWaÞ
ΔPt ¼ ANFIS3ðΔWf ;ΔPc;ΔTt;ΔWa;ΔFÞ
ΔPc:HP ¼ ANFIS4ðΔWf ;ΔTc;ΔWa;ΔFÞ
ΔTc ¼ ANFIS5ðΔWf ;ΔPc;ΔWa;ΔFÞ
ΔWa ¼ ANFIS6ðΔWf ;ΔF; Pc:HPÞ
ΔF ¼ ANFIS7ðΔWf ;ΔWa;ΔPt;ΔPc:HPÞ

8>>>>>>>><
>>>>>>>>:

(22)

To well present the studied gas turbine system, 6270 samples data input/
output spread over 4 days of operation without faults and stop were used in
this modeling. The ANFIS network model uses these inputs to generate a
single output. Each input is fuzzified by three fuzzy sets type Gaussian.
Figure 5 shows the variation in mass flow rate given by ΔWa and their
surface is shown in Figure 6.
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Figure 7 shows the variations of the gas turbine system outputs compared
with ANFIS outputs model for the manipulated variables. Whereas, Figure 7
(a) shows the variation of the force carry on the rotor; Figure 7(b) shows the
variation of the compressor temperature; Figure 7(c) shows the variation of
the compressor pressure; Figure 7(d) shows the variation of the temperature
of the combustion chamber; Figure 7(e) shows the variation of the tempera-
ture of the turbine; Figure 7(f) shows the variation of mass flow; and Figure 7
(g) shows the variation of the turbine pressure.

Active fault tolerant control applied to a gas turbine

The active fault tolerant control approach in this section of work extends to
the case of gas turbine diagnostic systems, and define the diagnosis as
detection, localization, and identification of faults model-based for the gas

Figure 5. ANFIS network model for the variable air mass flow ΔWa.

Figure 6. ANFIS model output area for the variable air mass flow ΔWa.
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turbine controller reconfiguration. However, the detection can detect any
deviation from the normal behavior of the system and alert operators to the
presence of a fault. The localization allows to trace the origin of the anomaly
and locate the defective components, this localization is important, because
the propagation of failure often causes the appearance of new faults. Finally,
identification determines the time of occurrence of the failure, its duration
and its importance.

In the context of the gas industry, including gas turbine, diagnosis
helps operators to monitor the machine and therefore to make a decision
to perform a reconfiguration of the control system, in case of non-
tolerable defects. To characterize the performed diagnostic system, resi-
dues generation of the operating system was carried out, these residues
are the differences between the output signals measured and their
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compared with ANFIS output model. (a) Variation of the force carry on the rotor F. (b) Variation
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estimation by the proposed ANFIS models, it is expressed by the follow-
ing relationship:

R tð Þ ¼ yr tð Þ � ymod tð Þ (23)

The residues represent the relations between the inputs/outputs of the stu-
died gas turbine system, given by Equation (22) and shown in Figure 7, were
generated. In their evaluations, the card Average method of Shewhart, given
in Andrew and Deming (1939), and Basseville and Nikiforov (1993) was used
to detected the sudden change of the studied system statistical characteristic.
With the idea to divide the control strategy into three lines; the first is the
main line and the two other lines are named limitations “upper control limit
(UCL)” and “Lower control limit (LCL).”

This method uses the normal laws to calculate their standard deviation; for
reference data N � 100 and an average μ ¼PX=N. The standard deviation
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values is given by σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP x�μð Þ2 =N

q
, and for sample n and average m ¼P

Xi=n the standard deviation values is given by s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

xi �mð Þ2= n� 1ð Þ
q

.
The residues generation process on the actual data of the studied turbine is

being centered following the normal laws (average m and standard deviation
μ), where samples follow the normal laws (average m and standard deviation
s=

ffiffiffi
n

p
) with thresholds detection (limits of detection) and fixed to

UCL; LCLð Þ � K1 � s tan dard deviation and K1is the standard deviation
number. Table 1 summarizes the average m and the standard deviation of
each residue generated output signal.

After the step of residues generation, the next step is their evaluation for
the fault detection. For this, neuro fuzzy model type ANFIS has been
proposed to decide and to localize the type of faults in the studied gas
turbine system from the residues generated previously, this step is shown
in Figure 8.

The proposed strategy for the gas turbine diagnosis is shown in Figure 9, a
residual generation mechanism is integrated in this configuration to carry
out the active fault tolerant control based ANFIS approach. This step
required the measures and the turbine inputs/outputs data, to estimates the
dynamic state and the occurrence of faults during operation phase. This
strategy takes into account the total failure of the sensors, which will enable
the reconfiguration of the used fault-tolerant control strategy.

After the residual generation and the affirmation of the occurrence of
faults, reconfiguration in turbine system controllers is used, according to a
decision made by the residual evaluation mechanism. The obtained results

Table 1. Detection threshold.
�X S (UCL,LCL)

eTcomb � 2 � 10�5 1.14 0.42
eTt � 4 � 10�5 1.11 0.33
ePt � 9 � 10�8 0.0013 0.004
ePc:HP � 9:42 � 10�7 0.07 0.2
eTc 3:11 � 10�5 1 3
eWa 2 � 10�6 0.33 1
eF 1:01 � 10�4 1 3

Detection 
o or 1 

input inputmf rule outputmf output

Error 

Figure 8. Defect detection system based on ANFIS system.
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of this approach will be presented in the next section to show the con-
tribution in this work of active fault tolerant control affecting a two shaft
gas turbine.

Applications results

In this section, various tests were carried out in emulating defects, in order to
show the efficacy of the proposed active fault tolerant control strategy applied
to two shaft gas turbine. The control actions are applied to ensure an
acceptable turbine operation on one hand and on the other, to ensure the
overall stability of the turbine system based on an on-line solution in terms
of reconfiguration of controllers in the system. Indeed, the results obtained
can perform the detection, the isolation and the estimation of faults in the
studied gas turbine based on the assessment and the evaluation of the
residuals for each test.

Knowledge 

of faults 

ANFIS Models 
Residual generation 

Residual evaluation  

Decision logic

Residual 

X1  X2 

Actuators Sensors

Unknown inputs 

Inputs Outputs Gas Turbine 

System 

Faults
FaultsFaults

Process 

+
-

Residual 
processing 

Threshold 

... 

... 

Figure 9. Diagnostic system configuration model based system.
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Figure 10(a) shows the variation of the gas turbine output temperature
deviation under fault tolerant control using the ANFIS model in red colour
and without fault-tolerant control using only the LQR control in green
colour to stabilize the output. At t ¼ 50 a sensor fault is detected by the
active control system, based on the residues variation of this variable shown
in Figure 10(b). By analyzing this figure, it can be seen that the capacity of
ANFIS model for detecting the fault, with its fixed thresholds for estimating
the faults on the temperature variable. Contrary with the use of the LQR
control upon the same fault occurrence, it is noted that the temperature
drops causing the instability of the system.

To demonstrate the performance and the robustness of the active fault
tolerant control strategy other tests were performed, the inputs/outputs data
are used for ANFIS modeling of the studied gas turbine containing seven
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APPLIED ARTIFICIAL INTELLIGENCE 531



variables. Figure 11(a) shows the variation of the deviation of the compressor
pressure ΔP�c:HPðkPaÞ) with fault tolerant control using the ANFIS model and
the response without fault tolerant control. The fault, which was occurred at
t ¼ 25h, was detected by the proposed strategy, the variation of residues of
this variable is shown in Figure 11(b). The pressure in the turbine falls when
the fault occurred with the LQR control. This dysfunction causes instability
of the turbine and may lead to adverse consequences on the turbine and the
gas facility. In contrast, the the active fault tolerant control preserved per-
formance in degraded mode, that is to say when the fault occurs the stability
of the turbine system is provided.

Figure 12(a) shows the comparison between the active fault tolerant
control active fault tolerant control algorithm (AFTC) using the ANFIS
model and the LQR control in the case of the variation of the output
temperature in the combustion chamber ΔT�

combðKÞ. It can be noticed that
in presence of the fault, the active fault tolerant control system AFTC ensures
an acceptable performance against the LQR control, where its performance
degraded function of time, and the temperature in the combustion chamber
continues to rise and take away from the operating point. The variation of
the residues of this variable is shown in Figure 12(b), the residues estimation
results are satisfactory, the diagnostic mechanism is activated in the presence
of faults and allows automatic reconfiguration of the AFTC control.

Figure 13(a) shows the evolution of the output turbine pressure deviation
ΔP�t ðkPaÞ with fault tolerant control using the ANFIS model and without
fault tolerant control. The occurrence of faults of low vibration is detected
and isolated, and the estimation of these faults has been built and detected
from the residue, as shown in Figure 13(b).

Figure 14(a) shows the evolution of the output compressor temperature
deviation ΔT�

c ðKÞ with fault tolerant control using the ANFIS model and
without tolerant control fault. The variation of the residues is shown in
Figure 14(b), where it can be noticed that the appearance of faults is detected
and isolated.

Nevertheless, the effectiveness of the active fault tolerant control depends
on the amplitude of faults. Indeed, Figure 15(a) shows the deflection output
variation of the air mass flow ΔW�

aðKg=sÞ with fault tolerant control using
the ANFIS model and the variation of this variable using the optimal control
(LQR). The variation of the generated residues is illustrated in Figure 15(b),
where the fault is correctly estimated under the consideration that the
modeling of the system is well done.

The obtained results are very satisfactory and show that the active fault
tolerant control is perfectly beneficial for the two shafts gas turbine control,
where the appearance of faults is detected and located and no false alarm is
generated. The experimental study presented in this work based on real on site
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data shows the effectiveness of the active fault tolerant control using the ANFIS
modeling approach, its originality is presented in its application to an industrial
process of the two shafts gas turbine case. The ANFIS models based diagnostic
algorithms have been implemented and validated the present work on a two
shafts gas turbine system. The inputs/outputs data collected from real measure-
ments on site have allowed to apply AFTC in real time. Their principles reside
in the generation of fault indicators or signs based on the comparison of
significant symptoms of faults with measurements taken directly from the gas
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turbine system. The fault occurrence is detected via residues calculations, which
consist of the difference between the measured and the estimated quantities,
and this comparison allows to detect the occurrence of the fault precisely.

Conclusion

In this work, the active fault tolerant control has been developed and applied to a
two shaft gas turbine used in gas transportation, based on adaptive neuro fuzzy
inference system (ANFIS) approach. Indeed, the advantage of this approach was
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presented in the context of the studied gas turbine type MS5002C ANFIS
modeling, where the choice of this approach is justified by its many advantages.
Especially, the ease use of these models in control strategies implementation and
their reconfigurable control system. The objective of this work consists in
improving the gas turbine operating system safety while ensuring the continuity
of production under the fault presence, allowing the gas turbine operation in
degraded mode with acceptable performance and while ensuring system stabi-
lity. This approach has also been validated in the detection of faults in sensors of
gas turbine system, despite the varying parameters of the turbine. The obtained
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results show the effectiveness of the active fault tolerant control developed with
the reconfiguration of the control in gas turbine, where the faults are detected
and localized by the technique of residues and automatic mechanism for ensur-
ing the control system reconfiguration to provide the performances and the
stability of the operation system under fault. The presented control can be a
promising solution against fault occurrence in two shafts gas turbine systems.
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