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Sparse Connectivity and Activity Using Sequential Feature
Selection in Supervised Learning
Fariba Nasiriyan and Hassan Khotanlou

Department of Computer Engineering, Bu-Ali Sina University, Hamedan, Iran

ABSTRACT
Generally, in neural networks the sparseness is a suitable regular-
izer in a lot of applications. In this paper, sparse connectivity and
sparse representation are used to enhance solutions to the pro-
blem of classification. Sequential feature selection is then lever-
aged to remove redundant features and select relevant ones.
Sparseness-enforcing projection operator is used to discovering
the most similar vector with a predefined sparseness degree for
any input vector as well. As it will be argued, the mentioned
operator is approximately differentiable at every point. From
the facts it is clear that the sparseness enforcing projection
would be appropriate for use as a transfer function in the pro-
posed neural network and the network can be tuned using
gradient based methods. Meanwhile, an intelligent method was
used to build the architecture of the proposed neural network to
achieve better performance. The MNIST dataset which consists of
70,000 handwritten digits was used to train and test the method
and 99.18% accuracy was achieved by classifying this dataset.

Introduction

One of the current, most significant discussions in neural networks is
sparseness which was introduced by Laughlin and Sejnowski (2003). This
subject claims that every neuron has only limited connections with others.
Interestingly, sparse connectivity and sparse activity of neurons that are
employed in a variety of machine learning algorithms have been discovered
in mammalian brains (Hubel et al. 1962). To be more specific, important and
notable results were achieved while implementing the sparse coding model of
Olshausen and Field (2004), which gives small pieces of images of the natural
scenes, and their model is capable of generating Gabor-like filters similar to
features of animates primary visual cortex cells (Vinje and Gallant 2000). It is
also worth mentioning that the proposed method by LeCun et al. which can
remove synaptic connections in neural networks using limited connections
among neurons is another implementation of sparse connectivity (Gregor
and LeCun 2010).
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The sparseness can be explained briefly in two concepts:

● First: the sparse connectivity, which means some of the neurons in the
network are active at any time (Olshausen and Field 2004).

● Second: the sparse activity, which means that every neuron in the net-
work has only limited connections with others (not all the neurons)
(Olshausen and Field 1997).

Both of the previously mentioned concepts exist and are observed in
human and animal brains (Hubel and Wiesel 1962; Markram et al. 1997;
Mason, Nicoll, and Stratford 1991).

To implement sparseness some approaches exist, the first one is the L0
pseudo norm which is a method of quantifying sparseness using the amount
of non-vanishing records in a vector (Rehn and Sommer 2007). By the poor
analytical properties of L0 pseudo norm, the Manhattan norm of the vector,
which is a convex relaxation of the preceding problem, is employed instead
and used in a variety of applications (Donoho 2006). Concomitantly, finding
the optimal solution using L0 pseudo norm, results in an NP-Hard (Non-
Deterministic Polynomial-Time Hard) problem (Natarajan 1995). The dis-
advantage of this method is that it is not scale invariant. Another method to
provide this idea using the ratio of Manhattan norm and Euclidean norm of a
vector was introduced by Hoyer in (2004). The Hoyer’s method consists of a
mathematical computation for sparseness measure which is scale invariant
and will be described in detail further on.

In connection with pattern recognition and machine learning problems,
which are affected strongly by selecting suitable features, the feature selection
methods would be an important step. These methods generally identify subsets
of data that are pertinent to a parameter called Maximum Relevance (Auffarth,
López, and Cerquides 2010).

Minimum redundancy maximum relevance (mRMR) was first demon-
strated by Ferri et al. (1994). It is one of the appropriate ways of feature
selection generally described in its match up with relevant feature selection. It
is an algorithm usually employed in methods to determine the properties of
genes and phenotypes and removes their connection and relation as much as
possible. It is demonstrated that the mRMR algorithm’s goal is to remove
redundant subsets of features. This aim helps in solving a variety of problems
such as cancer diagnosis and speech recognition.

Classification of handwritten digits is a common problem and there are
lots of solutions for it. The MNIST dataset which consists of 70,000 samples
of handwritten digits is a famous dataset for these types of classification
problems (LeCun et al. 1998). In the present study, a new method is
suggested based on sparse connection and removing redundant features
using sequential forward feature selection (Zongker and Jain 1996) in the
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hidden layer of a two-layer neural network and with sparseness enforcing
projection operator (Hoyer 2004) as a transfer function. Also, performing
classification by use of the extracted features by a one layer neural network in
high-dimension space has been tested. The suggested method can be used for
other classification problems as well. Very deep and large neural networks
hold a variety of adjustable and adaptable weights. Commonly, these net-
works are capable of yielding errors as low as 0.35% in conjunction with
flexible and affine deformation (Ciresan et al. 2010).

Proposed method

In this section, we initially explain some definitions and preparation infor-
mation about the Hoyer sparseness measure method, the algorithm used to
implement sparseness enforcing projection and the feature selection method
that is used in the proposed method. Finally, the architecture of the proposed
neural network will be presented.

Sparseness measurement approach

One of the prominent methods to achieve sparseness measure concerning the
ratio of Manhattan norm and Euclidean norm of a vector was introduced by
Hoyer in (2004) and consists of the computation in Equation (1):

σ : Rnn ! ½0; 1�; x !
ffiffiffi
n

p � jjx1=jjx2ffiffiffi
n

p � 1
; (1)

Considering xk k2 � xk k1 �
ffiffiffi
n

p
xk k2 for all x 2 Rn it is obvious that σ is

well defined in the above term and also sparse vectors grow as a result of
selecting higher values (Laub 2005) and is scale invariant because σ αxð Þ ¼
σ xð Þ for all σ�0 and all x 2 Rn. This sparseness measure supplies all
touchstones introduced by Hurley and Rickard (2009) except the one
which presents and supplies the fact that the sparseness of a vector is
essential to be identical to the amount of sparseness in the vector which is
built by multiple concatenating of the original vector; but fortunately for a
correct sparseness measure this feature is not critical (Thom and Palm 2013).

In the proposed method, a sparseness enforcing projection operator was intro-
duced by Hoyer (2004) which is appropriate for projected gradient decent means
for improving and optimizing concerning σ for a predefined and ideal degree of
sparseness σ� 2 0; 1ð Þ. Hoyer’s solution answers the problem by discovering the
closest vectorwith a pre-defined scale of sparseness σ* for the absolute vector and is
presented as a Euclidean projection onparameterization of the sets as Equation (2):

S λ1;λ2ð Þ : fs 2 Rnjjsjj1 ¼ λ1 ^ jjsjj2 ¼ λ2 ^ S λ1;λ2ð Þ
�0 : S λ1;λ2ð Þ \ Rn

�0: (2)
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In Equation (2), it is useful that the first set makes unrestricted projection
achievable. In addition, the latter set gives the point in non-negative solution
and states. Strictly speaking, λ1; λ2> 0 are target norms and it is accessible to
be chosen such that all points in this set achieve the σ* sparseness.

To perform the explained projection of Hoyer’s original method, cyclic
projections should be carried out that consist of projection onto a hyper plane
representing the L1 norm constraint, a hyper sphere representing the L2 norm
constraint, and the non-negative orthant. In another major study, Theis et al.
have shown that a simpler and slightly improved version of the Hoyer’s base
solution, proved to be correct (Theis, Stadlthanner, and Tanaka 2005).

Algorithm for applying sparsity enforcing projection operator

For computing the sparsity enforcing projection operator we used the proposed
algorithm by Thom and Palm (2013). First we consider some preparation infor-
mation. Let H :¼ fa 2 RnjeTa ¼ λ1 be the target hyper plane where all points
coordinates are added together to λ1 and e1; e2; . . . ; en 2 Rn be the canonical basis
of then-dimensional Euclidean spaceRn. The vectorH in the non-negative orthant
Rn
�0 is equal to the L1 norm constraint. Further let K :¼ q 2 Rn qk k2 ¼ λ2

��� �
be

the target hyper sphere of all points satisfying the L2 norm constraint. Now with
the above definition for H and K we have Equation (3) (Thom and Palm 2013):

S λ1;λ2ð Þ
�0 ¼ Rn

�0 \H \ K :¼ D: (3)

Deutsch discusses that the computation of a projection onto a collection
that consists of limited number of closed and convex sets, performing alter-
nating projection onto the members of that intersection, would be enough
(Deutsch 2001).

To perform the projection, consider L :¼ H \ K which stands for the
intersection of L2 norm target hyper plane and L2 norm hyper sphere. It
should be identified for an index set I � 1; 2; . . . ; n the set LI ¼ fa 2 Ljai ¼
0 for all i‚Lg implies a subset of points in L that does not include the
coordinates with index not in I. This is the method for operating projL and
projH in Algorithm 1 shown in Figure 1. Using the previous description and
Hoyer’s sparseness measure constraint σ, computing the sparseness enforcing
projection is shown in Figure 1.

In this algorithm, the aim was to assess that the projection onto D can be
implemented using alternating and cyclic projection onto the predefined
structures.

About the projections onto the simplex C, if x�Rn , then a separator t̂ 2 R
exists such that p :¼ projC xð Þ ¼ max x� t̂:e; 0

� �
and the element-wise method

(Chen and Ye 2011) is used to calculate maximum. In this paper, we always
consider t̂ � 0. This hypothesis denotes omitting all inputs in x that are less than
t̂ after performing projection.
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Figure 2 shows the algorithm used in the present paper to compute the
separator t̂ and the number of nonzero members while projection onto C that
was developed by Thom and Palm (2013). The algorithm presents an adapted
version of Chen and Ye’s method (Chen and Xiaojing 2011). During the
algorithm Sn refers to the symmetric group and Pt presents the permutation
matrix correlated with a permutation of t 2 Sn. The algorithm’s procedure can
be explained as: sorting the argument x and calculating the mean value of the
largest members in x minus the target L1 norm λ1, named t̂. According to
Blumensath and Davies, the number of relevant inputs for computation of t̂ is
equal to the L0 pseudo-norm of the projection and is discovered by testing every
possible value, starting with the largest one and continue descending
(Blumensath and Davies 2009). Computational complexity of the presented
algorithm in Figure 2 is influenced by sorting the input vector and thus is
quasilinear (Thom and Palm 2013).

Sequential forward feature selection

The main point in feature selection is to catch a group of candidate features
and then pick out the ones that have the best performance in classification
systems. The introduced process is capable of reducing and refining not only
the complexity of problems, by reducing the mass computation and collected

Figure 1. Algorithm for computing the operator of sparseness enforcing projection in respect to
Hoyer’s sparseness measure σ that was developed by Thom and Palm (2013).
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features, but also there are some situations that cause to obtain better
accuracy in classification because of finite sample size effects (Jain et al.
1982). The procedure of selecting a suitable algorithm really depends on
the problem, the size and desired recognition rate and computational per-
formance (Ferri et al. 1994).

Formally in feature selection, given a feature set X ¼ fxiji ¼ 1 . . .Ng, find
a subset YM (Equation (4)), withM<N, that maximizes an objective function
J Yð Þ, ideally P correctð Þ.

YM ¼ xi1; xi2; :::; xiMf g ¼ arg max
M;iM

J xij1 ¼ 1; :::;Nf g: (4)

It is claimed that the sequential forward selection (SFS) can be counted as
one of the most simple and fast procedures of feature selection in different
areas (Zongker and Jain 1996).

The mechanism of sequential forward feature selection can be summar-
ized as:

Prior to all, SFS earmarks an empty set and sequentially extends features
from feature space. The explained action continues to reach a desired (user-
specified) subset size. Each iteration progression includes adding a new
feature and evaluating that new feature (not all previous added features to
the subset). After that, the evaluation operation would be done using the
pretended principle function that assesses the feature which persuades the

Figure 2. Algorithm for information computing for performing projections onto C (Thom and
Palm 2013).
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maximum performance improvement of the feature subset if it is included
(Marcano-Cedeño et al. 2010).

To perform feature selection in the proposed method we used sequential
forward feature selection in the hidden layer of our network to select
appreciate features among all features produced in this layer with sparse
connection and sparse activity in this layer.

Kullback–Leibler divergence

The Kullback–Leibler divergence (KL divergence) is a non-symmetric
measure of the difference between two probability distributions P and Q
which is denoted DKL P _ Qð Þ. In other words, DKL P _ Qð Þ is the value of
information lost when Q is used to approximate P (Eguchi and Copas
2006). As the KL divergence is a known method, we refrain from further
discussion.

Architecture of the proposed method’s network

In this section, the implemented network that is a refined and improved
version of Thom et al.’s method (Thom and Palm 2013) and consists of an
auto encoder in addition to a two-layer neural network that uses sparseness
enforcing projection as transfer function and a unit to pick out the best
features is described as seen in Figure 3.

In the proposed model, a module was improvised for reconstruction. In
this module the input is converted to an internal representation that is built
using Wh and this representation is used to reconstruct the input ~x 2 Rn by
means of the auto encoder network, so a weight matrix W 2 Rd�n and a
transfer function which is Hoyer’s sparseness enforcing projection were
obtained. This transfer function guarantees that our internal representation
is close to the input sample and neurons are sparsely active and sparsely
connected to each other in the network.

This module is called supervised online auto encoder (SOAE) (Thom and
Palm 2013). In the proposed network, the aim is Weið Þ ¼ σw, where σw is the
target degree of sparseness connectivity and the sparse connectivity holds by
enforcing W to be sparsely presented

Here σw 2 0; 1ð Þ and Wei is ith column of W. This condition has been
adopted from Hoyer (2004).

After feature extraction level, to find the suitable number of neurons (sui-
table number of features) that builds the best internal representation of the
input, SFS method is applied. In the sequential forward feature selection
procedure, first of all, the set of extracted features computed by the network’s
hidden layer is given to this unit. It is showed that the structure of SFS might be
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divided into three main subgroups that are performing repetitively. It starts
with an empty set of features, activates features individually and optimizes the
weight matrix concerning the current subset of features. It then deactivates the
activated feature to examine its role in the efficiency. During this process the
method activates the feature permanently leading to the best performance. The
investigated steps are performed for all extracted features and obtain the most
important and most effective subset of features which is used to represent data
and optimizes weight matrix to achieve high accuracy in classification.

It is obvious that in every iteration, some neurons randomly connect to
each other and make a feature. This feature is selected if it improves our
representation or omitted if does not have a good role in performance. As a
result, the number of neurons in the hidden layer is calculated using sequen-
tial forward feature selection algorithm and yields the best effective subset of
features which are not redundant and destructive.

The classification module computes the decision by feeding the internal
representation (h) through a one layer network. The output of classifier

Figure 3. The proposed method’s architecture.
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depends on W, Wout, θout. Where W is the synaptic weight matrix of
reconstruction part and Wout and θout are the parameters of the classification
module and h is just depend on W.

To optimize the parameters explained above, a differentiable similarity
measure is used for both reconstruction and classification parts. So, to
minimize the deviation in both approximations we have the objective func-
tion as Equation (5):

ESOAE W;Wout; θoutð Þ ¼ 1� αð Þ:SR ~x; xð Þ þ α:SC y; tð Þ; (5)

where y is the approximation of target output (t) and SR and SC are similarity
measure functions. α� 0; 1½ � is a tradeoff parameter between classification and
reconstruction. If α ¼ 0 then the SOAE is a network for finding a good
representation to approximating the input and if α ¼ 1 then it will just pay
attention to the classification part.

This tradeoff variable is adjusted according to α vð Þ ¼ 1� exp �v=100ð Þ where
v�N represents the number of the current epoch. Thus it is vivid that the
parameter α starts with zero value and gently increases and reaches one. So at
the beginning the emphasis is on optimization of reconstruction module and this
emphasis decreases slowly on this module and increases for the classification part.

There are some options for similarity functions and here the KL diver-
gence similarity measure is used.

To optimize the proposed objective function, projected gradient descent
(Bertsekas 1999) is applied, the parameters are tuned using online learning
procedure.

As mentioned before, Hoyer’s projection operator is used as hidden layer’s
transfer function in reconstruction module and sigmoid function for the classi-
fication part.

Equivalent to the initialization of the radial basis function networks, pre-
sented weight matrix would be attained by choosing a subset of the learning set
randomly (Bishop 1995).

Experimental results

To train and test the proposed method, the MNIST data base of handwritten
digits was employed (LeCun et al. 1998). This dataset consists of 70,000
samples, including 60,000 learning samples and 10,000 samples for evalua-
tion. In order to generate the original dataset, the displacement of the digits
was reached based on their barycenter.

The input data dimension is 28*28 = 784 since each sample in the dataset
denotes a digit in a 28*28 image and a class label c 2 0; 1; . . . ; 9.

Simard, Steinkraus, and Platt (2003) reported that the employment of
800 hidden units for this dataset yields desired performance when using
sufficient learning samples. In the proposed method, the number of

576 F. NASIRIYAN AND H. KHOTANLOU



neurons in the hidden layer was chosen to be 1000 experimentally and
with respect to the introduced information presented above. An initial
step size must be set because of the wielding gradient descent algorithm
for optimization. Each candidate’s step size was ranked by means of
performing twofold cross validation five times on the learning data. For
each candidate the median of 10 resulting classification errors was then
computed and analyzed. Finally, respecting the minimum of the median
classification errors, the winning step size was determined. The calculated
step size was dampened at every epoch using a factor of 0.999. When the
comparative change in the target function was very small and no remark-
able refinement was observed in the training set, termination of the
optimization process was accomplished. In the next step, the eventuated
classifiers were exerted to the evaluation set and the number of wrong
classifications was computed. During the experiments it was discovered
that 96% of all samples located in the learning set held a sparseness which
was less than 0.75 and it lead to set the objective degree of sparse
connectivity σw ¼ 0:75, which is why the resulting bases are required to
be indeed sparsely connected in comparison with the sparseness of the
digits (Thom and Palm 2013). Target degrees of sparse activity σH with
respect to σ, that is the Hoyer’s sparseness measure, are picked from the
interval [0.20, 0.95] in steps of size 0.05.

After the training phase, individual samples of the learning set were
embedded to the network and active neurons in the hidden layer were
enumerated. Furthermore, the achieved sparseness activity was computed for
each value of σH concerning L0 pseudo-norm. The received consequence of
mean value and standard deviation of sparse activity is presented in Figure 4.
From the figure, it is apparent that there was a net decrease in the standard
deviation of activity while the sparseness increased, therefore the mapping
from σH to the resulting number of active units gets smarter.

For better perception of the method’s function, some learned weights of
the network are represented in Figure 5.

Table 1 shows the achieved accuracy results of the proposed method in
comparison to the achieved accuracy by other methods: SOAE-σ, SOAE-L0,
SMLP-SCFC, MLP-OBD and MLP-samples presented in Thom and Palm
(2013) and Thom, Schweiger, and Palm (2011).

In Table 1, the last column presents the median ± standard deviation of
the attained classification. It can be inferred from the results that the pro-
posed method could best classify the test data in comparison with other
similar methods based on the accuracy of classification and evaluation error.
In compare with the best results reported in Thom and Palm (2013), the
proposed method increase 1% the accuracy of the classification and
decreased about 12% the evaluation error. These results show that sequential
feature selection can improve the quality of classification.
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Figure 4. Eventuated number of nonzero records in an internal representation h with 1000
entries, with respect to the objective degree of sparseness.

Figure 5. Some learned weights of the network.
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Conclusion

The engineers of artificial information processing systems obtained notice-
able practical benefits using the sparseness implication which was ascertained
by neuroscientists.

In this study, we attempted to build a strong classifier to classify hand-
written digits. To achieve this goal, first of all, a study and computation on σ
was performed and the Hoyer’s sparseness measure and particularly the
projection of arbitrary vectors onto sets by means of the achieved value for
σ done. The transfer function of the neural network implemented using the σ
projection and the characteristics of σ led to yielding a differentiable closed-
form expression for presumption of sparse code words which is discussed, in
detail, in the manuscript. Besides the explained sparse activity, it was also
forced in the proposed network to perform sparse connectivity by means of
the σ projection after the presentation of learning samples and it is obvious
that because of the smoothness of the projection gradient based methods are
befit to be employed for optimization. The SOAE was applied for the pattern
recognition part of the method while described the hidden unit of network
implemented by means of sparseness enforcing projection as transfer func-
tion in the neurons. Afterwards, sequential forward feature selection was
applied to select the best features among the created ones using sparse
connectivity and sparse activity between neurons and finally the internal
representation was extracted with the SOAE passed to a one layer network
to classify data. The aforementioned results proved that the proposed method
performs suitably.
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