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Abstract
In many scenarios, it is necessary to monitor a complex system via a time-series of observations
and determine when anomalous exogenous events have occurred so that relevant actions can be
taken. Determining whether current observations are abnormal is challenging. It requires learning
an extrapolative probabilistic model of the dynamics from historical data, and using a limited
number of current observations to make a classification. We leverage recent advances in long-term
probabilistic forecasting, namely Deep Probabilistic Koopman, to build a general method for
classifying anomalies in multi-dimensional time-series data. We also show how to utilize models
with domain knowledge of the dynamics to reduce type I and type II error. We demonstrate our
proposed method on the important real-world task of global atmospheric pollution monitoring,
integrating it with NASA’s Global Earth Observing System Model. The system successfully detects
localized anomalies in air quality due to events such as COVID-19 lockdowns and wildfires.

1. Introduction

Time-series analysis is used to extracting meaningful statistics and characteristics of temporal sequences of
data [1], and is among the most ubiquitous mathematical methods. Indeed, time-series are universal for
signal processing methods and in pattern recognition applications, dominating characterization of
econometrics and finance along with almost any scientific and engineering application. Time-series methods
can be broadly divided into time-domain and frequency-domain methods, the former of which uses a variety
of statistical techniques to characterize a sequence, and the latter of which uses spectral (e.g. Fourier)
decompositions and wavelets as the underlying representation of the signal. While the goals of time-series
analysis are diverse, including signal estimation, signal classification, signal segmentation, and prediction and
forecasting, time-series analysis methods almost universally aim to construct a simple and accurate model
underlying the observations. Noisy, non-stationary data with anomalous exogenous events are the most
difficult to characterize for any method. However, emerging machine learning methods, which are advocated
here, allow for a flexible mathematical framework capable of characterizing even such difficult time-series.
We leverage recent advances in long-term probabilistic forecasting, namely the Deep Probabilistic Koopman
(DPK) method [2, 3], to build a general method for classifying anomalies in multi-dimensional time-series
data. DPK combines deep learning with a spectral estimation approach in order to build a model that
accommodates noisy, nonstationary time-series data, further allowing for the detection of anomalous events.

The importance of time-series analysis has led to a broad range of mathematical innovations
characterizing sequential temporal data. In addition to traditional statistical methods, there are growing
number of methods using concepts from dynamical systems [4–6] and machine learning [7, 8] for the
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analysis of time-series data. Traditional statistical methods include the time-domain methods, such as the
family of autoregressive (AR) models and their many variants, including AR moving average, AR integrated
moving average (ARIMA), seasonal ARIMA, etc [1]. Such models use a diversity of optimization techniques
to estimate parameters of a linear model with its history dependence. Traditional frequency-domain
methods use the properties of short-time Fourier transforms [9] and/or wavelet transforms [10] in order to
characterize the signal in a joint time-frequency representation. More recently, there have been efforts to
model time-series data as from a dynamical systems perspective [4–6]. Thus the basic concept is to identify a
dynamical system as a generative model that underlies the source of the temporal sequence of data. Included
in such methods are the dynamic mode decomposition [5, 11–13], Koopman operator [14–19] and SINDy
(sparse identification of nonlinear dynamics) [6, 20, 21]. A third approach is offered by machine learning,
whose flexible frameworks and universal approximation properties [22], have led to a diversity of neural
network architectures [23, 24] for learning time-sequences, including recurrent neural networks and long
short-term memories [25]. Although often lacking in interpretability and generalization, deep learning
methods have typically exhibited superior performance when provided sufficient training data.

Here we present a novel and general method for classifying anomalies from multi-dimensional
time-series data which leverages recent advances in long-term probabilistic forecasting, namely DPK. While
DPK is designed to be a forecasting method, it makes strong assumptions about stability which makes it
useful for detecting anomalies. For the remainder of this paper, we will refer to a DPK model as a
time-dependent model, rather than a forecast, because our aim is not predicting future observations. DPK is
a deep learning framework which takes time-series data and infers a probabilistic model whose parameters
are expressible as a function of a minimal set of sinusoids in time [3]. This fitting procedure captures both
the nonstationary aspects of the time-series data, as well as a Fourier-like Koopman decomposition of the
signal in time. To demonstrate the capabilities of this method, we apply it to time-series of nitrogen dioxide
(NO2), an important air pollutant closely linked to the burning of fossil fuel. The evolution of NO2 at a given
location is fundamentally non-stationary in nature with unknown exogenous influences. Finding outliers in
nonstationary time-series data is a challenging task because it involves creating a long-term probabilistic
model of the data that generalizes to future timesteps. Unlike most other machine learning problems which
are interpolative (i.e. the inference-time data usually lies in the convex hull of the training data), this problem
is extrapolative, and requires training on data from thousands of timesteps prior to inference for sufficient
data size and statistical power. The presented method is able to characterize air pollution anomalies, such as
changes in NO2 in the wake of COVID-19 lockdowns. Moreover, the method detects these changes only few
days after the onset of the anomaly, which makes it suitable for near real-time monitoring applications. An
important aspect of our demonstration application is the combined use of publicly available atmospheric
observations and corresponding computer simulations. Computer models, such as the NASA Goddard Earth
Observing System (GEOS) Composition Forecast system (GEOS-CF) [26], are an indispensable tool to
analyze and understand the drivers of air pollution, such as pollution transport, precursor emissions, and
atmospheric chemistry [27]. We show how leveraging this information with observations can help reduce
type I and type II errors.

2. Methodology

We first present the basic methodology for classifying anomalous behavior in 1-dimensional time-series
observations, then we show how this definition can optionally be expanded to leverage domain-specific
models of the observations, and finally we present how to classify anomalies in multi-dimensional
observations, allowing for more general and nuanced hypothesis testing. A summary of the methods can be
seen in figure 1, and an example is shown in figure 2.

2.1. DPK for anomaly detection
Here we present how to leverage the long-term probabilistic modeling ability of DPK to produce a calibrated
anomaly classifier and monitor for such events in 1-dimensional time-series.

DPK produces a stable long-term probabilistic model of time-series data by expressing it as a
parameterized probability distribution (in this case Gaussian) whose parameters vary as a function of
sinusoids with different frequencies, as well as a limiting zero frequency for aperiodic trends. It is a result of
Koopman operator theory [12, 15, 17, 18, 28] that any deterministic stable dynamical system can be
expressed as a function of sinusoids with various frequencies [2, 14, 29]. This is extended to the case of
stochastic stable dynamical systems by letting our mapping from the sinusoidal Koopman observables be
stochastic. Mathematically,
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Figure 1. Summary of our method as applied on atmospheric data with Gaussian likelihood. Data in this figure is synthetic and
for illustrative purposes only. The process shown in the top yellow box is performed on each atmospheric monitoring station i
over the training interval: DPK is run on the observations and GEOS-CF model to create a probabilistic ‘business as usual’ model
of both; the deviation zt from usual is calculated; the difference between these deviations is calculated; and a running average over

k hours is taken to produce ζ̄
(i)
t , which is approximately normally distributed (see sections 2.1 and 2.2). A threshold on ζ̄

(i)
t can

be used to determine whether a time t is anomalous for a particular station i. If we wish to check whether there is an anomaly in
some region R= {s1, . . ., sn} at some time t after the training interval, we check whether the Mahalanobis distance ZR,t of

(ζ̄
(
t i1), . . . , ζ̄

(
t in))

T is larger than the critical value Z∗R (see section 2.3).

Xt ∼ P

(
θ⃗t = gΘ

([
cos(ω⃗t)
sin(ω⃗t)

]))
, (1)

where ω⃗ is a vector of frequencies, P(θ⃗t) is a parameterized probability distribution such as a normal
distribution (denotedN (θ⃗t)), θ⃗t are the distribution parameters, and gΘ is a feedforward neural network
parameterized byΘ. In this model xt is drawn from Xt for all t. The neural network parametersΘ are trained
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Figure 2. COVID-19 lockdown causes a divergence from the usual atmospheric NO2 concentrations in Milan, Italy. DPK produces
a time-dependent probabilistic model of a time-series based on quasiperiodic patterns. The blue regions represent the 60% and
80% confidence intervals of the NO2 concentration according to DPK. Lockdown began in Italy around March 9, 2020 (day 68).

through maximum likelihood. DPK can be understood as providing a ‘business as usual’ model of a
time-series based on seasonal patterns.

As described in [3], DPK can be applied only on quasi-periodic time-series, those expressible as a
nonlinear function of sinusoids with different frequencies, modulo a long-term trend.

Once a DPK model has been trained on the time-series of observations, it is used for anomaly detection.
First consider the case of univariate time-series for which there is no domain-specific model (such as the
GEOS-CF model). Consider the time-series of observed values xobs,t. For a choice of time-varying

distribution P(θ⃗t), we define zobs,t = ICDFN (0,1)(CDFP(θ⃗t)(xobs,t)), where CDF denotes the cumulative
distribution function and ICDF denotes the inverse CDF. This can be understood as transforming the
observations such that we model their distribution as a standard normal distribution at each point in time.
When P is a Gaussian this is simply the z-score (xobs,t − µ̂obs,t)/σ̂obs,t. If our choice of P is accurate and the
DPK model is calibrated, then the distribution of zobs,t will empirically be Gaussian. Thus, a time is classified
as anomalous based on the average of zobs,t over k consecutive timesteps, z̄obs,t =

1
k

∑t
τ=t−k+1 zobs,τ .

Consecutive values of zobs,t are positively correlated due to physical continuity over time, so we cannot apply
the central limit theorem to obtain the sampling distribution of z̄obs,t. Instead, the empirical sampling
distribution of z̄obs,t is used, and fit with a Gaussian distributionN (µz̄obs ,σz̄obs). The sampling distribution of
z̄obs,t is Gaussian on the training distribution, as can be observed in figure 3(a), which is expected because the
distribution of zobs,t is Gaussian.
Univariate anomaly detection without a domain-specific model: A time t is considered anomalous if

and only if z̄obs,t is as extreme or more extreme than the two-tailed critical value z̄∗obs forN (µz̄obs ,σz̄obs) at a
certain α level. That is, when the probability of observing a z̄obs,t as extreme or more extreme than that
observed, assuming our business-as-usual model, is less than α, then time t is considered anomalous.

These anomalous events represent times in which the recent values of xobs,t cannot be explained by usual
variation as modeled by DPK.

Because the training distribution is supposed to represent observations which are not anomalous, we
remove outliers from the training distribution before computing µz̄obs and σz̄obs . We discard z̄obs values not in
[Q1 −λIQR,Q3 +λIQR] where Q1 and Q3 are the first and third quartiles, IQR is the interquartile range,
and we choose λ= 2.

It should also be noted that long-term probabilistic models are subject to overconfidence due to
imperfect extrapolation and overfitting. DPK is typically not more than 10 to 30% overconfident, as
measured by the root mean square of test-time z-scores, but this overconfidence is accounted for in our
selection of the α level via a hyperparameter sweep in appendix section ‘Hyperparameter selection’.

2.2. Incorporating domain knowledge
We can incorporate domain-specific models into our anomaly detection system such that known events are
not considered anomalies. This is an optional modification to the technique, and the remaining
contributions in section 2.3 should be of general applicability if this step is skipped because no such model is
available for the application.

When a domain-specific model’s predictions xmod,t are available, we let ζt = zobs,t − zmod,t and use ζ t in
place of zobs,t. zmod,t is calculated in the same way as zobs,t, except that it uses the model time-series xmod,t
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Figure 3. Deviation from usual NO2 concentration in a monitoring station in Madrid, Spain. After training a DPK model on 2
years of measurements ending on 01 January 2020, we observe that the concentration of NO2 becomes significantly lower during
COVID-19 lockdown than it usually is at that time of year according to DPK. (a) (̄zt time-series) This observation can be seen in
the sharp decrease in mean z-score, which measures the standardized deviation from typical behavior as predicted by DPK.
(b) (incorporating domain knowledge) This deviation persists even when accounting for business-as-usual factors, such as
weather fluctuations, as derived from the GEOS-CF model. Critical values are calculated at the 10−3 alpha level, and k= 168.

rather than observations. This implies that we train a DPKmodel on the domain-specific model’s predictions
in order to obtain a time-dependent model of the domain-specific model’s usual predictions. Deviations
from this DPK model correspond to differences that can be attributed to known factors. As before, an
anomaly is flagged when the current ζ̄t is extreme in the sampling distributionN (µζ̄ ,σζ̄) of ζ̄t. This process
is shown in the main box of figure 1. Figure 3 shows a comparison between using z̄obs and using ζ̄ .

2.3. Extending to multidimensional time-series
Given a set of observables R= {s1, . . ., sn}, we wish to determine whether the entire system those observables

measure is anomalous, as shown in figure 5. Let ζ̄R,t = (ζ̄
(s1)
t , . . . , ζ̄

(sn)
t )T, where ζ̄(si)t is the ζ̄t described in

section 2.2 for station si.
We employ principal component analysis (PCA) to detect anomalies in multivariate data. PCA finds

linearly independent basis dimensions in a dataset, sorted by the extent to which they explain the variation in
all of the observables, enabling us to remove the least explanatory (noisiest) directions. Let our multivariate
Gaussian estimate of the distribution from which ζ̄R,t is drawn be denotedN (µR,ΣR). Assuming a
multivariate normal distribution allows us to estimate the joint distribution using the product of the
marginal distributions along each principal component, which provides a practical way to estimate the
likelihood of an event.

While PCA produces linearly independent random variables, it does not guarantee statistically
independent random variables, which is required in order to factor the joint distribution in terms of the
marginal distributions. However, in most applications it seems reasonable to assume that any statistical
dependence between the residual errors of different observables is approximately linear, such that PCA
produces approximately statistically independent random variables. This can be supported by visually
verifying random pairs of PCA RVs are independent (granted, pairwise independence does not imply mutual
independence). We empirically verify this method’s calibration (see section 3) as a test of all assumptions.

We use Mahalanobis distance to determine whether an observation is anomalous. Usually, the
Mahalanobis distance between an observation d ∈ Rn and a distribution D with mean µd and covariance
matrix Sd is given by

δM(d,D) =
√
(d−µd)S

−1
d (d−µd). (2)

However, we rewrite this in terms of our principal component projection so that we can remove noisy
dimensions. After performing PCA so that y= VT(d− µd), where the rows of VT are the eigenvectors of the
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empirical covariance matrix, we have µy = 0 and Sy = diag(σ2
1 , . . .,σ

2
n) is a diagonal matrix of the variance

along each principal component. Then the Mahalanobis distance simplifies to

δM(d,D) =

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
y1/σ1...
yn/σn


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

. (3)

Unlike the usual Mahalanobis distance, we do not use all n principal components shown in equation (3),
since the components with the smallest variance σ2

i are mostly noise. Instead, we truncate to the smallest
dimensionality that explains at least 90% of the variance [9, 30], although more sophisticated methods for
rank truncation exist [31, 32]. See the appendix figure 8 for a hyperparameter sweep demonstrating this.
d is drawn from a multivariate Gaussian, so (y1/σ1, . . .,yn/σn)T is drawn from a spherical Gaussian with

mean 0 and radius 1, and the p-value of d can be calculated by integrating the probability density over the
volume lying outside of the n-ball of radius δM(d,D) centered at the origin. Let ZR,t = δM( ζ̄R,t,N (µR,ΣR)).
Then the p-value, the probability of making an observation as extreme or more extreme than a given
observation ZR,t assuming ‘business as usual,’ is given by

p= P(ZR ⩾ ZR,t)∝
ˆ ∞

ZR,t

Zn−1e−Z2dZ, (4)

for ZR, t⩾ 0. We numerically integrate and normalize this to calculate the p-value.

2.4. Application to atmospheric pollution
Here we demonstrate our method using ground-based NO2 observations [33] obtained from the OpenAQ
platform5 and the air quality data portal of the European Environment Agency6. The time-series xobs,t is the
log of the observed concentration.

The DPK model is trained using observations from years 2018–2019, and evaluated over 2020. We choose
to provide the DPK model with four frequencies ωi observed in our data: daily, weekly, annual, and the
long-term trend. We choose P to be a Gaussian because residuals are approximately normally distributed.

We employ GEOS-CF to incorporate domain knowledge into our anomaly detection pipeline. The
GEOS-CF model is a global atmospheric chemistry model that provides global hourly model estimates of
atmospheric composition at 25× 25km2 spatial resolution [26], available in near real-time at 7. It is
important to note that GEOS-CF uses historical estimates as anthropogenic emissions input, and thus does
not capture changes in anthropogenic emission reductions related to COVID-19 restrictions. However,
GEOS-CF captures other events that are known to impact air pollution, most notably meteorology and
wildfires.

We note that despite having a domain-specific model for this application, GEOS-CF cannot be directly
used for anomaly detection because (1) it is not probabilistic, (2) it does not necessarily capture all long-term
patterns, and (3) its comparison to observations is complicated by representation errors (25× 25km2 model
averages vs. point source observations) and systematic model biases. DPK is uniquely suited to solve all of
these problems because it (1) is probabilistic, (2) solves a global (frequency domain) optimization problem
which enables long-term modeling ability, and (3) converges to an unbiased model.

3. Results

Figure 2 shows observed NO2 concentrations over Milan, Italy (black) for February—May 2020 compared
against the corresponding time-dependent DPK model (red). The DPK-predicted NO2 concentrations agree
well with the observations for all of February and the first days of March 2020, but the observations start to
diverge from the DPK values afterwards, reflecting the observed decline of NO2 in the wake of the COVID-19
pandemic [34]. By design, this decrease is not captured by DPK, which allows for detection of anomalies.

Figure 3(a) shows the time-series of the z̄obs,t used to make anomaly classifications. The training
distribution is normally distributed as expected. The pre-lockdown control distribution does not contain any
events classified as anomalous (as desired), though there is insufficient data to determine whether z̄obs,t

5 https://openaq.org/.
6 https://discomap.eea.europa.eu/map/fme/AirQualityExport.htm.
7 https://gmao.gsfc.nasa.gov/weather_prediction/GEOS-CF/data_access/.
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Figure 4. Leveraging a domain-specific model to reduce type I and type II error. When using the ζ̄ time-series, where
ζ̄ = z̄obs − z̄mod, significance of observations is determined by their deviation from the typical pattern, relative to the deviation of
the domain-specific model from its typical pattern. We compare two circumstances: one in Seattle where there is a wildfire that is
accounted for by the GEOS-CF model (type I error reduction), and another in Madrid where COVID-19 lockdown is not
accounted for by the model, which actually expects unusually high NO2 due to weather circumstances (type II error reduction).
Notice that in Seattle, although the observed NO2 in magenta deviates significantly from usual, it is closely tracked by the model
NO2 in blue, so the ζ̄ value remains insignificant. This can be understood as the GEOS-CF model explaining away the deviations
in the observations, in this case due to a series of known wildfires. Meanwhile in Madrid, the GEOS-CF model predicts
higher-than-usual NO2 concentrations due to unusual meteorology, while the observed NO2 drops due to COVID-19 lockdown
(which GEOS-CF is not aware of), causing the zeta score to drop below the critical value. Note that ‘168-hour mean statistic’
refers to either ζ̄ or z̄ for k= 168.

continues to be normally distributed. Meanwhile, soon after lockdown begins most z̄obs,t values cross the
threshold to be classified as anomalous.

3.1. Incorporating the GEOS-CFmodel
We only wish to be alerted of anomalies that are not already known by the GEOS-CF model. As can be seen
in figure 4, incorporating GEOS-CF reduces both type I error and type II error. Type I error is mitigated
when domain knowledge introduced by GEOS-CF explains away the deviation in NO2, so that no anomaly is
flagged. Type II error is mitigated when an anomaly is veiled by other (e.g. meteorological) factors that push
observations in the opposite direction of the anomaly, and the anomaly is only noticed when comparing the
observations and the domain-specific model.

3.2. Global and regional atmospheric anomaly detection
Monitoring for anomalies in a hierarchy of stations has multiple advantages: (1) being able to ask a wider
variety of questions about NO2 anomalies. (2) being able to leverage more data to evaluate questions. In
figure 7, we demonstrate hierarchical anomaly detection in Spain.

We find the our method successfully detects many known anomalies, and otherwise has a uniform
distribution of p-values on the interval [0, 1]. We ran our analysis on various of the largest cities from around
the world (filtered for data quality) to validate our method. We chose to look at cities because we expect their
air quality to significantly improve when COVID-19 lockdown reduces traffic volume, and because cities
have anywhere from a few to several dozen monitoring stations, allowing us to evaluate on a wide variety of
time-series dimensionalities. The training interval is from 01 January 2018 to 01 January 2020, the explained
variance threshold is set to 90%, and k= 168. In figure 5(a) the effects of COVID-19 are statistically
significant in Chinese cities in February, when the outbreak was mostly limited to China; then by May China
has largely resumed normal activity while other major cities are in lockdown, which is reflected in the
p-values of NO2 concentrations. When looking at the national level in China and Spain (5(b) and (c)), it can
be seen that low p-values generally correspond to known exceptional events, including Storm Gloria,
COVID-19 lockdown, and Chinese New Year (in which entire cities are largely shut down for days).

Our statistical method is calibrated. In figure 6, we see that p-values are roughly uniformly distributed
pre-lockdown for various cities. Selection criteria for these cities is described in the appendix. In figure 7(d)
we see that our method is calibrated for individual stations in Spain.

7
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Figure 5. A global monitoring system. (a) Of the major cities shown in colored dots, with darker colors indicating more
anomalous NO2 values, Chinese cities can be seen experiencing the effects of lockdown first, followed later by cities outside of
China. By May 1, Chinese activity is roughly back to normal while European cities and Bangkok still show the effects of lockdown.
(b), (c) The multivariate anomaly detection method allows for anomalies to be detected at the level of countries. For example,
(b) the effects of Storm Gloria and COVID-19 lockdown can be seen in Spanish cities, and (c) the effects of Chinese New Year and
COVID-19 lockdown can be seen in Chinese cities.

Figure 6. Distribution of p-values pre-lockdown, averaged over several cities, shown in both log and linear scale. During periods
without known anomalies, p-values are approximately uniformly distributed, indicating a calibrated method. While figure 7
shows that the method is calibrated for univariate time-series, this figure shows that the method is also calibrated for high
dimensional time-series (typically a few dozen stations), and does not produce excess false positives. As can be seen in the
logarithmic scaled plot, none of the observations in this control setting have a p-value of less than α= 10−3, the threshold value
for statistical significance we use.

8
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Figure 7. (a)–(d) The distribution of p-values during and before lockdown at various levels of analysis. Note that (a)–(c) only
show results for a single time series, leading to a small sample size, so the shapes of the distributions should be interpreted with
caution. (e) The most robust signal is seen in the p-values that leverage the largest amount of data, as can be seen in the blue line
representing all of Spain.

4. Conclusion

We introduced a novel and general method for anomaly detection in complex high-dimensional stochastic
time-series data. Our method makes use of recent advances in long-term probabilistic forecasting based on
Koopman theory to create a robust ‘business as usual’ model of observations, against which current
observations can be compared. We make use of multidimensional time-series signals to enable online
detection of anomalies within several dozen timesteps, or a few days in our application example. The
statistical power of the anomaly detection can be improved by incorporating domain-specific numerical
models. We demonstrate this using time series of NO2 in conjunction with the GEOS-CF numerical
atmospheric composition model. Our results show how this technique can be used for near real-time
detection of atmospheric anomalies. While our example used ground observations, the presented method is
equally applicable to satellite observations.

When applied to other time-series, such as electricity demand, we could see our methodological
contributions aiding in feature discovery by indicating when observations deviated significantly from the
long-term trend. A potential future direction is automatically selecting subsets of the observation vector that
might be anomalous, rather than having to check exponentially-many possible subsets or hand-select them.

Given the ubiquity of Time-series analysis, the advocated Koopman based methods provides an powerful
mathematical method for extracting meaningful statistics and characteristics of temporal sequences of data.
Indeed, Koopman theory provides an interpretable framework from which a variety of signal processing
goals and pattern recognition applications can be characterized in diverse engineering and scientific fields.
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Appendix

Experimental details
DPK training details
The code is available at https://github.com/AlexTMallen/DPK-anomaly-detection. The DPK model for each
station is trained with a learning rate of 0.0001, a weight decay regularization of 0.001, for 400 epochs, on
hourly observations from 01 January 2018 to 01 January 2020. Each model is initialized using the parameters
of a model trained on another station’s observations to aid efficiency through transfer learning.

Selection criteria for cities in section 6
From a list of major cities around the world, we look at high-pollution (greater than 10 ppb NO2 multi-year
average), high-population cities with clean data during the time in 2020 before COVID-19 lockdown. Most
cities are excluded because of a lack of clean data, if any is available at all. We also exclude a city if it has a
significant p-value that corresponds with a known anomalous event. Here are the cities we excluded due to
known anomalies. Madrid and Barcelona experienced Storm Gloria (https://en.wikipedia.org/wiki/Storm_
Gloria). Birmingham, London, and Berlin experienced Storm Ciara (https://en.wikipedia.org/wiki/Storm_
Ciara).

Hyperparameter selection
Hyperparameter tuning is critical for almost any data-driven method. In the application considered here,
hyperparameter sweeps are done over the α level, the number of hours k over which to average, and the
explained variance threshold for calculating ZR,t. Figure 8 summarizes the performance of the
hyperparameter sweeps.
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Figure 8. Hyperparameter sweep over the α level, the number of hours k over which to average, and the explained variance
threshold for calculating ZR,t. We measure both F1/6 classification accuracy and latency of the anomaly detection, conditioned on

detection. F1/6 = (1+ 1
62
)(precision · recall)/( 1

62
precision+ recall) is an accuracy measure that places 6 times as much weight

on precision as on recall. We place more weight on precision than recall for two reasons. First, most times are not anomalous, so a
low precision would cause an excessive quantity of false positives. Second, not all times within an anomalous event need to be
recalled-as long as a single time within the event is classified as anomalous, we can be alerted of the anomaly. Based on these
results we selected 90% explained variance, k=168 hours (1 week) averaging, and α= 0.001.

11



Mach. Learn.: Sci. Technol. 4 (2023) 025033 A Mallen et al

ORCID iDs

Alex Mallen https://orcid.org/0000-0002-5120-1350
J Nathan Kutz https://orcid.org/0000-0002-6004-2275

References

[1] Shumway R H, Stoffer D S and Stoffer D S 2000 Time Series Analysis and its Applications vol 3 (Berlin: Springer)
[2] Lange H, Brunton S L and Nathan Kutz J 2021 From fourier to koopman: spectral methods for long-term time series prediction J.

Mach. Learn. Res. 22 1–38
[3] Mallen A, Lange H and Kutz J N 2021 Deep probabilistic koopman: long-term time-series forecasting under periodic uncertainties

(arXiv:2106.06033)
[4] Hoffmann M et al 2021 Deeptime: a python library for machine learning dynamical models from time series dataMach. Learn.:

Sci. Technol. 3 015009
[5] Kutz J N, Brunton S L, Brunton B W and Proctor J L 2016 Dynamic Mode Decomposition: Data-Driven Modeling of Complex

Systems (Philadelphia, PA: SIAM)
[6] Brunton S L and Kutz J N 2019 Data-Driven Science and Engineering: Machine Learning, Dynamical Systems and Control

(Cambridge: Cambridge University Press)
[7] Dietterich T G 2002 Machine learning for sequential data: a review Joint IAPR Int. Workshops on Statistical Techniques in Pattern

Recognition (SPR) and Structural And Syntactic Pattern Recognition (SSPR) (Springer) pp 15–30
[8] Masini R P, Medeiros M C and Mendes E F 2021 Machine learning advances for time series forecasting J. Econ. Surv. 37 76–111
[9] Kutz J N 2013 Data-Driven Modeling & Scientific Computation: Methods for Complex Systems & big Data (Oxford: Oxford

University Press)
[10] Mallat Sephane 1999 AWavelet Tour of Signal Processing (Amsterdam: Elsevier)
[11] Schmid P J 2010 Dynamic mode decomposition of numerical and experimental data J. Fluid Mech. 656 5–28
[12] Rowley C W, Mezic I, Bagheri S, Schlatter P and Henningson D S 2009 Spectral analysis of nonlinear flows J. Fluid Mech.

645 115–27
[13] Askham T and Nathan Kutz J 2018 Variable projection methods for an optimized dynamic mode decomposition SIAM J. Appl.

Dyn. Syst. 17 380–416
[14] Koopman B O 1931 Hamiltonian systems and transformation in Hilbert space Proc. Natl Acad. Sci. USA 17 315
[15] Mezíc I 2005 Spectral properties of dynamical systems, model reduction and decompositions Nonlinear Dyn. 41 309–25
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