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Abstract: We present and use an agent-based model to study interventions for suppression, mitigation, and
vaccination in coping with the COVID-19 pandemic. Unlike metapopulation models, our agent-based model
permits experimenting with micro-level interventions in social interactions at individual sites. We compare
commonmacro-level interventions applicable to everyone (e.g., keepdistance, close all schools) to targeted in-
terventions in the social network spanned by households based on specific (potential) transmission rates (e.g.,
prohibit visiting spreading hubs or bridging ties). We show that, in the simulation environment, micro-level
measures of ’locking’ of a number of households and ‘blocking’ access to a number of sites (e.g., workplaces,
schools, recreation areas) using social network centrality metrics permits refined control on the positioning on
the immunity-mortality curve. In simulation results, social network metric-based vaccination of households
o�ers refined control and reduces the spread saliently better than random vaccination.
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Introduction

1.1 With the world in the grip of waves of COVID-19 and its recent mutations, governments are considering ways
to suppress or mitigate the epidemic. This in turn would maintain civil liberties and keep the economy afloat
as much as possible. In general, the cornerstone of preventing and curbing massive outbreaks of viruses, is
vaccination (Kilbourne2006). However, at theonsetof anepidemicof anewvirus, vaccinesaregenerally absent
and the number of casualties may be high before a vaccine becomes available (see Cunha 2004). Historically,
the response has been to quarantine and totally isolate pockets of infectors (Gensini et al. 2004), although an
alternative approach is required whenever a virus is widespread. In this case, a mix of more refined measures
such as hygiene, maintaining physical distances, wearing a mask, social distancing, isolation, blocking visits
to transmission sites, etc., may all be used to get the spread under control. Once this has been achieved, the
mix of measures can gradually be relaxed to return liberties to the public and phase in economic and societal
activities. Nowthat the first vaccineshavebeenapprovedbymedicineagenciesandpharmaceutical companies
have commenced production and shipment, governments are also considering vaccination policies.

1.2 In this paper, an online agent-based model is presented that allow us to study the impact of a variety of policy
measures on the spread of COVID-19 and the mortality and emerging immunity in a socio-spatial epidemio-
logical model of a metropolitan region. 1 Unlike deriving policies from models in which the e�ects of policy
interventions are incorporated via a certain (assumed) impact on the reproduction number, in the agent-based
model, agents follow their agendas and interact inprivate andpublic spaces suchas their ownhome,workplace
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or school, in the supermarket, at mass gatherings (e.g., church, sports events, concerts, carnival), etc. This al-
lows a detailed “what-if” study of the impact of policy measures within traditional epidemiological ABM/ IBM
studies such as household isolation, closure of schools and workplaces and restrictions on travelling, both in
general (Ferguson et al. 2006; Halloran et al. 2008) and for COVID-19 specifically (Ferguson et al. 2020; Hellewell
et al. 2020; Anderson et al. 2020).

1.3 In addition to implementing and studying macro-level policy interventions (e.g., closing all schools, prohibit-
ing interregional travel), we use an agent-based model to devise and study the impact of micro-level policy
interventions. Unlike the real world, the simulated world o�ers full control over and detailed insight into styl-
ized spatiotemporal interactions and thereby structural features of the social network. As such, the simulated
world permits devising interventions using properties of the social network.

1.4 Here, we consider “locking” specific households and “blocking” specific workplaces, schools, etc., based on
structural features of the social network. The idea is that social networkmetrices such as degree centrality and
betweenness centrality indicate to what extent particular sites are spreading hubs or bridging ties between
subnetworks and that preventing infection (through blocking, locking, or vaccinating) slows down or limits the
spread. Themain finding is that in the simulatedworld, social networkmetric-based interventions (e.g., closing
a certain fraction of o�ices with high degree centrality) allow a high level of control over positioning on the
immunity-mortality curve compared to the coarser control o�ered by macro-level interventions (e.g., closing
all o�ices). That is, by picking the number of households or sites (e.g., o�ices, schools) that are (b)locked or
vaccinated and picking spreading hubs or bridging ties, there is muchmore refined control over the number of
infections and thereby emerging immunity andmortality.

1.5 Note that, here we do not claim to predict real-world outcomes, but study the e�ects of such metric-based
intervention properties in a controlled laboratory setting. The simulatedworld is highly stylized and only partly
calibrated to real-world data. For practical implementation of these metric-based interventions, more data on
real-world interactionofagentswouldbe required toconstruct the social network, possibly requiringadditional
tools (e.g., cell phone data or apps to track spatio-temporal interaction patterns). In addition, as with any other
computationalmodel used to study the COVID-19 pandemic, the quantitative output of our agent-basedmodel
dependsonmodel assumptionsandparameter choices (suchas thedemographyandage-specific transmission
rates). Given that research is still extending the amount of empirical evidence on COVID-19 epidemiology and
disease progression, it is presently impossible to ensure a 100% accurate depiction of all relevant aspects. We
therefore ask the reader to interpret and use the simulated results with caution.

1.6 The structure of the remainder of this paper is as follows: In Section 2, we introduce the agent-based model,
elaborating on the epidemiological operationalization and the spatiotemporal behaviour driving interactions
of agents. In Section 3, we present the simulation experiments consisting of the common macro-level policy
measures currently widely applied as a benchmark and new micro-level policy interventions based on social
network metrices. In Section 4, we discuss our results and provide conclusions.

Spatio-Temporal Agent-Based Model

Modelling alternatives

2.1 There are basically three types of epidemiological models in the literature. These di�er on how they model
(a) the infection and disease progression (describing the transition from one to the next state including the in-
cubation time distribution, infectiousness per state, transmission probabilities, fatality rate, etc., and how this
relates to ages of subjects), (b) the structure inwhich transmission occurs (e.g., explicitly by assuming transmis-
sion rates between subpopulations at the macro-level or implicitly by having transmission emerge by spatial
proximity) and (c) themodelled population (e.g., composition of households, distributions of ages, etc., and -in
our case- the spatio-temporal behavioural patterns such as going to work, to the supermarket and so on).

2.2 First, there are compartmental meta-population models such as the seminal Susceptible-Infected-Recovered
(SIR) model (Kermack & McKendrick 1927) which use a system of di�erential/ di�erence equations to describe
the dynamics in subpopulation sizes (seeWang& Li 2014 for a recent overview). An extensive version for COVID-
19 is o�ered online by the Neherlab, 2 of the Biozentrum, University of Basel. In these models, the impact of
interventions is typically modelled by assuming reductions of a certain magnitude in the basic reproduction
number (i.e., the new number of people infected by any one infected, notably whenever the entire population
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is still susceptible). Moreover, this type of models has a ‘uniform’ spatial and social interaction structure and
the infection process is (implicitly) driven by homogeneous agents roaming an undefined space.

2.3 A second typeof a simulationmodel ismostly concernedwith illustrating fundamentalmechanismsof di�usion
processes and the impact of interventions in a stylistic setting. For instance, amodel by Harry Stevens 3 posted
on The Washington Post website to explain the impact of ’social distancing’, or an explanation of outbreak dy-
namics by Kevin Simler. 4 Typically, for this type of model, a strong regularity in social or spatial structures is
assumed (resembling to one of cellular automata) and the ability for calibration, forecasts, etc. is limited.

2.4 A third type of model uses agent-based or individual-based computer simulations (see for example, Macal &
North 2009; Gilbert 2008; Epstein & Axtell 1996; Bonabeau 2002 for a general description). In contrast to the
other two, agent-based models are particularly well-suited to study transmission in epidemics based on the
behaviour of heterogeneous and autonomous agents (see e.g., Ajelli et al. 2010; Aleman et al. 2011; Crooks &
Hailegiorgis 2014; Roche et al. 2011; Hunter et al. 2018). For advanced (mix-method) epidemiological ABM/ IBM
studies on the impact of -what we call macro-level- policy measure such as household isolation, the closure
of schools and workplaces and restrictions on travelling, in general, see Ferguson et al. (2006); Halloran et al.
(2008), and for COVID-19 specifically, see Ferguson et al. (2020); Hellewell et al. (2020); Anderson et al. (2020).
For an elaborate comparison of agent-based models for epidemiological modelling with other modelling ap-
proaches, seeAjelli et al. (2010);Nguyenetal. (2019). Fora taxonomyofepidemiological ABMstudies, seeHunter
et al. (2017).

2.5 In general, agent-based models are particularly well-suited to study emerging behaviour and macro-level reg-
ularities. A particularly appealing feature of ABMs is that agents may be heterogeneous with regard to age and
associated transmission and infection rates, as well as mobility, locations visited, and thereby social interac-
tion (cf. Aleman et al. 2011; Guzzetta et al. 2011). Moreover, the transparency and traceability of processes to
the level of individuals and their interactions allows the detailed analysis of transmission patterns and the role
of transmission sites. Many of these ABMs have their own particularities with regard to modelling geography/
the environment, social structures, transportation/ mobility, properties of the pathogen, etc. In ABMs, there
is disaggregation to the level of individual agents and heterogeneity in terms of location and (possibly) be-
haviour. In modelling, decisions have to be made with regard to the level of aggregation and simplification of
the model. Generally, more descriptive models are more challenging to calibrate, as data is not readily avail-
able, and more parameter values are to be assumed. Despite the (greater) resemblance between the real and
simulatedworld, simulation results have to be exclusively interpreted as due to processeswithin the simulated
world. Particularly in highly stylized ABMs, the generality and external validity of conclusions may be limited.
Here, we describe the core assumptions of our model concerning the disease progression and the (potential)
spatio-temporal interaction and infection patterns.

Disease progression and infectionmodels

2.6 In epidemiological agent-basedmodels, the state of an agent is the stadium of the disease. In metapopulation
SEIR models, subjects go from Susceptible, to Exposed, to Infected/ Infectious, and finally to Removed state
(being either recovered/ resistant or deceased). The disease progressionmodel specifies both the (distribution
of the) duration in each of the stages and the moments and probabilities of transition to a new stage. For the
agent-based model in this paper, we have used the discrete event model of An der Heiden & Buchholz (2020)
of the Robert Koch Institute. In line with the SEIR model, the states are: Susceptible (S), Exposed (E), Infected
(I) and possibly in severe (X) or even critical condition (Y), Recovered (R), and Deceased (D). In addition, there
is a state Vaccinated (V) and for both the vaccinated and recovered state we assume that the agent is no longer
susceptible, cannot be infected, nor infect other agents.

Figure 1: Model of disease progression through susceptible, exposed, infected, and recovered/ deceased states
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2.7 The state progression is characterized by (stochastic) durations τ in a particular state and the transitionsmade
with certain probabilities p. The Exposed phase (E) lasts τE + τE

‘

days, with τE days in which the disease is
latent and non-infectious, followed by τE

‘

= 1 day in which the subject is pre-symptomatically infectious. The
clinical, symptomatic phase (I) lasts τ I = 9 days if recovering or 4 if falling severely ill, the Severely Infected
state (X) lasts τX = 14 days if recovering or 1 day if becoming critically ill, the Critically Infected (Y) state lasts
τY = 10 days. The data on the duration of and transition probabilities between infected, severe, critical, and
deceased states for COVID-19 is at present still fraught with uncertainty and varies from country to country for
various reasons. In part, we are therefore forced to make assumptions.

2.8 These however, a�ect the simulation outcomes only quantitatively and do not a�ect the outcome of our qual-
itative policy comparisons based on relative quantities. Our parameter settings are derived from the following
sources: Reports on the incubation period τE + τE

‘

, i.e., the delay from infection to symptoms of illness, for
COVID-19 provide a preliminary estimate of an average duration of 5-6 days (Li et al. 2020; World Health Orga-
nization 2020). From a visual inspection of the onset plot in Li et al. (2020) and Akaike’s Information Criterion
used by Cowling et al. (2007) on SARS, we assume a Lognormal distribution. For the purpose of the periodic
simulation model in this paper, we used a discretization for τE . Generalized Reduced Gradient numerical fit-
ting on the empirical distribution yielded parameter estimates µ = 1.45 and σ = 0.65 (which yields a mean
of eµ+σ

2 ≈ 5.3). The WHO (World Health Organization 2020, p.12), early case studies (Bai et al. 2020), and
popularmedia report supposed accounts of a-/pre-symptomatic transmission, the period for pre-symptomatic
transmission prior to onset might be 1 – 2 days (see e.g., Anderson et al. 2020), so we set τE

‘

= 1. While the
progression rates between infected, severe, critical and deceased states were largely unknown at time of the
first submission of this paper, the emerging fatality rates by age cohort should resemble the figures reported in
the literature.

2.9 Thus, for calibration, one needs to pick sensible transition probabilities pX , pY , pD, which di�er considerably
for each age cohort. Following advanced compartmentalmodels, we have assumed the state progression rates
reported inTable 1. Weused2019demographic statistics derived fromtheDutch statistics agency (CBS, Centraal
Bureau voor de Statistiek) StatLine Dataset 7461 to validate the Case Fatality Rate by age group. Despite the low
numbers of cases, fatality rates are qualitatively similar to those reported elsewhere (e.g., Aksamentov et al.
2020 and Verity et al. 2020). Notably, we have picked values for pX , pY , pD per age cohort that are slightly
higher than those reported in late April 2020 for qualitative research reasons 5. There are only rough statistics
available for case fatality rates bothwith andwithout treatment in hospital (andwith orwithout ventilation). In
the case of The Netherlands, there is an additional complication, as vulnerable and weak COVID-patients were
o�en not admitted to hospital in order to save them the ordeal of ICU. Moreover, limited PCR or antigen testing
took place for those that perished. For the purpose of the simulation, we assume a reduction of ρ times the
decease rate when receiving hospital treatment.

Table 1: Assumed infection state progression rates by age-group (based on Aksamentov et al. 2020) and fatality
count based on demographic statistics (CBS StatLine Dataset 7461)

px py pD
Fatality rate
(in the model) Recovery rate Fatality rate

(empirical)
0-9 2 10 30 0.06 99.94 0.09
10-19 6 20 30 0.36 99.64 0.6
20-29 6 20 30 0.36 99.64 0.66
30-39 6 30 30 0.54 99.46 0.95
40-49 12 40 30 1.44 98.56 2.71
50-59 20 50 40 4 96 8.34
60-69 50 70 40 14 86 24.33
70-79 70 80 50 28 72 35.43
80- 90 90 50 40.5 59.5 26.9

Spatial model for interaction and infection

2.10 The process of infection derives from assumptions on susceptibility and infectiousness and -in a spatial model-
on physical proximity required for passing on the virus (e.g., in droplets when coughing or talking, or a�er
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touching contaminated objects). In the model, agents have a location (which is a two-dimensional floating-
point coordinate), and it is the pairwise Euclidian distance (in ‘pixels’) between two agents that determines the
occurrence of transmission. When agents’ pairwise Euclidian distance is below the infection distance D, i.e.,
∆X2 + ∆Y 2 ≤ αD2, an infected agent will infect a susceptible agent. Scaling parameterα is introduced to ac-
count for policy interventions. Mitigating factors (e.g., wearing a facemask, adhering to personal hygiene etc.,)
lower the distance over which transmission occurs. The transmission probability also depends on the stage of
the disease, as for example, in the pre-symptomatic stage very fewpathogens are emitted. So far, little is known
of the infection rates between age cohorts as a function of the infection stage and ages of agents. For the time
being, we have assumed that infectiousness within and across age cohorts and for disease stage (exposed,
infected, severe, critical) are a uniform 10%, except for a uniform 5% infectiousness for the pre-symptomatic
exposed state (E‘) presuming that yet few pathogens are emitted. The reproduction number is emerging from
the interaction of agents and is used for cross-validation.

2.11 Figure 2 contains a screenshot of the graphical interface of the simulation model. The graphical interface con-
tains four elements: (i) the largemetropolitan city planwith di�erent types of sites in the top-le�, (ii) simulation
controls at the bottom, (iii) the stacked graph reflecting the fractions of the state of infection of the agent pop-
ulation in the top-right, the labour volume graph the percentage of regular output, the stacked histogram the
state per age cohort, and (iv) policy intervention options and simulation settings on the right below the graph
(discussed in more detail in the next section). Additionally, on the map graphics, the day and time, some basic
statistics, the case fatality rate and reproduction numberR are reported. 6

Figure 2: Screenshot of the web-based agent-based model, with the spatial simulation window on the le�, a
list of policy interventions on the bottom-right, and stacked graph with population infection state ratios on the
top-right

2.12 In this visualization, agents are represented by small coloured circles moving around the map to and from
sites and spending time at each, interacting with other agents in physical proximity. The colour of these cir-
cles indicates the disease state, ranging from susceptible (green) to blue (deceased). There are several sites
(houses, workplaces, supermarkets/ shops, schools, recreation & leisure sites, hospitals) at which interaction
takes place, see the legend in Figure 3. The agent-based model takes as input a stylized map for which loca-
tions for houses, workspaces, supermarkets, recreation areas, and hospitals are randomly generated. In this
setup, we picked N = 200 households (a low number both for visualization purposes and due to client-side
computational restrictions), 5 recreation areas (representing a range of social events, such as visits to concerts,
churches, sports matches, etc.), 15 workplaces, 10 supermarkets, and 4 hospitals. Default parameter choices
are reported in Appendix C.
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Figure 3: Sites at which social interaction and thereby potentially transmission takes place between agents
(except the cemetery and hospital)

Social dimension of interaction and infection

2.13 In our agent-basedmodel, the spatio-temporal behaviour of agents determines the physical proximity to other
agents and thereby the chances of infection. The spatio-temporal behaviour is specified for each agent explic-
itly and is assumed to be related to age, employment, household composition, house location, supermarket
preference, favourite recreation area, etc. Agents follow a weekly agenda that dictates visits to particular sites
(but possibly constrained by policy interventions) and thereby interaction with other agents.

2.14 In thedefault setupused in the simulation runsanalysedhere (unless explicitlymentionedotherwise) and in the
simulationprovidedonline, the agents’ agendas are as follows. Theadults of age>20go tooneof threenearest
nearby workplaces (randomly drawn at the initialization of the simulation) during weekdays Monday - Friday,
leaving for work at 08:00 and leaving work at 17:00. A�er work, the adult shops at the supermarket closest to
home between 17:30 and 18:30. On Saturday, adult agents go to the nearest shop between 14:00 and 16:00. The
children and teenagers (age≤ 20) go to the nearest school during weekdays Monday - Friday. Each pensioner
(age > 65) stays at home from Monday to Saturday, except for a visit to the nearest supermarket for one and
a half hour at a point in time between 10:00 and 20:00 that is uniform randomly drawn. On Sunday, all agents
of the same household go to a ‘favourite’ recreation area between 11:00 and 15:00. In all other occasions and
when a particular activity is prohibited by a policy intervention (e.g., going to school), agents (return and) stay
at home. Furthermore, we assume that agents move around randomly within the boundaries of their current
location (e.g., workplace, school, house) and only when agents are physically close, they infect one another.
Agents’ agenda, and the location for appointments hence determines when they interact with whom and thus
between which agents there is (potentially) transmission.

2.15 Given the role of households as transmission channels and connecting workplaces with schools, etc., we cal-
ibrate the household types and age distributions to empirical data. The household composition (number of
adults and number of children) and age of the household members are drawn from the empirical distribution
derived from the StatLine Dataset 37975 for 2019 of the Dutch statistics agency (CBS, Centraal Bureau voor de
Statistiek). See Table 3 and Table 4 in Appendix A for a detailed overview. In this implementation, agendas
andmovement patterns are stylized rather than calibrated to empirical data, both because of a lack of detailed
agenda data and the simplification of the metropolitan area. Given that the agenda determines the frequency,
location, and duration of interaction, the quantitative impact of interventions (e.g., closing schools) may be
over- or underestimated. In case the spatio-temporal interaction occurs more (less) in the simulation than in
reality, the impact of intervention is overestimated (underestimated). In Section 3.8 and Appendix D, alterna-
tive agendas are used to establish the robustness of our finding thatmetric-based intervention permits refined
positioning on the immunity-mortality curve.
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Policy Experimentation

Experiment setup

3.1 Apart from impactful isolation and quarantinemeasures, it is possible to reduce chances of transmission physi-
cally (e.g., hygiene, keeping distance) aswell as by limiting opportunities for social interactions (e.g., by barring
people frommeeting in certain sites). Such social distancingmeasures include isolation, householdquarantine,
and closing of schools, reducing contacts in the workplace and other gatherings in the community (Halloran
et al. 2008; Ferguson et al. 2020, 2006; Hellewell et al. 2020). Our agent-basedmodel allows for experimenting
with a range of interventions to contain the spread of COVID-19.

3.2 We conducted extensive Monte Carlo experiments with a range of logical combinations of interventions, of
which a few results are reported here. Each simulation started with one randomly chosen infected agent and
runs for at least 70 periods (to ensure ample opportunity to transmit the virus) and from then onward the simu-
lation stops if the distribution of infection states is stable formore than 10 periods. For cross-comparison of the
simulation outcomes, we recorded the immunity (the percentage of the population that recovered fromCOVID-
19) andmortality (the percentage that perished of COVID-19) at the end of each simulation run. While in general,
there was a trade-o� of mortality to attain high levels of immunity, highmortality rates were in part due to lim-
itations in health care capacity. As such, the variation of policy measures in terms of immunity and mortality
in conjunction is substantial, making it worthwhile to study alternative measures that o�er more refined con-
trol over the infection rate. In contrast to generic macro-level measures applying to the entire population (e.g.,
maintain social distance) or to all sites of a particular type (e.g., close all workplaces), we have proposedmicro-
levelmeasures that take heed of the structure of individual social interaction of agents. As such, we considered
micro-level policies that exploit structural particularities of the social network of interaction and compare those
to benchmarkmacro-level policies that are currently followed by policy makers.

Macro-level interventions

3.3 Macro-level interventions are those that are applicable to all agents (e.g., maintaining social distance) or to
all sites of a particular type (e.g., prohibiting mass gathering, here modelled as visits to recreation areas), see
Appendix B for operationalizations. These interventions e�ectively suppress the spread and leave large parts of
the population susceptible. Thus, the risk of a next wave and hence the need for renewed interventions remain
unchanged. We ran simulations for all logical combinations of interventions (see Table 6 in Appendix B for a
full list of currently implemented interventions) with 20 random seeds per combination, 2400 cases in total.
Our studies reveal that for a range of policy measures substantial immunity may emerge, but generally at the
expense of a high total mortality rate. Note that some policies cause high mortality rates due to a rapid spread
under limited intensive care capacity in hospitals.

3.4 Figure 4 shows two extreme cases for physical measures being the combination of keeping distance, washing
hands, etc. (yes: Ph, no: NoPh) and regional openness to travellers from outside the region (entry permitted:
RegEn, prohibited: RegCl) for the case of a total lock-down (LD) when agents stay at (and possibly work from)
home and freedom (SOM) when agents are going to the school, o�ice, and mass gatherings. The results show
that taking no measures (permitting interregional travellers and no physical measures) generally leads to high
mortality/ high immunity rate outcomes, while taking strict measures (closing regional borders and physical
measures: red diamonds) o�en leads to low mortality/ low immunity rate outcomes. However, since the frac-
tion of agents still susceptible at the end of the simulation is 1 minus the immunity rate minus the mortality
rate, the chance of a second wave is substantial for many (strict) policy mixes. In addition, there is substan-
tial variance for non-strict policies which implies that policy makers have limited control, should monitor the
development of rates, and may have to tinker policy measures dynamically. Moreover, the relationship of im-
munity and mortality is far from linear and outcomes under more lenient policy measures may tip to extreme
outcomes, adding to the importance of having to monitor and tinker policy measures.
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Figure 4: Emerging immunity versus population mortality rate for a range of mixes of measures, here imple-
mented immediately at the start of the simulation run. Highlighted mixes are for Physical (Ph) / Non-Physical
(NoPh) measures and Closed (RegCl)/ Opened (RegEn) regional borders (i.e. permitting entry or not of poten-
tially infected external agents) and entirely unregulated mobility patterns (SOM) and lockdown (LD). ALL are
the simulation results for all logical combinations ofmeasures (see Appendix B). The line on the right-hand side
indicates the natural maximum for mortality, given the rate of immunity, while ’susceptibility = 1 - mortality -
immunity’

3.5 Whenever theepidemic is curbedwithina regiona�er the firstwaveand interregional traveling resumes, people
may become infected outside the region, bring back the virus and spark a next wave of infections. The risk of
a subsequent wave is of course particularly high if previous policy measures were strict (e.g., agents were not
permitted to go to work or school) and immunity continued to be low (susceptibility remains high). Given that
both short-range commuting and long-range tra�ic are important drivers of virus spread, computer models
should ideally incorporate both, see e.g., Balcan et al. (2009).

3.6 Our simulation experiments revealed a strong moderating e�ect of regional policies on the impact of interre-
gional travel, see Table 2. A mix of strict, early interventions (i.e., disallow agents to go to the o�ice, school,
etc.) will indeed stifle the intraregional spread and eradicate the virus from the region itself, but a large part of
the population remains susceptible. In this case, the region remains vulnerable if both the intraregionalpolicies
becomemore lenient (i.e., doallowagents togo too�ice, school, etc.) and interregional travellers arepermitted.
To prevent new regional outbreaks either one is to be controlled strictly, i.e., either policymakers (1) prohibit in-
terregional travel and relax intraregional restrictions, or (2) one permits interregional travel but has tomaintain
intraregional restrictions. In contrast, only whenever there is group immunity (either emerging endogenously
by late control or attained by vaccination), both interregional travelling can be permitted and regional restric-
tions can be relaxed.
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Table 2: Potential new infections during 2nd wave for combinations of interregional and intraregional policies
a�er particular regional control during the 1st wave. ’Strict’ = Not allowed to go to the o�ice, school, etc. ’Le-
nient’ = allowed to go to the o�ice, school, etc.

Regional isolation policies Interregional travel policy

Early phase
(e.g., during

1st national wave)

Later phase
(e.g., during

2nd national wave)
Permit entry

Prohibit entry/
Entry a�er total
lockdown

Strict control:
Low spread in
first wave, high

susceptibility remains

Lenient control:
may permit the

next regional wave

Incoming travellers
may spark

a newwave of
infections

No new infections

Strict control:
prevents the

next regional wave

Incoming travellers
may infect a

small group (e.g.,
household),

but these do not
infect others due to
lack of contact

No new infections

Lenient control:
Wide spread in
first wave, low

susceptibility remains,
so high immunity

Lenient control:
spreading does not
occur anyhow

Infections due to
incoming travellers
do not di�use due
to group immunity

No new infections

Strict control:
but not needed

because spreading
does not occur anyhow

Incoming travellers may
infect a small group
(e.g., household), but

infection does not spread
due to lack of contact

(but would not
spread due to

group immunity)

No new infections

3.7 Simulation experiments therefore suggest that subject to the absence of a vaccine, when either prohibiting in-
terregional travelling or regional suppression is undesirable or impossible, a controlled spread to create group
immunity is the only option to reduce the chance of a new outbreak: a second regional wave is likely to oc-
cur. Note however, macro-level policies such as these have either extreme outcomes (i.e., high immunity - high
mortality, or low immunity - lowmortality) or substantial variation in the outcome in immunity or mortality.

Social networkmetric-based interventions

3.8 In the previous section, we studied macro-level policies such as locking all households or blocking access to
all schools, which have generally, either high variance or have outcomes that are extreme in terms of mortality
and emerging immunity. Here, we studied usingmetrics of households and sites in the social network spanned
by interactions of agents to have more refined control over the number of infections, thereby of the number of
deceased and immune agents. The simulations should provide initial indications of whether, albeit in a stylized
setting, this would lower the risk of future outbreaks (due to remaining mass susceptibility), reduce the need
for (sustained) indiscriminate lockdowns, or incur many casualties.

3.9 In our case, this social network consisted of ‘nodes’ being certain sites (e.g., workplaces) and ‘edges’ between
two nodes indicating that the virusmay spread (in)directly fromone to the other site by agents. Here, we distin-
guish between two ways of transmission: firstly, when a single agent visits both sites (direct transmission, e.g.,
visiting two di�erent shops) and secondly, when an agent visiting one and another agent visiting the other site
interact at a third site (indirect transmission, e.g., twomembers of the samehousehold connect their respective
workplaces).

3.10 As sites connect agents that potentially carry the virus to other sites, either themselves or via others, agent in-
teractions span a network connecting sites. Depending on the position of this site in the network, sites have a
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particular role in the spread. This may be due to the number of sites connected to it, but also whether the site
is connecting otherwise poorly connected or even unconnected subnetworks. The social network analytical
toolkit 7 provides indices that measure both: the node degree (number of edges) and betweenness centrality
(number of times the node is on the shortest path between other nodes). In general, the higher the degree, the
more likely the site has an infected agent (all else equal), and the more likely an agent in a connected site is
infected. Moreover, the higher the betweenness centrality, the more o�en a node is involved in shortest trans-
mission chains and thus contributing to a rapid spread. Note that a site may have high betweenness centrality
without high degree, e.g., when it is a bridging tie between two subnetworks. We designed interventions based
on degree and betweenness centrality to, notably, remove spreading hubs and bridging ties.

3.11 To demonstrate the impact ofmeasures based on social networkmetrics, we introduced threemicro-level poli-
cies in which access to particular sites or leaving one’s house is regulated based on the degree or betweenness
centrality of that site or household. Firstly, ‘locking’, which is the policy of preventing all agents of a specific
household from leaving their house. Locking is particularly relevant when the agents contained in it are (i)
highly e�ective transmission channels (e.g., think of socially well-connected people, that are not only more
likely to infect others but also to be infected) or (ii) bridging ties between subnetworks (e.g., members of a
household are engaged in di�erent communities). Secondly, ‘blocking’, which is the policy of preventing any
agent fromentering a specific site (e.g. supermarket, workplace). Blocking is particularly relevantwhen it is (i) a
mass spreading hub (e.g., social events), or (ii) part of a bridging tie between subnetworks (e.g., ameeting place
of members from otherwise disconnected communities). Blocking may therefore lengthen or break transition
chains, thereby flatten the curve and as such alleviate ICUs. Alternative reasons to ‘block’ sites may relate to
the properties of agents at these sites, e.g., the agents are vulnerable.

3.12 In our agent-based model, all visiting patterns are known and can be used to devise and study the impact of
‘locking’, i.e., themandatory, discriminate isolationofmembers of a specific household into their house. We ran
simulations for 30 cases for an increasing number of households locked (B = 0, 20, 40) and the four scenarios
of having an open and closed region, and with physical hygiene measures or not. It is assumed that agents
always come to the workplace and to school when not locked in. Given the substantial impact, we assume that
mass gatherings are prohibited. To decide which households to lock, we use the betweenness centrality of a
node (i.e., a household, in this case).

3.13 However, rather thandetermining thebetweenness centrality for eachhouseholddirectly,which requiresdeter-
mining the shortest paths between all pairs of households (through relationships of individual members), we
determined the betweenness centrality of schools and workplaces and compute an ‘aggregate betweenness
centrality’ (ABC) for households based on schools and workplaces visited by household members. The con-
nections established by households between school and workplace sites span the edges (and weights thereof)
between associated nodes, see Figure 5. Subsequently, the betweenness centrality is computed for these site
nodes and an aggregate betweenness centrality for households is computed by simply summing the centrality
value of site nodes linkedbymembers. In the next step, theBhouseholdswith thehighest ABC value are locked.
The household ABC value is not divided by the number ofmembers tomake sure to lock households withmore
members earlier.
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Figure 5: Indirect connections of schools andworkplaces spannedbyhouseholds (thickness of edge is the num-
ber of connecting households, the number on nodes is the degree centrality of workplace/ school)

3.14 Figure 6 reveals that ‘locking’ is an e�ective instrument to reduce mortality, albeit again at the expense of im-
munity, given that increasing the number of locks, mortality and immunity also drops generally. Interestingly,
the variation in the simulation outcome for immunity is moderate, which suggests that a locking policy is a
dependable instrument for fine-tuned control for positioning on the immunity – mortality curve.

3.15 Moreover, there are also salient di�erences between the four scenarios showing that there is a strong moder-
ating e�ect of the physical measures and interregional traveling policy. Particularly interesting is that while
closing a region lowers the infection rate (and thereby mortality and immunity), the absence of an occasional
infection increases the variation in the emerging immunity substantially.
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Figure 6: Simulation outcomes (in emerging immunity vs mortality) for di�erent numbers of ’locks’ of house-
holds basedonbetweenness centrality for extreme cases of policymixes: strict physical hygienemeasures (top)
or not (bottom) and open region (le�) or close region (right)

3.16 We also studied the impact of ‘blocking’ in the same manner. Again, we simulated 30 cases for an increasing
number of sites blocked (B = 0, 7, 14), the most central first, under the policy mix of having agents always
come to theworkplace and to school, andpermitmass gatherings, and then for bothhaving anopenand closed
region, with physical hygiene measures or not.

Figure 7: Simulation outcomes (in emerging immunity vs mortality) for di�erent numbers of ’blocks’ of work-
places and schools based on degree centrality for extreme cases of policy mixes: strict physical hygiene mea-
sures (top) or not (bottom) and open region (le�) or close region (right)

3.17 Figure 7 illustrates that blocking hubs lowers mortality and immunity (through lower infection rates) and is
therefore an e�ective instrument to mitigate spread of the disease. Given that the number of sites is large and
two extremes are that blocking allwould stop spreading entirely and blocking nonewouldmean full spreading,
blocking seems to allow refined control over the epidemiological dynamics on the immunity-mortality curve.
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This said, there is considerable variation especially whenmore sites are blocked. It is also obvious that macro-
level policiesof imposingphysicalmeasuresaswell as closing the region, againhave strongmoderatinge�ects.,
locking allows a more refined control over the number of infections, emerging immunity andmortality.

3.18 The finding that (b)lockingpermits fine-grainedpositioning on the immunity-mortality curve (andat leastmore
refined than themacro-level policies), depends strongly onhow this limits the number of opportunities anddu-
rationof spatio-temporal interaction. Given that locking e�ectively prevents interactionoutside thehousehold,
this is more e�ective than blocking, which may still permit dome interaction (of some household members) in
non-blocked sites. This also explains the high variation for the blocking policy. Moreover, given that the sheer
number of households required is higher than the number of sites, locking o�ers more fine-grained control.

3.19 To ensure that our claims about this refined control does not rest too much on limiting agents’ agendas, we
conducted a preliminary robustness analysis for a change in the agenda. In this, hours in the o�ice, at school,
and in the supermarket are varied, and the geographical span of working places picked by agents is increased.
The smooth, downward sloping of the average rate of immunity and mortality for an increase in number of
(b)locks is persistent. The detailed description and results are contained in Appendix D. The robustness hinges
on the duration and number of interactions in the simulation as prediction for the rate of infection (and thereby
immunity, and mortality rates). This rationale on the e�ect of duration and number of interactions arguably
applies to both locking and blocking.

Social networkmetric-based vaccination

3.20 The simulationprogramallowsus to study social networkmetric-based vaccination strategies, such as e.g., vac-
cination of people that are (working at) ’spreading hubs’ first. Under the assumptions that vaccination causes
indefinite immunity and that vaccinated people cannot ‘silently spread’ the virus, the ’locking’ of a household
is equivalent to vaccinating the household members. A�er all, these vaccinated agents do not contract, nor
spread the virus. Moreover, in the simulation setup, their movement and interaction with other agents does
not a�ect the di�usion at all.

3.21 By this equivalence, vaccinationof households alsoo�ers refined control over the emerging immunity andmor-
tality. Simulation results indeed show smoothly downward sloping immunity curves (and therebymortality) in
the number of vaccinated households. This holds both when picking households on the basis of aggregate be-
tweenness centrality as well as for the case with randomly picked households, see Figure 8. However, in the
simulation results, the metric-based vaccination (METRICHH) reduces emerging immunity (i.e., the recoveries
from infections) and as such also themortality better than thebenchmark randomcase (RANDOMHH), arguably
by a stronger reduction of the number of infections. The plateauing, non-zero emerging immunity of unvacci-
nated agents (METRICHH-GrIm) reveals that beyond a certain number of vaccinations, there is group immunity:
thenumberofnewly infected isnear-zero. In thisparticular simulation though, interregional tra�ic is permitted,
and the lion’s share of these new infections are caused by travellers causing a small wave of infections.

3.22 Figure 9 reveals that the vaccination of agents visiting particular sites (e.g., workplaces, schools, supermar-
kets) o�ers refined control over the number of infections (i.e., emerging immunity is dropping smoothly in the
number of vaccinations). However, themetric-based vaccination strategy (METRICSITES) is not noticeablymore
e�ective in lowering immunity (thus, not the infection rate and mortality) than the benchmark case of picking
sites uniform randomly (RANDOMSITES).
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Figure8: Emerging immunity (without vaccination) versus thenumberof agents inhouseholds (HH) vaccinated,
in case of vaccination of randomhouseholds (RANDOMHH) andmetric-based households (METRICHH). The lat-
ter shows group immunity beyond 50% vaccination (METRICHH-GrIm). Here,B = 10, 30, . . . ,110 households
are vaccinated. Given the bias of the centrality metric towards bigger households, a higher percentage is vac-
cinated for METRICHH than for RANDOMHH for the same number of households – hence our choice to plot
’percentage vaccinated’

Figure 9: Emerging immunity (without vaccination) versus the number of agents vaccinated visiting particular
sites, in case of vaccination of random sites (RANDOMSITES) versusmetric-based selected sites (METRICSITES).
Here, agents scheduled to visitB = 0, 2, 4, . . . , 12 sites are vaccinated

Conclusions and Discussions

4.1 This paper provides an agent-based simulationmodel to study the characteristics of a new type of policy inter-
ventions to contain the spread of COVID-19 in a simplifiedmetropolitan region. In contrast to the real world, the
simulation model o�ers full control over the spatio-temporal behaviour of agents and perfect insight into the
disease state of agents, the locations of transmission, etc. The simulation environment therefore allows us to
devise policy instruments that use micro-level information (that may not be readily available in reality), trace
the impact of policy interventionsmeticulously and, on top of that, change interaction patterns, infection rates
and disease progression parameters to fathom the performance of these interventions.

4.2 In the simulated world, macro-level interventions (such as closing all schools/ workplaces/ shops, prohibiting
interregional travel) lower the transmission rates, but either the emerging immunity andmortality are very low
or very high, or variability in outcomes is substantial. As such, macro-level interventions are e�ective for sup-
pression, but are a coarse form of mitigation control. Illustratively, intraregional suppression (by a lock-down)
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leaves the agent population susceptible, and so to prevent a newwave, would call for prohibiting interregional
travel until the vaccine is rolled out or alternatively, continuing suppression. In looking for fine-grained control
over positioning on the immunity-mortality curve, we experimented with two micro-level interventions: one
that targets ‘locking’ of certain (but not all) households and ‘blocking’ certain (but not all) sites based on cen-
trality in the social network. The idea is that instead of closing all schools, onemay target closing some schools
that are spreading hubs or bridge cliques.

4.3 Themain finding is that the rateof infectionand therebyemerging immunity andmortality is smoothly declining
in the number of households locked aswell as in the number of sites blocked. In a limited robustness study, this
smooth decline is persistent for variation in the agenda and spatial spread of sites visited. Suchmicro-level in-
terventions based on social networkmetrics therefore seem to o�er refined control over the spatial spread and
infection rate (and thereby the number recovering and deceasing). This said, while both the blocking and lock-
ing interventions allow refined control over the positioning on the immunity-mortality curve, the major e�ect
of mass spreading events (e.g., concerts, sports events) in the simulation results suggest that thesemicro-level
interventionsmaybemerely seen as complementary to certainmacro-level interventions. Using the simulation
program, we also studied vaccination of agents at central households and sites and found that both again o�er
refined control. Moreover, metric-based selection of households to vaccinate outperformed random selection
significantly in curbing the spread, and group immunity was reached faster. In contrast, metric-based selec-
tion of sites (e.g., o�ices, schools) at which to vaccinate agents does limit the spread, but it did not outperform
random selection significantly.

4.4 We stress that due to certain modelling choices, the external validity of findings on micro-level interventions
in the simulated world is limited. Notably, the simulation world is small and highly stylized, some parameters
are scaled to overcome the small size of the world, and the agendas of agents defining the spatio-temporal
interactionare simplified. Although themodeldoesprovide suggestions for analternative classof interventions
basedonmicro-level interventions, the simplified agendas of agents and the limitednumbers and types of sites
may over- or underestimate the e�ectiveness of particular policy interventions. Future research could target
extending the agent-based model in this direction and we make the source code publicly available. Moreover,
since the first version of this model, new empirical data was established, which would permit updating our
parameter choices, e.g., transition rates between disease states, hospitalization and ICU rates, state durations,
and that these may well depend on age rate. During modelling and running simulations, new findings have
been published and some we have not been able to incorporate.

4.5 The simulation results reveal a novel class ofmicro-level interventions (locking, blocking, and piecemeal vacci-
nation of particularly central households and sites) that complements macro-level interventions. Albeit highly
stylized with regard to agendas, sites, disease progression and transmission, we see that the network metric-
based interventions in the simulated world o�er a level of control over infection and thereby immunity and
mortality that is more fine-grained than indiscriminate total lockdown. However, there are challenges to over-
come inpractical application. Finally, thenetworkmetric-based interventions asoperationalizedwould require
full information on the spatio-temporal pattern of people, which is not readily available in reality. Making esti-
mates for the centrality would require data of (a substantial part of) the population at the individual level, e.g.,
as available using cell phone data or Corona contact tracing apps, whichmay be unavailable due to privacy reg-
ulations. Moreover, the discriminative character of addressing specific sites or households may be untenable
from an ethical perspective.
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Appendix

A: Empirical household composition andmember ages

The type of household is drawn from the ‘Tp prob’ column and based on the type of household, the age of
the reference person is determined based on the probabilities indicated in Table 2. In case of a two-person
household, the age of a potential partner is uniform randomly drawn from the same age cohort.

Table 3: Household type (Single versus Couple, 0-3 children) and reference person age.

Household
type Tp prob 15-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 ≥90

1 Adult, 0 Children 38.33% 1.58% 19.27% 13.09% 11.11% 14.19% 14.71% 13.92% 9.92% 2.21%
1 Adult, 1 Child 4.51% 0.13% 6.07% 14.94% 27.19% 30.92% 11.28% 5.12% 3.44% 0.91%

1 Adult, 2 Children 2.15% 0.00% 5.11% 23.06% 40.03% 26.45% 3.81% 0.84% 0.56% 0.14%
1 Adult, 3 Children 0.68% 0.00% 4.39% 32.21% 43.63% 17.42% 1.90% 0.29% 0.00% 0.15%
2 Adults, 0 Children 28.29% 0.10% 9.22% 9.41% 5.78% 14.86% 28.46% 23.97% 7.67% 0.54%
2 Adults, 1 Child 9.53% 0.01% 5.57% 22.44% 19.53% 32.62% 15.40% 3.62% 0.76% 0.05%

2 Adults, 2 Children 11.49% 0.00% 1.95% 25.05% 40.27% 28.19% 4.06% 0.42% 0.06% 0.01%
2 Adults,
3 Children 4.51% 0.00% 1.04% 22.77% 47.58% 25.83% 2.44% 0.29% 0.02% 0.02%

MISC 0.51% 2.73% 36.91% 22.85% 8.59% 9.77% 10.16% 5.66% 2.73% 0.59%

Given the number of children in the household we derive the age of the oldest and youngest child from the
empirical distribution from StatLine Dataset 71487 for 2019 of the Dutch statistics agency (CBS), see Table 4 and
Table 5. The age is uniform randomly drawn capped by the age of the parentminus 19 years (14 years for parent
younger than 20). The age of the middle child, in case of three children, is the arithmetic mean of the ages of
the other two siblings.

Table 4: Age of child for households with 1 child.

Age: 0 – 5 Age: 6 – 11 Age: 12 – 17 Age: 18 – 24 Age: 25 -
1 child 24.78% 12.27% 16.25% 25.57% 21.13%

Table 5: Age of youngest and oldest child for households with 2 or 3 children.

2 children 3 children
Age: 0 – 5 & 0 – 5 15.51% 4.40%
Age: 0 – 5 & 6 – 11 13.16% 21.59%
Age: 0 – 5 & 12 – 17 1.06% 9.70%
Age: 0 – 5 & 18 – 24 0.18% 2.61%
Age: 0 – 5 & 25 – 0.01% 0.10%
Age: 6 – 11 & 6 – 11 12.32% 3.72%
Age: 6 – 11 & 12 – 17 12.34% 19.86%
Age: 6 – 11 & 18 – 24 1.06% 7.94%
Age: 6 – 11 & 25 – 0.06% 0.62%
Age: 12 – 17 & 12 – 17 13.10% 4.12%
Age: 12 – 17 & 18 – 24 13.25% 16.68%
Age: 12 – 17 & 25 – 0.40% 1.93%
Age: 18 – 24 & 18 – 24 11.04% 2.99%
Age: 18 – 24 & 25 – 4.12% 3.21%
Age: 25 – & 25 – 2.38% 0.50%
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B: Operationalizations of macro-level policy measures

Table 6: Measures available in the agent-basedmodel with a brief description of the operationalization.

Policy measure Operationalization
General policy:

Physical measures: distance/
hygiene/ coughing

An infectious agent has to be closer in Euclidian pixel distance,
to have a chance to infect a susceptible agent.

Interregional travel policy:
refuse incoming travellers Incidental exposure of random, susceptible agent does not occur.

School policy:
None: come to school

regardless
Agent goes to school when scheduled, unless severely or critically
infected, then stays at home or goes to hospital.

Bar the ill from
entering school Agent does not go to school but stays home (also) when infected.

Close school upon
first infected

‘Block specific’: upon on first infected agent visiting school, close
the school for all.

Close for one case
and isolate households

‘Block specific’ plus ‘household isolation’: upon first infected
agent visiting school, close the school, and all school children
and parents stay home.

Close all schools ‘Block all’: close all schools (regardless of states of agents)
O�ice policy:

None: come to the o�ice
regardless

Agent goes to workplace when scheduled, unless severely or
critically infected, then stays at home or goes to hospital.

Stay and work from
home when sick

Agent does not go to the workplace when infected, but
instead works from home (possibly at lower productivity rate).

Work from home regardless
(when possible)

Agent does not go to the workplace, regardless of state, but
instead works from home (possibly at lower productivity rate).

Work from home if one
employee sick and isolate

households

‘Block specific’ and ‘household isolation’: upon first infected
employee, close the o�ice, and employees and family members
stay home.

Gathering policy:

Gatherings allowed Agent goes to recreation area when scheduled, unless severely or
critically infected, then stays at home or goes to hospital.

Gatherings prohibited Agent does not go to recreation area despite scheduled.

Prohibit if even one visitor
was ill and isolate households

‘Block specific’ and ‘household isolation’: agent does not go to
recreation area if one visitor is ill, and visitor and
family members stay home.

Hospitalization policy:
No special admission rules No specific rules for going to the hospital.
Admit only critical cases If beds are available, critically ill patients are admitted.
Admit both severe and

critical cases
If beds are available, both severely and critically ill patients
are admitted.

Hospital capacity The number of beds per hospital, i.e., the maximum
number of patients held at the same time.

JASSS, 24(3) 6, 2021 http://jasss.soc.surrey.ac.uk/24/3/6.html Doi: 10.18564/jasss.4571



C: Default parameter settings

Table 7: Default parameters.

Symbol Variable Default value
D Infection distance 2
α Infection distance scale 0.15 (0.05 when ‘physical measures’ policy)

ICU capacity 2
N Nr of households 200

Nr of initial infections 1
ρ Hospital recovery ratio 4

D: Robustness for variations in agents’ agendas

The claim is that the locking policy permits refined positioning on the mortality – immunity curve, and that
this holds for a variation of the agents’ agendas. Figure 10 and Figure 11 contain the simulation results for im-
munity and mortality at the end of 180 periods of simulation runs for 100 runs for a wide range of numbers of
households. Here, we have two types of agendas of the agents and in- and excluding mass events (like sports
matches, concerts, etc.). There are no othermeasures, so also interregional travel is permitted and there are no
physical hygiene measures imposed.

The ‘regular’ agenda is as described in Section 2.4. The ‘adjusted’ agenda has the variation that children of
age< 13 go to school from 9:00 to 16:00 on workdays, except from 9:00 to 12:30 onWednesday, thus reflecting
common times for primary schools. Teenagers aged 13 - 20 years start at 9:00 or at 10:00 (with probability 0.5),
and finish at 15:00 or 16:00 (with probability 0.5), so as to reflect themore variable times for secondary schools.
Working adults (>20) now start at 8:00 or at 8:30 (each with probability 0.5), and to finish at 17:00 or at 17:30
(with probability 0.5). Moreover, adults now go to the supermarket at 17:30 or at 19:00 (with probability 0.5).
The ‘adjusted’ agendas e�ectively reduce the average duration of interaction or the average number of contacts
that agents have, and thereby the chance of getting infected decreases. Indeed, upon comparing the simula-
tion results for the ‘regular’ and the ‘adjusted’ cases in the boxplot graphs, it is clear that emerging immunity
and mortality drop (albeit non-significantly) across all numbers of locks. We do acknowledge that further re-
finements, notably those reducing the duration of interaction or the number of agents interacted with, would
further lower immunity andmortality.

However, Figure 10 and Figure 11 do show that for both types of agendas, the gentle downward sloping nature
of the boxes remains, which is a confirmation of our claim that the ‘locking’ permits refined positioning on the
immunity-mortality curve is robust for variations in agents’ agendas.
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Figure 10: Emerging immunity (in%)bynumberofhouseholds locked, for thedefault agent agendasandaltered
agendas.

Figure 11: Emergingmortality (in%) by number of households locked, for the default agent agendas and altered
agendas.

Notes

1An agent-based policy laboratory for COVID-19 containment strategies, https://inno.uni-hohenheim.
de/corona-modell.

2https://covid19-scenarios.org/(last accessed October 8th, 2020)
3https://www.washingtonpost.com/graphics/2020/world/corona-simulator/ (last accessedOcto-

ber 8th, 2020)
4https://meltingasphalt.com/interactive/outbreak/(last accessed October 8th, 2020)
5The stylized simulation serves as laboratory in which e�ects of interventions can be studied visually. Given

the low number of agents in the visualization, we have permitted aminor scaling for themortality and thereby
impact of interventions. Given that the purpose of the agent-based model is to study the level of control ob-
tained through social networkmetric-based interventions rather thanaccurate forecasts,weareprimarily inter-
ested in qualitative, comparative results across simulation runs with the same parameter settings. We provide
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a limited robustness check for variation in the agents’ agendas as this a�ects also the social network struc-
ture. For readers interested in using the agent-based model to study interventions for alternative parame-
ters or specific empirical cases, we have made the source code publicly available at https://github.com/
BenVermeulen/UHOHCoronaPolicyLab.

6The reproduction numberR is the number of susceptible members of a population that are infected by a
single infector, while the basic R0 is the ‘pure’ number of infections, i.e., the number whenever there are no
encounters with members that are already infected or immune. The R reported in the simulation model is
simply the average number of agents infected by an infectious agent (including the pre-symptomatic stage).

7For terminology on social network analysis, see e.g., Wasserman & Faust (1994).
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