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Abstract: The Remaining Useful Life (RUL) prediction of engineering equipment is bound to face 

the situation of missing data. The existing methods of RUL prediction for such cases mainly take 

“data generation—RUL prediction” as the basic idea but are often limited to the generation of one-

dimensional test data, resulting in the extraction of the prediction network. Therefore, this paper 

proposes a multivariate degradation device based on Nonlinear Independent Components Estima-

tion (NICE) and the Temporal Convolutional Network–Bidirectional Long Short-term Memory 

(TCN-BiLSTM) network for the RUL prediction requirements in the case of missing data. First, 

based on the NICE network, realistic data are generated through reversible sampling; then, the fill-

ing of multivariate missing data is completed. Next, the filled multivariate degradation data are 

processed to generate multivariate degradation data and predicted labels for constructing the train-

ing set and test set. Based on this, a residual life prediction model integrating TCN and the BiLSTM 

network is proposed. To evaluate the proposed method, this paper takes an example of the RUL 

prediction of aeroengines to perform multivariate degradation data-filling and prediction tasks. The 

results demonstrate the superiority and potential application value of the method. 

Keywords: multivariate degraded data; RUL; deep generative networks; nonlinear independent 

component estimation; temporal convolutional networks; bidirectional long short-term networks 

 

1. Introduction 

The integrated application of multidisciplinary technical methods in cross-discipli-

nary fields provides a technical approach for the Prognostics and Health Management 

(PHM) of multiple and complex degraded equipment, which has gradually become a hot 

research topic in the fields affecting reliability workers and maintenance technicians [1–

10]. Multi-degradation equipment integrating mechanical, electrical, hydraulic, and other 

technologies often has high reliability, a long life, and high value, and its performance 

degradation and fault status are closely related to multiple characteristic variables of the 

system. Therefore, identifying the underlying evolutionary mechanism from the above 

characteristic variables has gradually become the focus of attention in the fields of current 

equipment status assessment, fault diagnosis, and Remaining Useful Life (RUL) predic-

tion [11–17]. 

For multi-degraded equipment, some data may be inevitably missing owing to ma-

chine failures (e.g., measurement sensor failures) or human factors (e.g., recording errors) 

in engineering practice. If such incomplete data are used to predict the RUL of equipment, 

it would be difficult to accurately describe the law of equipment degradation, which in 

turn affects health management and maintenance decisions concerning equipment. 

Therefore, generating or filling high-precision and high-reliability multidimensional data 

is of great significance for the prediction and health management of multi-degraded 

equipment [18,19]. 
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2. Literature Review 

The generation model of randomly generating samples by learning the probability 

density of observable data has received extensive attention in recent years. The deep gen-

erative model with multiple hidden layers in the network structure has become a research 

hotspot with better generation ability. The training of a deep generative model [20] is dif-

ficult and the model structure is complex, but in addition to being able to generate new 

samples, the generative model has also achieved great success in image reconstruction, 

missing data filling, density estimation, style transfer, and semi-supervised learning. The 

earliest deep generative models are variants based on Boltzmann machines. The most im-

portant derivative models are Restricted Boltzmann machines (RBM), which use the sam-

pling method to approximate the likelihood function [21], Deep belief network (DBN) and 

Deep Boltzmann machines (DBM) based on RBM. Such models can learn high-dimen-

sional features and high-order probability dependencies and are successfully applied in 

the fields of dimensionality reduction and feature extraction. 

The depth generation method represented by the variational encoder is based on the 

autoencoder structure. The sample is mapped to the latent variable in the low-dimen-

sional space through the encoding (Encoder) process, and then the latent variable is re-

stored to the reconstructed sample through the decoding (Decoder) process. The Im-

portance weighted autoencoders (IWAE) of the encoder in the variational lower bound is 

weakened [22], and the label information is integrated into the model. Conditional varia-

tional auto-encoder (CVAE) for supervised learning [23,24] and semi-supervised varia-

tional auto-encoder for semi-supervised learning [25,26]. The model that incorporates the 

convolutional layer into the VAE is called the Deep convolutional inverse graphics net-

work (DC-IGN) [27]. Adversarial autoencoders (AAE) [28] with adversarial ideas. Ladder 

variational autoencoders (LVAE) with step structure [29]. In addition, Vector quantized 

variational auto-encoders (VQ-VAE) [30,31] is proposed by hiding the discretized varia-

bles. 

The deep generation method represented by generative adversarial networks [32] 

optimizes the model parameters through the adversarial behavior between the generator 

and the discriminator to avoid solving the likelihood function. Deep convolutional gener-

ative adversarial networks (DCGAN) [33] is the first important improvement to GAN. It 

screens out the best set of generators and discriminators in a variety of structures, which 

significantly improves the stability of GAN training. WGAN [34] (Wasserstein GAN) pro-

posed replacing KL divergence and JS divergence with Wasserstein distance to solve the 

problem of instability of GAN and basically eliminate the model collapse problem on sim-

ple datasets. In the field of image generation, BigGAN [35] successfully applied it by in-

troducing a residual structure. In addition, by inputting label information as additional 

information into the generator, Condition GAN (CGAN) [36] combines samples with label 

information. However, most adversarial networks face problems such as unstable train-

ing. 

Although VAE replaces the real data by solving the variational lower bound of the 

likelihood function, the resulting approximation model does not produce the best results. 

Although GAN avoids optimizing the likelihood function and retains the accuracy of the 

model by using the method of model confrontation and alternating training, there are 

various problems in the training process. Therefore, it is important to study a deep gener-

ation model that can ensure the accuracy of the model and is easy to train. The flow model 

with the advantages of accurate log-likelihood assessment and accurate latent variable 

inference [37,38] is still in its infancy. Since OpenAI’s Glow [39] based on the flow model 

proposed by NeurIPS in 2018 has been successfully applied to image generation tasks 

many times, researchers have once again focused on the flow generation model. Among 

them, Non-linear Independent Component Estimation (NICE), as the first variant based 

on a flow model, is favored by scholars for its powerful data generation ability. GE et al. 

[40] proposed a generation network based on the NICE framework to simulate the one-

dimensional daily load curve of a distribution network, the study shows that the model 
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can better capture the temporal and spatial correlation of a daily load curve. Xue Yang et 

al. [41] proposed a generation network based on the NICE framework to enhance the dis-

tributed photovoltaic stealing data curve. By comparing the generation effect of GAN and 

VAE, NICE has more accurate likelihood estimation and the generated samples are closer 

to the real data curve. However, the re-search on multidimensional data generation only 

stays in the field of image processing and has not been applied to the generation of mul-

tidimensional time series data. 

As the core of PHM technology, the data-driven residual life prediction method has 

received extensive attention from academia and industry and achieved rich results due to 

the advantages of no need to determine the degradation model in advance, low require-

ments for professional mechanism knowledge, wide application range, and low predic-

tion cost. The machine learning-based method uses classical network models (such as sup-

port vector machines, auto encoders, convolutional neural networks, etc.) to deeply mine 

the potential information and rules contained in complex data, self-learn the mapping re-

lationship between equipment performance degradation law or monitoring data and fail-

ure time, and obtain equipment failure time by rolling extrapolation or direct prediction. 

In the field of residual life prediction of multivariate degradation equipment, many schol-

ars related to deep learning and neural networks have conducted multivariate time pre-

diction research. It mainly includes RNN-based structures and CNN-based structures. 

As a deep recurrent structure, the RNN network regards the RUL estimation problem 

as a time series regression problem, which is very suitable for processing time series data 

and using deep learning models to solve it. Gugulothu [42] applied the RNN network to 

time series prediction, which does not depend on any degradation trend hypothesis, is 

robust to noise, and can handle missing values. Zheng [43] applied the LSTM network to 

RUL estimation. Compared with RNN, LSTM controls information flow by introducing 

three gate structures: input gate, forgetting gate, and output gate, which solves the prob-

lem of long-term dependence of RNN. In addition, Bi-RNN [44] refers to the combination 

of two independent one-way RNNs, and Bi-LSTM [45] refers to the combination of two 

independent one-way LSTMs, which exploits more information. 

In recent years, the CNN network has been mainly used for tasks such as feature 

extraction and image classification. The authors of [46] first attempted to use the CNN 

structure for RUL estimation and prediction. Unlike the CNN structure in image pro-

cessing, the convolution and pooling operations in the prediction model are applied along 

the time series, and through the deep architecture, the learned features are high-level ab-

stract representations of the original signal. The authors of [47,48] state that based on the 

CNN structure, the time series structure TCN with causal dilation convolution is adopted, 

and the extracted features are used as the input of the time series structure. The prediction 

results depend on the depth of the network and the size of the dilation factor. 

The variant networks based on RNN [42] structure include LSTM [28], BiRNN [44], 

and Bi-LSTM [13,45]. The variant networks based on the CNN structure are mainly DCNN 

[46] and TCN [47,48]. Wang J et al. [13] proposed a new data-driven method using the 

BiLSTM network for RUL estimation, which can make full use of the bidirectional sensor 

data sequence. Zhang H et al. [18] proposed a deep learning model based on TCN and 

Attention for real-time motor fault diagnosis. Zhao C. et al. [45] proposed a two-channel 

hybrid prediction model based on CNN and the BiLSTM network. Considering that the 

multivariate degradation equipment contains multiple dimensions of degradation infor-

mation, the degradation laws are different, the life contribution rates corresponding to 

different dimensions are different, and the coupling relationship between each dimension 

is complex. The above model in the prediction process of only a single network is bound 

to have limitations. Specifically, although the TCN network can perform convolution op-

erations in parallel and perform local feature extraction quickly on the basis of CNN, the 

prediction result (i.e., the remaining life at the current time) is only related to the previous 

time. As a typical representative of RNN, BiLSTM can effectively avoid the drawbacks of 
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TCN network, but its short-term memory is not as accurate and fast as convolution oper-

ation. Therefore, in order to obtain more accurate residual life prediction results, it is an 

urgent requirement to fuse TCN. 

In order to solve the abovementioned practical problems in data generation and RUL 

prediction, this paper proposes a prediction model based on NICE and TCN-BiLSTM un-

der-missing data. Specifically, the method mainly consists of a two-level architecture. The 

first-level architecture uses a deep neural network based on the NICE model to model the 

distribution of multisource degraded data so that multidimensional degraded data can be 

reconstructed. In the second-level architecture, this paper combines the advantages of 

TCN parallel computing and BiLSTM long-term memory and proposes a TCN-BiLSTM 

model to predict the RUL of equipment. Among them, TCN mainly undertakes feature 

extraction and captures short-term local dependencies, while BiLSTM mainly undertakes 

long-term memory and captures long-term macro dependencies. A RUL prediction is per-

formed on the filled multidimensional degraded data by the TCN-BiLSTM model. The 

contributions of this paper are twofold: 

(1) This paper introduces NICE technology, which can fully mine the true distribution 

laws behind missing data, map training data to a standard normal distribution, gen-

erate realistic data through reversible sampling, and then fill in missing values. Thus, 

multivariate degradation data can be generated in the full-time sense; 

(2) Compared with the literature [13,48], the method proposed in this paper can capture 

both long- and short-term dependencies, effectively ensuring that the extracted fea-

tures fully reflect the health status of the device. 

The remaining sections are arranged as follows. Section 3 describes the problem for-

mulation. Section 4 introduces the multivariate degradation data filling model based on 

the NICE model and the multivariate degradation data forecasting model based on the 

TCN-NICE model. Section 5 is the example validation part, choosing multivariate degra-

dation dataset C-MAPSS as the validation dataset. Section 5.1 describes the implementa-

tion of this experiment. Section 5.2 carries out the dataset and processing work. Section 

5.3 applies the NICE model to the multivariate degradation data filling task. Section 5.4 

applies the TCN-BiLSTM model to the multivariate degradation data filling task. Section 

6 is the conclusion, which summarizes the innovative points of this paper. 

3. Problem Formulation 

For random degradation devices monitored by missing multisource sensors (i.e., 

there are missing multivariate degradation data), assuming that there are N devices of the 

same model in total, ( )j
ix t  is marked as the (1 )j i N   sensor of the (1 )i i N   de-

vice at ( 0)t t  . For monitoring data, the corresponding monitoring time is marked as 
,,0 ,1[ , , , ]ij
j Kj j j

i i i it t t t , where j
iK  is the total number of monitoring samples of the i  de-

vice and the j  sensor. Assuming that the sampling numbers of the S  groups of sensors 

of the same device are the same, the monitoring dataset taken by the i  sensor of the j  

device can be recorded as 
,,0 ,1[ , ,..., ]ij
j Kj j j

i i i ix x xx , and the multisource sensor monitoring 

data of the i  device can be recorded as: 

,

,

,

1,1,0 1,11

1,2 2,0 2,1

,,0 ,1

i j

i j

i j

K

i i ii

K

j i i i
i

S S KS S
j j i i

x x x

x x x

x x x

  
  
      
  
     





    



x

x
X

x

  (1)

where , ,
,( )( 0,1, , )j k j j k

i i i i jx x t k K    represents the monitoring data of the j  sensor of 

the i  device at the time ,
,( 0,1, , )j k

i i jt k K  . 
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The filling of missing multidimensional degenerate data is essentially a problem of 

learning the degenerate distribution of multidimensional data. Among them, considering 

the complexity and coupling of the monitoring data of multivariate degradation equip-

ment, the data missing mode is Missing Completely At Random (MCAR), which means 

that the missing data of each dimension have nothing to do with the dimension or any 

other variable. The missing rate for each dimension is the same. If the data are missing, 
,j k
ix NAN . Send iX  into the deep generative network model, expecting enough real 

generated data to be recorded as i
X  in order to fill in the missing values. 

Prediction of populated multidimensional degraded data is essentially a problem of 

learning the degradation trend of multidimensional data. Assuming the monitoring sam-

pling interval is the same, each sampling is recorded as a unit of time, and when the equip-

ment fails, the length of all monitoring moments ( j
it ) is recorded as the life j

iL K ; there-

fore, the RUL of each sampling is ,( 0,1, , )i jRUL L k k K    . Specifically, in the deep 

learning prediction framework, the input training data are multivariate degradation data, 

and the neural network model maps the degradation trend to the RUL; that is, the pre-

dicted label is the RUL. Some degradation data are input in the verification set, and the 

output corresponds to RUL. 

Based on the above analysis, this paper focuses on the following questions: 

(1) How to design a data generation model to achieve optimal filling of missing parts of 

the data; 

(2) How to build the RUL prediction network model to achieve accurate prediction of 

the RUL of the equipment. 

4. Multidimensional Missing Data Generation and Prediction 

4.1 Multivariate Degraded Data-Filling Model Based on the NICE Model 

The main purpose of this section is to introduce the core idea of the flow model 

through theoretical analysis, as well as how it, as a deep generative model, trains DNNs 

and infers new data representations from prior distributions to generate new samples. 

The basic idea of the flow model is that a complex data distribution must be mapped 

to a simple data distribution via a series of transformation functions. If these transfor-

mation functions are reversible and easy to obtain, the simple distribution and the inverse 

function of the reversible transformation function constitute a deep generative model. As 

shown in Figure 1. 

 

Figure 1. Structure of the flow model. 

Specifically, the flow model assumes that the original data distribution is ( )XP x , the 

prior hidden variable distribution is ( )ZP z (usually a standard Gaussian distribution), the 

reversible transformation function is ( )f x ( ( )fz x ), and the generating transformation 

function is ( )g x ( 1( ) ( )g f x x ). The variable substitution method based on the proba-

bility distribution density function can be obtained as: 
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where, D  is the dimension of the original data, 
( )

det
f



x

x
 is the reversible transfor-

mation function ( )f x , and the Jacobian determinant is x . Higher-dimensional monitor-

ing data increases the computational complexity of the Jacobian determinant, resulting in 

model fitting. The burden of the flow model is more than the process of solving the inverse 

function of the invertible function. Therefore, the flow model needs to ensure that its Ja-

cobian determinant is easy to calculate in addition to the conversion function ( )f x : 

2

log( ( ))

( )
log( ( ( ))) log( det )
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log(2 ) ( ) log det

2 2
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 




   



x

x
x

x

x
x

x

  
(3)

The NICE model is a DNN based on the flow model framework, which mainly in-

cludes basic structures such as an additive coupling layer, dimensional blending, and a 

scale layer. Similar to the variational auto encoder, the training process of the NICE model 

can be divided into an encoding phase and a decoding phase. In the encoding stage, NICE 

maps the input samples to a Gaussian distribution using a series of reversible transfor-

mations such as the additive coupling layer, dimension mixing, and scale transformation 

layer. In the decoding stage, the inverse process of the encoding stage is established, and 

the weights in the encoding stage are directly used, resampling from the normal distribu-

tion to obtain the generated data. Among them, the encoding stage determines the quality 

of the generated model, which is theoretically error-free. Note that the loss function of the 

NICE model is the inverse of the model optimization objective: 

NICE

2

loss log( ( ))

1 ( )
log(2 ) ( ) log det

2 2

XP

D f
f

 


  



x

x
x

x

  (4)

Specifically, the structure of the NICE model is shown in Figure 2. First, input iX  is 

randomly divided into two parts ( (0)
,1iX  and (0)

,2iX ) according to the dimension, and enters 

the first additive coupling layer, where (0)
,1iX  directly obtains (1)

1h , (0)
,1iX . After the cou-

pling of 1m , add it to (0)
,2iX  to obtain (1)

2h ; that is, the additive coupling layer does not 

perform the coupling operation on the first part. Then, swap (1)
1h  and (1)

2h , and then en-

ter the next additive coupling layer, where (1)
2h  directly obtains (2)

2h , and (1)
2h  is cou-

pled with 2m  and then added with (1)
1h  to obtain (2)

1h , and so on, with four additive 

coupling layers. Take the coupling layer structure as an example. Finally, (4)
1h  and (4)

2h  

are jointly inputted into the scale compression layer ( S ) and ,1iz  and ,2iz  are output and 

concatenated into iz . 
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Figure 2. Structure of the NICE Model. 

Training with the NICE model. Send iX  into the NICE model for coding and then 

sample the standard normal distribution to obtain enough real generated data ( i
X ) to fill 

in the corresponding missing values and record the filled data as i
X . 

4.2. Multivariate Degraded Data Prediction Model Based on the TCN-BiLSTM Model 

The main purpose of this section is to introduce the core idea of the TCN-BiLSTM 

model through theoretical analysis, how it is used as a prediction model to extract features 

from multidimensional data, and how to map training features to RUL in order to achieve 

RUL prediction. 

The TCN network proposed by Bai et al. [47] is a CNN model with a special structure. 

It is based on the traditional one-dimensional CNN called 1-D FCN, combined with causal 

convolutions and dilated causal convolutions. A new network model is obtained by com-

bining dilated causal convolutions and residual blocks in the TCN architecture. In order 

to input the time step as in RNN, the output time step is also the same length; that is, the 

input of each time has a corresponding output, which uses the structure of 1-D FCN in 

each hidden layer. The time length of the input and output are the same, and the same 

time step is maintained; in order to ensure no leakage of historical data, we do not use a 

traditional convolution but a causal convolution is selected. The data output at time y  is 

only related to the data at time t  and before time t , that is 0 1tx x . In order to effec-

tively deal with the problem of long historical information, dilation causal convolution is 

introduced, which still has causality, and the dilation factor is introduced, which is gen-

erally dilated. The coefficient is an exponential power of 2. In order to solve the problem 

of gradient disappearance that may be caused by a deeper network structure, a residual 

block is introduced to improve the generalization ability of the TCN structure. As shown 

in Figure 3, a TCN structure with a convolution kernel size and a maximum expansion 

factor of three and four is simulated. 

0x 1x 2x 2tx 1tx tx

2ty 1ty ty0y 1y 2y





d = 1

d = 2

d = 4 Residual block(3,4)

Residual block(3,4)

Residual block(3,4)

Output

Hidden

Hidden

Input

 

Figure 3. The Structure of the TCN Model. 

The Bi-LSTM neural network structure model is divided into two independent LSTM 

hidden layers. As shown in Figure 4, the input sequence is input to the two LSTM neural 
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networks in positive and reverse order for feature extraction. The vector formed after 

splicing is used as the final feature expression. The key to Bi-LSTM is that the feature data 

obtained at time � holds both past and future information. Experiments have shown that 

this neural network structure model is better than a single LSTM structure model for text 

feature extraction efficiency and performance. Furthermore, the two LSTM neural net-

work parameters in Bi-LSTM are independent of each other; they only share a list of mul-

tivariate degradation data vectors. 

0x 1x 2x 2tx 1tx tx

2ty 1ty ty0y 1y 2y




Output

Hidden

Hidden

Input

LSTM1

LSTM2

 

Figure 4. The structure of the LSTM model. 

In order to fuse the advantages of TCN parallel computing and BiLSTM long-term 

memory, the structure of the TCN-BiLSTM model is shown in Figure 5. Specifically, first, 

the i
X  obtained in Section 3 is processed by a sliding time window with a window length 

of N S , and multiple matrices with a dimension of ,( [0,1, , ])i jL K   rul k k  and 

their corresponding RUL sequences *3 are combined to form the  Time Sequence  and 

 RUL Sequence  data pair. The processed data pairs are used as training data and sent to 

the TCN-BiLSTM network model. Subsequently, through n  dilated causal convolutions 

and residual operations, we extract the local features of multivariate degraded data in 

parallel, input the extracted feature sequence into the BiLSTM network, mine deep se-

quence information through forward LSTM and reverse LSTM, and finally obtain the ac-

curate RUL. 

Original  
Signal

Time 
Sequence

Feature 
Dimension

Filter 2

Filter 1

Filter n

TCN Convolution Layer BiLSTM Recurrent Layer 

RUL 
SequenceLSTM 1 LSTM 2

 

Figure 5. The structure of the TCN-BiLSTM model. 
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5. Experimental Research 

As the “crown jewel” of modern manufacturing and the “heart” of aircraft, the 

aeroengine is the key piece of equipment that provides flight power for aircraft. The ab-

normality of the system causes the engine thrust to drop, which can lead to serious acci-

dents such as in-flight parking, directly reducing the flight safety and mission reliability 

level. At present, the performance monitoring and health status assessment of aeroengines 

face the problems of unbalanced fault data, high test costs, and a lack of real data on indi-

vidual equipment. This paper takes aeroengines as an example to perform multivariate 

degradation data-filling and prediction tasks to verify the effectiveness of the proposed 

method. 

5.1. Implementation 

In order to test and validate the potential contribution of the proposed approach for 

future real-world applications, this method has been implemented into a prototype soft-

ware system using Python 3.6.13. In particular, the NICE and TCN-BiLSTM models are 

implemented using Keras 2.3.1, a Python library for developing and evaluating deep 

learning models. The resources used in order to integrate the aforementioned system were 

a computer with an Intel i7 processor (Intel(R) Core(TM) i7-10770K CPU @ 3.80 GHz, re-

garding the processing power, and an 128 gigabyte RAM memory. The operating system 

that the proposed system was hosted and tested on was Microsoft Windows 10. 

5.2. Data Set Introduction and Preprocessing 

This section selects the C-MAPSS aeroengine simulation experimental dataset [49] 

released by NASA to verify the method. The dataset consists of multiple multivariate time 

series, including three operating settings and 21 types of sensors that have a significant 

impact on engine performance, for a total of 26-dimensional data. A total of four types of 

datasets are recorded under different working states and failure mode combinations as 

the scale of failures continues to expand. Each dataset is further divided into training and 

testing subsets. In the training set, the entire time series of each engine from normal oper-

ation until system failure is recorded. In the test set, the time series for each engine ends 

some time before the system fails. The specific information is shown in Table 1. 

Table 1. C-MAPSS dataset. 

No. Train Engines Test Engines Conditions Fault Modes 

FD001 100 100 1 1 

FD002 260 260 6 1 

FD003 100 100 1 2 

FD004 249 249 6 2 

This paper uses the data of the No. 1 engine in the training set FD001 dataset to gen-

erate multisource degradation data, where sensors1–21 represent the relevant feature 

quantities in the dataset. Considering that the engine performance degradation is contin-

uous, its characteristic quantities should also show a certain trend change in the time se-

ries. First, we draw a time series diagram for all sensor data, as shown in Figure 6. 
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Figure 6. Time series distribution diagram of 21 sensors’ data of the aeroengine. 

As can be seen from Figure 6, sensor1, sensor5, sensor6, sensor10, sensor16, sensor18, 

sensor19, and other feature quantities are not sensitive to time series signals or are discrete 

variables, and they play a small role in feature engineering such as the construction of 

comprehensive health indicators. Therefore, the data generation of these sensors is of little 

significance, and these sensors are screened, and finally, the remaining 14-dimensional 

data (sensor2, sensor3, sensor4, sensor7, sensor8, sensor9, sensor11, sensor12, sensor13, 

sensor14, sensor15, and sensor17) with large changes are selected. 

In order to efficiently train and mine deep-level features of the deep learning model 

in the later stage, we must perform the necessary preprocessing operations on the original 

data for training. First, the complete dataset of the 14-dimensional degradation monitor-

ing are processed according to the MCAR missing mechanism in Section 2. Further, each 

dimension of each sample of the missing data is linearly normalized to the (−1,1) interval 

to obtain the training sample of the NICE model. The normalization formula is as follows: 

min

max min

2 ( ) 1i
new

X X
X

X X


  


  (5)

where maxX  and minX  are the extreme maximum and minimum values of a certain di-

mension sample, respectively, and i  is the current dimension. 
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5.3. Multivariate Degraded Data-Filling 

The engine dataset uses the sensor data measurement period as the engine life metric. 

When the measurement period reaches the maximum, the engine has been shut down, 

and each row of the corresponding data indicates a new time step in the measurement 

time series by default. The normalized data are input into the NICE model for data gen-

eration. Some parameters of the NICE model are set out as shown in Table 2. 

Table 2. NICE model parameters. 

Mode Additive Coupling Layers Coupling Layers Neurons in Each Layer Batch Size Iterations 

NICE 8 5 1000 64 1000 

According to the parameter configuration in Table 2, the multisource degradation 

data generated by training the NICE model is shown in Figure 3. 

Figure 7 shows the generation diagram of the degradation data of each sensor in the 

absence of different dimensions. It is clear that no matter whether the degradation trend 

is increasing or decreasing, the data generated by the NICE model can well cover the deg-

radation of multiple sensors of the aeroengine. The trend is closer to the distribution char-

acteristics of the real degradation data. 

 

Figure 7. Degradation data generation diagram of 14 sensors of the aeroengine. 
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Furthermore, in order to quantify the generation effect, we use the two-way 

Hausdorff distance [50] to quantify the distribution error between the generated samples 

and the training samples of different sensors. The calculation formula is as follows: 

, , , ,

    , max

)

min

    , ma

(

x

( ) [ ( ) (

m

]

)

( ) in

b Ba A

b Aa B

H A B max h A B h B A

h A B a b

h B A b a







 

 

  
(6)

Among them, ( , )H A B  is called the two-way Hausdorff distance, ( , )h A B  is called 

the one-way Hausdorff distance from point set A  to point set B , and ( , )h B A  is called 

the one-way Hausdorff distance from point set B  to point set A . A  plot of the dis-

tances of the NICE model in different dimensions is shown in Figure 8. 

 

Figure 8. The generated results of the NICE model. 

As can be seen from Figure 8, after the missing data are sent to the NICE network 

and trained, the accuracy of the generated model is measured by the bidirectional 

Hausdorff distance. Among them, the sensor8 sensor has the highest accuracy and is nu-

merically equal to 2.83, and the sensor4 sensor has lower accuracy and is numerically 

equal to 9.78. It shows that under different dimension sensors, the bi-directional 

Hausdorff distance obtained by the proposed method is low and close to the original dis-

tribution. 

5.4. Multivariate Degraded Data RUL Prediction 

5.4.1. Multidimensional Sliding Time Window 

In this section, the prediction ability of the TCN-BiLSTM model is verified. A detailed 

description of the FD001 data set is shown in Table 3, including the mechanism and aver-

age of training set and test run cycles, respectively. Because the engine with the smallest 

running cycle appears in the test set, its running cycle is 31, and the time window size 

cannot be uniformly set to a value greater than 31. Otherwise, part of the test data cannot 

be processed, thus generating a prediction result. At the same time, a smaller time window 

is not suitable because it adversely affects the prediction accuracy. The authors of [51] set 

all time window sizes to 30. Specifically, as each cycle contains 14-dimensional data, when 

the prediction step size is 1, the maximum sliding time window can be set to 30. 

Table 3. FD001 dataset. 

FD001 Training Set Testing Set 

Number of engine units 100 100 
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Number of data 26,631 13,096 

Minimum running cycle 128 31 

Maximum running cycle 362 303 

Mean running cycle 206.31 130.96 

Number of time windows 30 30 

Samples of sliding time windows 17,731 100 

According to the settings in Table 3, the training set and the test set are divided. The 

training dataset is the failure degradation data of 100 engines of the same model through-

out the life cycle and their corresponding true RUL labels. The test dataset is the degrada-

tion data of another 100 engines of the same model after stopping at a certain time and 

their corresponding real RUL labels. The input data in the training dataset is composed of 

100 engines of the same model, including 14 sensors, which are processed by sliding time 

windows. The RUL times corresponding to each cycle are processed by sliding time win-

dows, and the tensor dimension (batch_size, output_dim) is (17,731, 1). As shown in Fig-

ure 9, the input data in the test data et are composed of 14 sensors of the same model and 

another 100 engines processed by sliding time windows, and its tensor dimension 

(batch_size, timesteps, input_dim) is (100, 30, 14). The output data are composed of the 

RUL corresponding to each cycle of the respective engine through sliding time window 

processing, and its tensor dimension (batch_size, output_dim) is (100, 1). 

Time window

Sensor1

Sensor7

Sensor14

 

Figure 9. Illustration of one training sample with 14 selected features over a time window of length 

30. 

5.4.2. Predictive Model Configuration and Evaluation Metrics 

We then build the TCN-BiLSTM model, which mainly includes the structure and hy-

perparameters of the model: 

First, the number of filters used in the convolutional layers of TCN, nb_filters, is an 

important parameter that correlates with the predictive ability of the model and affects 

the size of the network. The experimental setting in this paper is 30; 

Second, the size of the TCN receptive field is jointly determined by the kernel size 

(kernel_size) used in each convolutional layer, the stack number (nb_stacks) of the resid-
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ual block, and the dilation list dilations of the dilated convolution. Here, kernel_size con-

trols the spatial area/volume considered in the convolution operation. A good value is 

usually between 2 and 8. If the sequence depends heavily on 1t   and 2t  , but less on 

the rest, choose a kernel size of 2/3. In NLP tasks, the larger the kernel size, the more sig-

nificant the effect, but the larger the kernel size, the larger a network is produced. Moreo-

ver, nb_stacks indicates the number of stacks of residual blocks that need to be used, 

which is useful unless the sequence is long (i.e., it is only used when the training data are 

on the order of hundreds of thousands of time steps). Dilations are lists of dilations, such 

as [1(0), 2(1), 4(2), 8(3), and 16(4)]. They are used to control the depth of the TCN layer. In 

general, we consider a list with multiples of 2. One can guess how many dilations are 

needed by matching the receptive field (of the TCN) to the length of the features in the 

sequence. For example, if the input sequence is periodic, multiples of that time period may 

be required as inflation. In general, the input sequence must satisfy the following two 

conditions numerically: the sum of the integer power of 2 must not be less than the num-

ber of sliding time windows, 30. So setting it to 32 is acceptable. Moreover, although the 

size of the receptive field is numerically equal to the product of their three terms, the ex-

perimental results are not the same owing to the different combination methods, and the 

most effective combination method requires multiple experiments to be performed in or-

der to determine this. According to the above rules, assuming that the receptive field is 

32, the combinations that can be selected are 2-1-16, 4-1-8, and 8-1-4. Additionally, the 

activation function is set to “relu.”; 

Thirdly, BiLSTM mainly includes the number of BiLSTM layers and the number of 

LSTM units contained in each layer of BiLSTM. The experiments in this paper set these 

two values to 32 and 128, respectively; 

Finally, two fully connected layers are added to transition the output results, where 

the number of filters in the first fully connected layer is defined as 30, and its activation 

function is “relu.” The number of filters in the second fully connected layer is set to 1, and 

its activation function is “linear.” 

In addition, in order to solve the problem of overfitting, the Dropout operation, the  

EarlyStopping operation, and the piecewise learning rate, LearningRateScheduler opera-

tion, are added. The training parameters include the number of iterations (epoch) and the 

number of batches (batch size), which are set to 250 and 512, respectively. 

In order to quantitatively evaluate the prediction effect, this paper selects two evalu-

ation indicators, the Root Mean Square Error (RMSE) and the Score function (Score), 

which are defined as follows: 

 
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  (7)

Among them, iRUL  indicates the real RUL at the second moment, iRUL  indicates 

the predicted RUL at the second moment, n  is the total number of predicted samples, 

and the penalty designed by Score is as follows. When the predicted iRUL  is greater than 

the actual iRUL , the higher the function score, the worse the prediction result. From a 

practical point of view, if iRUL  lags behind iRUL , the time to take corresponding 

measures also lags, which has serious consequences. Thus, higher penalties are given. 

5.4.3. Experimental Results and Performance Analysis 
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The RUL prediction results for the last recorded data point for the test engine unit in 

FD001 are shown in Figure 10. Among them, the performance monitoring variables of the 

engine all change little in the initial stage of degradation, so the extracted features also 

change slowly in the early stage of degradation. In order to improve the accuracy of the 

model prediction, we assume that the equipment has no degradation in the early stage of 

operation, the equipment RUL label is set to piecewise linear, and the maximum value is 

set to the average life of the engine, 125. Test engine units are sorted by labels from largest 

to smallest for better viewing and analysis. It can be seen that the RUL value predicted by 

this method is close to the actual value. Especially in regions with small RUL values, the 

prognostic accuracy tends to be higher. This is because when the engine unit is operating 

close to failure, the fault signature is enhanced and can be captured for better prediction. 

 

Figure 10. RUL prediction results for 100 engines. 

To further observe the prediction results of the method proposed in this paper, Figure 

11 shows the full test cycle RUL prediction results of some test engines. Because the per-

formance degradation state of the engine is related to the real-time and effective monitor-

ing data, the more complete the monitoring data, the better the prediction effect. How-

ever, in the test dataset, the last part of the sensor measurements is not provided to exam-

ine the prognostic performance. Therefore, four engine instances with more test cycles are 

selected here; the 24th, 34th, 76th, and 81st, and the RUL prediction results of one full test 

cycle are given. 

  

(a) (b) 
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(c) (d) 

Figure 11. Full test cycle RUL prediction results for partially tested engines. (a) Unit 24; (b) Unit 

34; (c) Unit 76; and (d) Unit 81. 

In addition, in order to study the influence of the combination of TCN receptive 

fields, Figure 12 shows the prediction results of three different combinations of TCN re-

ceptive fields and BiLSTM independently. Through comparison, it is found that under the 

four methods, especially in the area with a large RUL value, the effect of the TCN-BiLSTM 

layer is not as good. The combination of 2-1-16 and 8-1-4 predicts better results. In sum-

mary, the combination of 2-1-16 is selected. Table 4 presents the numerical results of these 

experiments. 

  

(a) (b) 

 
 

(c) (d) 
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Figure 12. RUL prediction results of 100 engines under different combinations. (a) TCN (2-1-6); (b) 

TCN (4-1-8); (c) TCN (8-1-4); and (d) BiLSTM (32-128). 

Table 4. RUL prediction results of 100 engines under different combinations. 

Mode 
TCN (kernel_size-nb_stacks-dilations) BiLSTM TCN-BiLSTM 

2-1-16 4-1-8 8-1-4 32-128 2-1-16-32-128 

RMSE 11.47 12.35 13.58 11.89 4.13 

Score 206.26 230.30 328.42 294.29 74.26 

5.5.4. Comparative Analysis of RUL Prediction Methods 

In order to reflect the superiority of the method proposed in this paper, DCNN [51], 

MDBNE [52], LSTM [53], and other methods from the literature are introduced for com-

parison. Table 5 shows the comparison of the prediction results between TCN-BiLSTM 

and existing prediction methods. 

Table 5. Model RMSE and score results of the proposed method and related approaches. 

Model RMSE Score 

DCNN [51]  13.32 N/A 

MDBNE [52] 17.96 640.27 

LSTM [53]  12.81 N/A 

TCN 11.47 206.26 

BiLSTM 11.89 294.29 

TCN-BiLSTM 4.13 74.26 

The experimental results in Table 5 show that the proposed TCN-BiLSTM structure 

is very suitable for multidimensional degradation data prediction. The TCN network is 

the first structure to use multidimensional feature extraction, which can quickly extract 

local features in parallel. The BiLSTM network is the second structure using circular in-

formation flow, and the integrated BiLSTM layer helps to improve the learning ability of 

the network. Because the proposed model is a combined model, the training time is longer 

than most shallow networks in the literature, so there is a problem of slow training speed. 

However, in terms of prediction accuracy and reliability, the proposed combined model 

further confirms the superiority of using parallel structure to extract original degradation 

features and cyclic structure to mine sequence hidden features. 

6. Conclusions 

Aiming at the problems of low generated sample accuracy and low residual life pre-

diction accuracy in the case of multi-degraded equipment missing data, this paper pro-

poses a data generation method based on the NICE model, which can achieve better gen-

eration results. The multivariate degradation data of the engine are verified. The main 

contributions of the work are as follows: 

(1) A multisource degradation data generation method based on the NICE model is pro-

posed, which can quickly and accurately learn the real distribution behind multi-

source data; 

(2) A method for predicting the RUL of multidimensional degraded equipment based 

on the fusion of the TCN and BiLSTM models is proposed. First, multidimensional 

local features are extracted, and then depth information is predicted. Especially in 

the later stage, when the multi-degraded equipment is close to failure, the error be-

tween the predicted RUL value and the actual value is smaller; 

(3) Compared with other models, TCN-BiLSTM achieves superior performance. The ef-

fects of different receptive field combinations on the prediction performance are 

studied. 
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In future research, we will further consider the influence of the complex relationship 

of the actual environment on the generation of unbalanced and incomplete non-ideal data. 

Although this method has obtained good experimental results, further architecture opti-

mization is still necessary because the current training time is longer than most shallow 

networks in the literature. 
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