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Abstract: Traditional formation control methods are widely used in the field of unmanned ground
vehicle formation, but they lack mechanisms with which to effectively cope with complex terrains
that occur during movement. In order to better improve the adaptation and coping ability of an
unmanned ground vehicles (UGVs) fleet to complex terrains, this paper proposes a formation change
influence factor to solve the UGVs formation and formation change problem. First, this paper adopts
the leader–follower method with more flexible control to design the formation controller and derives
a control law that can make the formation system stable so as to ensure that the fleet maintains the
preset formation during movement. After that, this paper combines formation geometry change and
dynamic adjustment to build a formation change library. The formation change influence factor is
used to drive the fleet to choose the appropriate formation change strategy in the formation change
library to ensure the fleet can safely pass the complex terrains. The experimental results show that,
compared with the traditional formation method, the UGVs formation and change method using
the formation change influence factor can flexibly and efficiently cope with various complex terrains
while maintaining stability within the fleet, effectively improving the safety of the UGVs fleet and the
possibility of practical application.

Keywords: unmanned ground vehicles; formation change; formation change influence factor

1. Introduction

In recent years, with the rapid development of robotics and communication networks,
multi unmanned ground vehicles (UGVs) cooperative systems have started to attract more
researchers’ attention. Such systems make human–vehicle cooperation as well as vehicle–
vehicle cooperation possible. Compared to individual vehicles, multiple vehicles mean that
they can be faster, more flexible and more reliable in accomplishing their tasks. Likewise,
this means that multi-vehicle systems place higher demands on cooperative control than
single vehicles. For a large collection of vehicles, a common collaborative task that is
currently applied in practice is the formation control of UGVs.

The formation control problem can be mainly summarized as follows: (1) generation
of formation shapes; (2) formation tracking; (3) reconfiguration and selection of formations;
and (4) task assignment in formations [1].

Generally, a number of vehicles are required to form a fixed formation to travel to a
certain place for reconnaissance surveillance, positioning guidance, material transportation
and other tasks [2]. In the execution of the task, each vehicle within the team has its
own group and number, and needs to be in its respective corresponding position in a
unified formation. There exists the potential of travelling over certain complex terrain;
these terrains usually have a serious impact on the expected formation that the fleet
wishes to maintain, or may even lead to the formation’s breakdown, making the fleet
unable to maintain the original geometric configuration. In order to ensure the successful
completion of the mission, the unmanned fleet needs to have a certain ability to cope with
the possible formation breakup in addition to the ability to ensure that a certain formation
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can be maintained for continuous marching, which is generally made possible by making
appropriate formation changes to avoid risks according to the actual conditions. Therefore,
the formation tracking and the reconfiguration and selection of formation in the above
formation control problem have become hot issues in the field of UGVs formation in recent
years.

Formation tracking is generally performed by designing formation controllers to
achieve a stable fleet to maintain a preset formation operation [3]. The most commonly
used formation control strategies include a virtual structure, behavior-based approaches,
the leader–follower approach, graph-based approach, and artificial potential field approach.

In the work of L Yang and Y Jia [4], a distributed D-type iterative learning scheme
is developed for multi-agent systems with unknown nonlinear dynamics. This presents
an efficient solution to the multi-agent formation control problem. The switching time
and order of this learning scheme varies according to the actual trajectory of the agents to
ensure that a pre-defined formation is always formed after some iterations. In the work of
Giroung and Dongkyoung [5], a decentralized behavior-based formation control algorithm
is designed to accomplish the formation task using only the relative position in-formation
between robots and obstacles and between neighboring robots. Sida et al. [6] present a
hybrid formation control of wheeled mobile robots (WMRs), which is based on model
predictive control (MPC) and adaptive terminal sliding mode control (ATSMC). The MPC
is used to ensure the stability of the formation, while the ATSMC is used to compensate
for external interference. Park B. S and Yoo S. J. [7] investigated a connectivity-preserving
obstacle avoidance problem to track uncertain multiple non-holonomic mobile robots
with communication and sensing range constraints based on guaranteed performance
of leader–follower formations. To address the shortcomings of the unmanned vehicle
formation method, Zhi Y. C. et al. [8] proposes an unmanned vehicle formation method
based on the improved pigeon flock algorithm with the pilot following method. There are
certain limitations when using the traditional pigeon flock algorithm for formation, so an
initial solution is provided at the beginning of the algorithm to improve the computational
efficiency, and the corresponding weight indicator is added to the geomagnetic operator
of the algorithm to improve the planning efficiency of the algorithm in the overall path.
Wang X. S. and Cao G. H. [9] study the unmanned vehicle formation control problem in
which the unmanned vehicle leader has various unknowns such as unknown linear velocity,
angular velocity and unknown upper bound. The unmanned vehicle formation control
problem is transformed into the unmanned vehicle consistency problem by transformation.
After that, by establishing a time-varying feedback control method, the unmanned vehicle
consistency control problem is solved, and then the unmanned vehicle formation control is
realized. Shao J et al. [10] propose and solve the problem of asynchronous tracking control
for a multi-agent system with uncertain inputs on a switching band signed graph. Shoja
S et al. [11] exploit an adaptive controller with consideration of the nonlinear dynamics
and the unknown parameters, while the graph and Lyapunov theories are applied to
ensure the formation stability. Ali Z. A., Israr A., Alkhammash E. H., et al. [12] provide
an adaptive hybrid controller for controlling formations of leader–follower configurations
of multiple unmanned aerial vehicles (UAVs) with communication delays. Li D et al. [13]
define a multilayer formation control problem and present a model-based control method
to implement multilayer formations where the formation configuration can be constant
or time-varying. Wang B., Ashrafiuon H. and Nersesov S. [14] solve the distributed
leader–follower simultaneous formation stabilization and tracking control problem for a
heterogeneous planar underdriven vehicle network with no global position measurement
of the follower. The vehicles in the network are modeled as generic 3-DOF planar rigid
bodies with two control inputs and are allowed to have either identical or dissimilar
dynamics. Liu X et al. [15] designed a formation potential field that combines multiple
local attraction potential fields with multiple local repulsion potential fields for multi-agent
formation control. The objective is to control a set of agents to automatically generate
and maintain a specific formation while avoiding internal collisions and collisions with
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spatial constraints. H Sang et al. [16] proposed a novel deterministic algorithm, i.e., the
Multi-sub-target Artificial Potential Field (MTAPF) based on improved APF to ensure the
optimality, rationality, and path continuity of fleet formation trajectories of unmanned
surface vehicles (USVs). MTAPF can greatly reduce the probability of USVs falling into
local minima and help USVs escape local minima by switching target points.

In general, several of the formation methods mentioned above have some formation
change capability, i.e., the fleet is transformed into a certain defined geometric formation
by changing the geometric relationship between vehicle positions. However, traditional
formation controllers are designed with the primary goal of maintaining a stable formation;
rarely is the problem of fleet formation change specifically considered, and the formation
change capability of these methods themselves is limited. This implies that the formation
of UGVs under traditional methods cannot appear to affect the stability of the formation
during the movement. When encountering unknown and complex road environments,
these methods lack corresponding coping mechanisms, thus very easily leading to breakup
of the UGVs’ formation. In addition, the UGVs fleet in practical applications has a larger
number of vehicles compared to the general fleet research object. The increase in number
makes it more difficult to plan the path and change the formation in real time during the
driving process. How to ensure the overall stability of the fleet while flexibly changing
the formation to cope with the unknown terrain environment is now a priority for the
decision-making level of the UGVs fleet.

Compared with other methods, the distributed control of the leader–follower method
is more flexible and makes it easier to realize the formation change of the geometric
relationship. However, the communication between vehicles under this method is focused
on that between the leader and the follower, which makes the decisions made by the leader
critical for the whole fleet. After receiving the road condition information sent by the
sensors, the decision-making layer of the leader can be processed quickly and provide
the appropriate solution, which has an important impact on the overall safe and stable
operation of the fleet.

Therefore, in order to simultaneously solve the formation problem and the strain
problem for the complex terrain of the UGVs fleet, this paper proposes a formation change
method for UGVs under the effect of the formation change influence factor. Firstly, the
formation controller is designed using the leader–follower method to ensure that the fleet
can maintain a fixed formation normally and steadily in the absence of obstacles. After that,
the formation geometry change and dynamic adjustment are combined to establish the
formation change library, and the formation change of the fleet is based on the formation
change library. The formation change influence factor is introduced in the formation
controller, the road condition information returned by the sensors is processed centrally,
and the formation change is judged accordingly. The generated influence factors are
transmitted to the controllers of each vehicle using shop floor communication to drive the
controllers to make adjustments and finally make the fleet formation change.

2. Methods
2.1. Formation Controller Design

As the most widely used formation method [17,18], the leader–follower method of
distributed control is more flexible and makes it easier to achieve formation changes in
geometric relations. This paper utilizes this method as the base method for controller
design. The geometric relationship between a leader and a follower is provided in Figure 1.
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Figure 1. Vehicle models under the leader- follower method.

In Figure 1, the X−Y coordinate system is the world coordinate system, and (xl , yl)
and (x f , y f ) represent the positions of the leader and the follower under this coordinate
system, respectively. vl and v f represent the respective linear velocities, and θl and θ f
represent the forward direction angles of both, respectively. d represents the distance
between the wheel axle and the guide wheel. l represents the distance between the midpoint
of the leader wheel axle and the follower guide wheel. The coordinate system X_l −Y_l
is established with the midpoint of the leader wheel axle as the coordinate origin, the
forward direction of the leader vehicle as the X-axis direction, and the Y-axis direction
perpendicular to the forward direction. lx and ly represent the relative distance from the
follower to the leader in the X_l, Y_l directions, and ϕ represents the relative angle between
the leader and the follower.

If (l, ϕ) is deterministic, given the information of the position of the leader, the follower
can follow the leader at a fixed angle and distance. Therefore, we assume that the desired
relative distance and relative angle between the leader and the follower are (l′, ϕ′), and
both can maintain a fixed formation during travel as long as the conditions l → l′, ϕ→ ϕ′

are satisfied. In order to avoid singularities in the formation controller, [19] we proposed
vehicle modeling and controller design in the Cartesian coordinate system. According to
the geometric relations in Figure 1, it is known that

ly = (xl − x f − d cos θ f ) sin θl − (yl − y f − d sin θ f ) cos θl (1)

lx = −(xl − x f − d cos θ f ) cos θl − (yl − y f − d sin θ f ) sin θl (2)

Taking the derivative of lx, we obtain

.
lx = −( .

xl −
.

x f + dω f sin θ f ) cos θl + (xl − x f − d cos θ f )ωl sin θl

−( .
yl −

.
y f + dω f cos θ f ) sin θl − (yl − y f − d sin θ f )ωl cos θl

(3)

Substituting (1) into (3), we obtain

.
lx = lyωl −

.
xl cos θl −

.
yl sin θl +

.
x f cos θl +

.
y f sin θl − dω f sin(θ f − θl)

= lyωl − vl +
.

x f cos θl +
.

y f sin θl − dω f sin(θ f − θl)
(4)

where vl =
.

xl cos θl +
.

yl sin θl is the linear velocity of the leader car. ωl =
.

θl and ω f =
.

θ f
denote the respective angular velocities of the leader and the follower, respectively.
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Let the forward direction angular error eθ = θ f − θl , then θl = θ f − eθ . Substituting
this into (4), we obtain

.
lx = lyωl − vl +

.
x f cos(θ f − eθ) +

.
y f sin(θ f − eθ)− dω f sin eθ

= lyωl − vl +
.

x f cos θ f cos eθ +
.

x f sin θ f sin eθ

+
.

y f sin θ f cos eθ −
.

y f cos θ f sin eθ − dω f sin eθ

= lyωl − vl + (
.

x f cos θ f +
.

y f sin θ f ) cos eθ+

(
.

x f sin θ f −
.

y f cos θ f ) sin eθ − dω f sin eθ

(5)

According to the non-complete constraint for UGVs:

.
x f sin θ f −

.
y f cos θ f = 0 (6)

Substituting (6) into (5), we obtain

.
lx = lyωl − vl + v f cos eθ − dω f sin eθ (7)

where v f =
.

x f cos θ f +
.

y f sin θ f is the linear velocity of the following car. Similarly, we can
obtain .

ly = −lxωl + v f sin eθ + dω f sin eθ (8)

The kinematic model of the leader–follower system is as follows:
.

lx = lyωl − vl + v f cos eθ − dω f sin eθ
.

ly = −lxωl + v f sin eθ + dω f sin eθ
.

eθ = ω f −ωl

(9)

where (v f , ω f ) is the angular and linear velocities of the follower, which are the inputs to
the control, and (v f , ω f ) is the angular and linear velocities of the leader, which are given
either as a constant value or as a time-varying function.

In the above, it has been shown that if it is desired to keep a fixed formation between
the follower and the leader so that they move together, the conditions l → l′, ϕ→ ϕ′ need
to be satisfied. Due to the saturation of the motor on the UGVs, vl and ωl are bounded,
and their first-order derivatives are also bounded. Since (lx, ly) is the projection of l in the
X_l,Y_l direction, combined with the kinematic model of the system, our control objective
is as follows: given the input (v f , ω f ), make lx → lx

′, ly → ly ′, ϕ→ ϕ′ . According to this
requirement, the design of the formation controller is initiated.

First, it follows from the geometric relationship that

lx
′ = l′ cos ϕ′ (10)

ly ′ = l′ sin ϕ′ (11)

Derivation of (10) and (11) leads to

.
lx
′ =

.
l′ cos ϕ′ − l′

.
ϕ′ sin ϕ′ (12)

.
ly ′ =

.
l′ sin ϕ′ + l′

.
ϕ′ cos ϕ′ (13)

Suppose ex = lx
′ − lx and ey = ly ′ − ly. We can obtain

.
ex =

.
lx
′ −

.
lx

=
.
l′ cos ϕ′ − l′

.
ϕ′ sin ϕ′ − lyωl + vl − v f cos eθ + dω f sin eθ

=
.
l′ cos ϕ′ − l′

.
ϕ′ sin ϕ′ −

(
ly ′ − ey

)
ωl + vl − v f cos eθ + dω f sin eθ

(14)
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Similarly, we can obtain that

.
ey =

.
l′ sin ϕ′ + l′

.
ϕ′ cos ϕ′ +

(
lx
′ − ex

)
ωl − v f sin eθ − dω f sin eθ (15)

The error model of the system is
.

ex =
.
l′ cos ϕ′ − l′

.
ϕ′ sin ϕ′ −

(
ly ′ − ey

)
ωl + vl − v f cos eθ + dω f sin eθ

.
ey =

.
l′ sin ϕ′ + l′

.
ϕ′ cos ϕ′ + (lx

′ − ex)ωl − v f sin eθ − dω f sin eθ.
eθ = ω f −ωl

(16)

Because the fleet needs to maintain a fixed geometric structure during its movement,

the expected values l′ and ϕ′ are constants,
.
l′ = 0 and

.
ϕ′ = 0. At this point, the error model

of the system can be expressed as
.

ex = eyωl − l′ωl sin ϕ′ + vl − v f cos eθ + dω f sin eθ.
ey = −exωl + l′ωl cos ϕ′ − v f sin eθ − dω f sin eθ.
eθ = ω f −ωl

(17)

We assume that
g1 = vl − l′ωl sin ϕ′ (18)

g2 = l′ωl cos ϕ′ (19)

It is obvious that both g1 and g2 are known. Substituting them into (17) yields
.

ex = eyωl − v f cos eθ + dω f sin eθ + g1.
ey = −exωl − v f sin eθ − dω f sin eθ + g2.
eθ = ω f −ωl

(20)

Let z =
[
ex ey

]T , u =
[
v f u f

]T
, u =

[
v f u f

]T
. Write (20) in matrix form:

.
z = Az + Bu + g (21)

where A =

[
0 ωl
−ωl 0

]
, B =

[
− cos eθ d sin eθ

− sin eθ −d sin eθ

]
.

Since det(B) 6= 0, input–output linearization can be performed. Let −Kz = Az + Bu +
g and solve for

u = B−1(−Kz− Az− g) (22)

where K = [k1 k2]
T > 0.

From the above equation, the final control law can be derived as

v f =
(
k1ex + eyωl + g1

)
cos eθ −

(
−k2ey + exωl − g2

)
sin eθ (23)

ω f =
1
d
[
−
(
k1ex + eyωl + g1

)
sin eθ −

(
−k2ey + exωl − g2

)
cos eθ

]
(24)

where k1 and k2 are adjustable parameters.
Consider the formation control problem of two tricycle mobile robots shown in Fig-

ure 1. For any given bounded and sufficiently smooth leader path, a constant relative
distance and an arbitrary smooth relative angle between follower and leader can be ob-
tained asymptotically by the proposed control laws (23) and (24), and the whole system
will be stable. The proof is provided in the literature [20].

2.2. Formation Change Library

As the most commonly used formation control method for UGVs today, the use of
the leader–follower method results in excellent formation control that allows the fleet of
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UGVs to steadily maintain a desired formation while moving. When we wish to change
the formation of the fleet, this can be achieved by simply changing the relative position
between each follower and the leader. However, UGVs fleets based on the leader–follower
method are not equipped to handle complex terrains. In order to move faster and safer
through such complex terrains, the fleet needs to incorporate formation change abilities to
deal with these situations.

There are two ways in which the UGVs formation structure can be transformed. One
is to completely change the geometry of the formation so that it changes from a particular
original geometry to another new formation shape altogether [21–23], as shown in Figure 2.
Such a change often requires the reallocation of the positions of the vehicles within the
fleet, which is a common formation change in the commonly used UGVs formation control
methods. Such a formation change requires that it be completed at a faster rate during
the fleet movement. This is to ensure that subsequent fleet movements are not affected.
Therefore, finding a more stable and faster formation change is essential for the safe and
stable operation of the fleet.
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Another way of changing UGVs’ formation is to adjust the vehicle spacing within
the fleet according to the environmental requirements; this change is generally called the
dynamic adjustment of the formation [24–26]. By scaling the vehicle fleet appropriately, it
can be adapted to the environment. Compared with the complete change of the formation
geometry, this adjustment is faster and more adaptable to different terrain environments.
Figure 3 outlines the transformation method of dynamic fine tuning. When the sides
of the road become narrow, the leader reduces the vehicle spacing within the convoy in
order to ensure the safety of the convoy, which can be achieved by changing the (l′, ϕ′) of
each follower. However, the reduction in the vehicle spacing undoubtedly increases the
possibility of collisions between vehicles within the convoy. This has an adverse effect on
the safe operation of unmanned convoys. Therefore, when the road continues to become
clear, the navigator orders the remaining followers to resume their original formation.
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Although dynamic adjustment is more flexible, it cannot handle all situations. Consid-
ering the different complex terrain, one formation change method is not sufficient. If we
want the fleet to change the formation structure flexibly according to the current terrains,
we need to combine formation geometry change and formation dynamic adjustment to
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build a formation change library. The specific change strategies included in the formation
change library used in this paper are shown in Figure 4 below.
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Figure 4. The formation change library of the UGVs fleet.

The blue dots in Figure 4 indicate the leaders of the fleet and the remaining red dots
indicate the followers; the dashed circles indicate the initial position of vehicles in the
fleet, and the arrows indicate the movement direction of vehicles when the fleet changes
formation. This formation change library contains a base formation and a variety of
changeable formations. The base formation is the pre-defined formation that needs to be
maintained when the UGVs fleet starts moving; this formation depends on what kind of
task one wants the fleet to accomplish. In addition, the library needs to contain information
about the various formations, such as (1) the formation geometry, (2) the way the formation
is generated, (3) the logic of the formation change, and so on.

(1) The formation geometry will tell the UGVs system’s decision-making layer the size
of the formation, the maximum and minimum acceptable distance between vehicles, and so
on. Based on this information, the system will decide whether the formation is acceptable
for the current road conditions.

(2) The way the formation is generated will tell the unmanned vehicle system how to
form the formation. For example, if the system requires a third geometric transformation to
be performed for a convoy with the base formation of one row in the figure, then the convoy
will move the outermost two vehicles backwards to the specified position to achieve this
formation.

(3) The logic of the formation change determines the formation change idea of the fleet.
For the formation change library in Figure 4, its formation change logic is as follows: firstly,
the UGVs fleet receives external information and processes it to determine whether it needs
to transform the formation geometry directly. If the condition of dynamic adjustment is
satisfied, then dynamic adjustment takes priority, because dynamic adjustment has the least
impact on the fleet and is easy to complete in a short time. Since the dynamic adjustment is
achieved by scaling the distance between vehicles within the fleet, there is a limit to this
scaling, i.e., the distance between vehicles cannot be smaller than the safe driving distance
of the vehicles. When the limit of dynamic adjustment is reached, the fleet needs to change
its strategy and select the appropriate formation in the library for geometry transformation.
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After the transformation is completed, the fleet can still dynamically adjust the current
formation until the road requirements are not met and the geometry transformation is
continued.

Depending on the different mission requirements of UGVs fleets, the formation change
library does not contain exactly the same formation types. Although the final geometries are
not identical, the design ideas for performing formation changes are the same. It is worth
noting that the goal of the formation change is to successfully negotiate complex terrains.
Therefore, in practice, we designed the corresponding formation structure according to the
common complex terrains, and further add or delete the convoy formation change methods
in the library depending on the specific task requirements.

It is not enough to have a formation change library. The decision-making layer of the
UGVs fleet system needs to analyze and process the external environmental information
transmitted by the sensors before it can select the appropriate formation change in the
formation change library to cope with more complex terrain and pass through it in the
easiest and fastest way possible. These steps of analysis and processing represent the
formation change impact factor.

2.3. Formation Change Influence Factor

The flexibility to cope with different complex terrains implies that the decision-making
level of the UGVs fleet needs to have the ability to discriminate autonomously and deter-
mine the formation change plan of the fleet according to different external environments.
Therefore, this paper proposes a formation change influence factor to influence vehicles to
issue corresponding formation change commands.

In the traditional formation control, there is no autonomous formation change capabil-
ity, and the formation change of the UGV fleet needs to be issued by humans. UGVs are
usually equipped with sensors to identify the external environment and return information
to the decision-making level of the system. Therefore, we assume that the vehicles in
the unmanned fleet are equipped with distance detection devices, which can detect the
distance from road boundaries and obstacles to the vehicles. Additionally, the intra-fleet
communication between vehicles is good and the leader can obtain information about the
individual follower poses. As in existing applications, UGVs fleets are commonly used by
performing the corresponding tasks in structured terrain. Therefore, we describe how the
formation change influence factor affects the formation change strategy of the UGVs fleet
in two typical complex terrains.

2.3.1. Road Narrowing

Figure 5 indicates the narrowing of the road ahead. The UGVs fleet consists of one
leader and four followers, with the blue dot representing the leader and the red dots
representing the followers.
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The five vehicles move forward in a line, as shown in the figure. The width of each
vehicle is e, the distance between vehicles is d, and the width of the fleet is 4d + e. To
ensure safe driving, we assume that the minimum distance between vehicles is dm, then
d ≥ dm. Assuming that the distance of the leader is far enough from the detection device,
the maximum angle of the detection range is 2θ. With the forward direction of the fleet
as the positive direction, the distance from the left road boundary to the leader at the
maximum detection angle is Sl . According to the geometric relationship, the projection
length of Sl in the vertical direction ll = Sl sin θ, and the projection length in the positive
direction kl = Sl cos θ. Similarly, we can determine the projection length of the right road
in each direction lr = Sr sin θ, kr = Sr cos θ.

Since formation change takes some time, for safety reasons, the fleet needs to perceive
the road ahead and make judgments in advance, and the change of the road boundary
affects the decision made by the leader. This influence is known as the formation change
influence factor. It is a vector function influenced by the boundary distance, similar to the
artificial potential field method, but it produces no force. To facilitate the representation,
we choose to focus the influence effect of the factor at point o. The queue transformation
decision factor is divided into two types. One of the types is the effect on the positive
direction and the other is the effect on the vertical direction. Let the influence factor
produced by the right road in the vertical direction be αr and the influence factor produced
by the left road be αl ; the influence factor produced by the right road in the positive
direction be βr and the influence factor produced by the left road be βl . Then

αl =

 K1

(
1
l −

1
ll0

) 1
2 , l ≤ ll0

0 , l ≥ ll0
(25)

αr =

 K1

(
1
l −

1
lr0

) 1
2 , l ≤ lr0

0 , l ≥ lr0

(26)

βl =

{
−K2

1
kl

2 , l ≤ ll0
0 , l ≥ ll0

(27)

βr =

{
−K2

1
kr2 , l ≤ lr0

0 , l ≥ lr0
(28)

In the above equation, K1, K2 are adjustable coefficients; l0(ll0, lr0) is the farthest
influence distance of the road boundary, when l ≤ l0, the road boundary will only have an
influence on the vehicle, and the opposite means that the road is wide enough to allow the
fleet, in the original formation, to pass safely; it also indicates the minimum road width
without formation change. l0 is usually determined by the width of the fleet. For the fleet
in Figure 5, its fleet width on the left and right sides is wl = wr, then set ll0 = wl + d,
lr0 = wr + d. In Figure 5, the road width is within the safe range, and the road boundary
on both sides will not have an impact on the advance of the fleet; therefore, the fleet can
keep the original formation and continue to advance.

When the fleet moves to the position in Figure 6, l < l0, the road boundary starts to
influence the UGVs fleet. Continuing to maintain the formation movement may lead to the
occurrence of collision. The influence factors generated by the road boundaries on the left
and right sides of the fleet are αl and αr, respectively, and they will jointly affect the overall
angular velocity ω of the fleet. Additionally,

ω = ω0 + A(αr − αl) (29)

where ω0 is the initial angular velocity of the fleet and A is the adjustable coefficient.
According to Equation (25), the closer the road boundary is to the vehicle, the greater the
impact on the vehicle. When the influence of one side of the road is greater, the angular
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velocity of the fleet changes and the fleet starts to gradually move away from this side of
the road until both sides of the road have the same influence or both have no influence.
Similarly, as the road narrows, S becomes smaller, which leads to a reduction in both k
and l. From Equation (26), it is clear that the road boundary has an impact factor β on the
opposite direction of the fleet, which affects the overall line speed of the fleet, and

v = v0 + B(βr + βl) (30)

where v0 is the initial angular velocity of the fleet and B is the adjustable coefficient.
According to Equation (26), the smaller the width of the road, the greater the effect on the
overall line speed of the fleet. The low speed into the complex terrain both provides the
fleet with enough time to adjust the formation and ensures safer driving. To ensure that the
fleet travels normally, this influence is limited to a certain extent; in other words, the fleet
has a minimum speed, and when the influence factor β causes the overall line speed of the
fleet to be lower than the minimum, the fleet will always travel at the minimum speed.
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When the vertical influence factor α appears, it means that the road width no longer
meets the requirement of maintaining the original formation for safe driving, and a forma-
tion change is needed. The priority of the formation change is to reduce the distance d by
dynamic adjustment. At this point, the distance between vehicles is

d = d0 −
C
2
|αr − αl | (31)

where d0 is the initial distance between vehicles and C is the adjustable factor. The variation
of the vertical influence factor makes the distance between vehicles change continuously,
but this change has a limit.

The width of the UGVs fleet cannot be reduced indefinitely. To ensure safe driving,
a minimum distance dm exists between vehicles. For the UGVs fleet in the figure, its
minimum fleet width is 4dm + e, which is the limit distance that can be achieved by
dynamic adjustment. When the fleet moves to the position in Figure 7, the road width is
less than the minimum fleet width. For this case, the risk of collision between vehicles
occurs by continuing with dynamic adjustment. When the road width is exactly 4dm + e,
the influence factor of the road boundary in the vertical direction at this time is

αm = K1

 1(
2dm + 1

2 e
) − 1

l0

 1
2

(32)

This means that the fleet needs to change the formation geometry when (αr, α f ) > αm.
According to each width of formation given by the formation change library, the appropriate
formation geometry is selected from the largest to the smallest according to the prescribed
logical relations.
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Figure 7. The impact of narrowed road boundaries on the UGVs fleet.

2.3.2. Road Obstruction

The second type of complex terrains is shown in Figure 8, where there is a partition,
an obstacle or a fork in the road and other factors that force the fleet not to continue in its
original formation. The blue dot indicates the leader and the red dots indicate the followers.
The parameters for the UGVs fleet are the same as in the previous subsection. Usually, the
fleet will set a safety zone ahead. When there is no obstacle ahead or the obstacle is far
away, the fleet can move forward normally; when the obstacle is detected within the safety
distance, it means the vehicle needs to make a decision to avoid the risk of collision. S1,
S2 are the distances from the two ends of the obstacle to the leader detected by the leader
distance detection device, and θ1, θ2 are the corresponding deflection angles. Taking the
forward direction of the fleet as the positive direction, the projection length of S1, S2 in the
vertical direction is

l1 = S1 sin θ1 (33)

l2 = S2 sin θ2 (34)

At this point, the widths of the channels on each side of the barrier are

W1 = S sin θ − l1 = S sin θ − S1 sin θ1 (35)

W2 = S sin θ − l2 = S sin θ − S2 sin θ2 (36)
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Figure 8. Road obstruction in front of the UGVs fleet.

According to the size of W1 and W2, we choose the appropriate formation in the
formation change library. For the case where there are obstacles, if the widths of the
passage on both sides are sufficient, we can choose to divide the fleet into two teams to
pass on both sides. Following the transformation strategy outlined in Section 2.2, the
fleet is divided into two sub-fleets, each with one leader. The newly generated leaders
will keep their original linear and angular velocities moving forward until the formation
change influence factors starts to work. Taking one of the sub-fleets as an example, Figure 9
provides the effect of the influence factors on the sub-fleet at this point.
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Since the sub-fleet consists of only 3 vehicles, the width of the left fleet is wl = 2d +
1/2e, and the width of the right caravan is wr = 1/2e. Accordingly, the farthest influence
distances of the left and right roads on the sub-fleet are ll0 = wl + d and lr0 = wr + d,
respectively. At this time, the sub-fleet is much smaller than ll0 and lr0 from both sides of
the road, so both sides of the road will not have an impact on the sub-fleet. Unlike the
roads on both sides, the obstacles in front of the sub-fleet have an effect, and this effect also
occurs in two directions. To facilitate the representation, we choose to concentrate the effect
of the factors at the point o1. Let the factor of the obstacle in the vertical direction be α1 and
in the positive direction be β1, then

α1 =

{
K3l12 , l1 > 0
0 , l1 ≤ 0

(37)

β1 = −K2
1

(S1 cos θ1)
2 (38)

α1 and β1 affect the overall angular velocity ω1 and linear velocity v1 of the sub-fleets,
respectively, in the following manner:

ω1 = ω0 + A1α1 (39)

v1 = v0 + B1β1 (40)

where ω0 is the initial angular velocity of the sub-fleet, v0 is the initial angular velocity
of the sub-fleet, and A1, B1 are adjustable coefficients. According to Equation (35), the
presence of l1 will force the sub-fleet to move to the channel on the closer side. The smaller
l1 is, the smaller the influence of the obstacle on the sub-fleet. At the same time, the obstacle
will also slow down the movement of the sub-fleet to avoid collision.

As the sub-fleet is offset, l1 becomes smaller, and the influence of the obstacle on the
sub-fleet diminishes. When l1 decreases to 0, as shown in Figure 10, there is no obstacle
directly in front of the sub-fleets. For the sub-fleet, the complex terrain has been transformed
from an obstacle blockage to road narrowing. In the manner of the previous subsection, the
factors α1l , α1r and β generated on both sides of the road start to influence the sub-fleet’s
decision to choose dynamic adjustment or to select the appropriate formation structure for
change in the formation change library. When passing the obstacle section, the fleet reverts
to the original formation.
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Figure 10. The impact of road boundaries on the UGVs fleet after moving away from the obstacle.

With two common complex terrains, this paper provides the operation mode of the
formation change influence factor. With the intervention of the factor and the formation
change library, the fleet can flexibly choose the appropriate formation change according to
the complex terrains encountered. In addition, the influence factor also controls the overall
speed of the fleet, thus ensuring stability and safety during the formation change.

By designing a formation change library and formation change influence factor and
combining the two, this paper proposes a new unmanned ground vehicle formation and
change method, which ensure that the UGVs fleet has the ability to flexibly cope with the
complex terrains encountered during the movement. Compared with the traditional UGVs
formation method, this method has stronger adaptability and a better problem handling
mechanism, which further improves the safety, stability and practical application capability
of the UGVs fleet.

3. Simulation Experiments

In this section, the simulation experiments for each part of the Section 2 will be
provided. First, the UGVs formation controller under the leader–follower method will be
tested and simulation results will be detailed to illustrate its stability; after that, simulation
experiments will be outlined to implement the UGVs formation change using the formation
change influence factor. This experiment is divided into two different experiments to show
the experimental results under two different complex terrains. The feasibility of the method
is demonstrated by comparing the variations of each parameter.

3.1. The UGVs Formation Controller

As one of the traditional formation control methods, the leader–follower method has
become the most commonly used formation control method with the advantages of more
flexible control and easier formation construction. Assume that the UGVs fleet consists of
five identical UGVs, all with the vehicle model shown in Figure 1. One of them is chosen as
the leader and the remaining four as the followers. The relevant parameters of the vehicles
and fleet are shown in Table 1.

Table 1. The relevant parameters in the formation controller test.

Leader Initial
Position Number of UGVs Vehicle Width Distance between

Vehicles
Maximum Vehicle

Line Speed

(20,20) m 5 2 m 5 m 5 m/s

Leader Initial Line
Speed

Leader Initial Angular
Velocity

Leader Initial
Direction Angle lx

′ of the Initial Fleet ly
′ of the Initial Fleet

5 0 rad/s 0 rad [0, 0, 0, 0] m [−5, −10, 5, 10] m

The initial positions of the vehicles are shown in Figure 11a, where the blue dot
indicates the leader, the red dots indicate the followers and the number next to the red dots
represents the follower numbers. The expected formation of the UGVs formation is shown
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in Figure 11b. The followers are symmetrically distributed in a row on both sides of the
leader and always maintain this formation during movement.
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Figure 11. Initial position and expected formation of each vehicle in the UGVs fleet. (a) indicates
initial positions of the vehicles and (b) indicates the expected formation of the fleet.

The leader moves according to a pre-defined S-shaped route. Figure 12 below demon-
strates the overall trajectory of the fleet.
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Figure 12. The fleet trajectory under the leader–follower formation controller.

It can be seen that the controller given in Section 2.1 achieves good results in terms of
the UGVs formation. Even when making a turn, the fleet can still maintain the expected
formation. The variation curves of lx, ly and eθ for each follower during the movement of
the UGVs fleet along the above route and parameter conditions are given below.

As can be seen from Figures 13–15, after a short period of time, the followers success-
fully reach their designated positions and maintain their relative positions in co-movement
with the leader during the subsequent process. Accordingly, both the lx and ly of each
follower remain stable at the desired values after the fleet in the expected formation. In
contrast, eθ gradually stabilizes at a fixed value after starting to increase at two turns. At the
end of the turns, eθ returns to 0. Since the overall fluctuation of eθ is not significant, the fleet
remains stable as a whole. To better illustrate the effect of the controller, the variation curves
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of the linear and angular velocities of the leader and the followers during the movement
are given in Figures 16–19.
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Figure 13. The variation curves of lx for each follower during the movement.
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Figure 14. The variation curves of ly for each follower during the movement.
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Figure 15. The variation curves of eθ for each follower during the movement.
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Figure 16. The variation curve of vl for the leader during the movement.
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Figure 17. The variation curves of v f for each follower during the movement.

Machines 2022, 10, 872 17 of 25 
 

 

 
Figure 17. The variation curves of 𝑣𝑣𝑓𝑓 for each follower during the movement. 

 
Figure 18. The variation curve of 𝜔𝜔𝑙𝑙 for the leader during the movement. 

 
Figure 19. The variation curves of 𝜔𝜔𝑓𝑓 for each follower during the movement. 

When the leader keeps moving in a straight line, its linear velocity 𝑣𝑣𝑙𝑙 is kept at an 
initial fixed velocity of 1 m/s; when it starts to turn, 𝑣𝑣𝑙𝑙 decreases appropriately. The fact 
that the followers are not in their expected positions before the UGVs fleet movement and 
the leader has an initial speed makes the distances between the followers and the leader 
increase when the fleet starts moving. Therefore, the followers start with a higher linear 
velocity 𝑣𝑣𝑓𝑓 through the controller to reduce the distances to the desired positions, and 
then gradually reduce their velocity to reach the desired position, where 𝑣𝑣𝑓𝑓 is aligned 
with 𝑣𝑣𝑙𝑙. The time taken for this process varies depending on the initial position. 

As the fleet begins to turn, 𝑣𝑣𝑓𝑓 decreases accordingly, with vehicles near the inside of 
the curve slowing down less and vice versa, so as to keep the overall formation constant. 
Similarly, the angular velocity 𝜔𝜔𝑙𝑙 of the leader will increase toward the turn, while the 
follower angular velocity 𝜔𝜔𝑓𝑓 increases slightly more while maintaining the trend of 𝜔𝜔𝑙𝑙; 
however, the overall fleet still remains stable. 

It can be seen from the above experimental results that the formation controller im-
parts an excellent effect on the UGVs’ formation, proving its stability and reliability. 

3.2. Road Narrowing 
Due to the advantages of the leader–follower method, it is easier to implement both 

dynamic adjustment and geometric transformation for the UGVs fleet. Therefore, after 
obtaining a stable and effective formation controller, the experimental results of the UGVs 

time(s)

v
f(m

/s
)

Follower1

Follower2

Follower3

Follower4

time(s)

w
l(ra

d/
s)

time(s)

w
f(ra

d/
s)

Follower1

Follower2

Follower3

Follower4

Figure 18. The variation curve of ωl for the leader during the movement.
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Figure 19. The variation curves of ω f for each follower during the movement.

When the leader keeps moving in a straight line, its linear velocity vl is kept at an
initial fixed velocity of 1 m/s; when it starts to turn, vl decreases appropriately. The fact
that the followers are not in their expected positions before the UGVs fleet movement and
the leader has an initial speed makes the distances between the followers and the leader
increase when the fleet starts moving. Therefore, the followers start with a higher linear
velocity v f through the controller to reduce the distances to the desired positions, and then
gradually reduce their velocity to reach the desired position, where v f is aligned with vl .
The time taken for this process varies depending on the initial position.

As the fleet begins to turn, v f decreases accordingly, with vehicles near the inside of
the curve slowing down less and vice versa, so as to keep the overall formation constant.
Similarly, the angular velocity ωl of the leader will increase toward the turn, while the
follower angular velocity ω f increases slightly more while maintaining the trend of ωl ;
however, the overall fleet still remains stable.

It can be seen from the above experimental results that the formation controller imparts
an excellent effect on the UGVs’ formation, proving its stability and reliability.

3.2. Road Narrowing

Due to the advantages of the leader–follower method, it is easier to implement both
dynamic adjustment and geometric transformation for the UGVs fleet. Therefore, after
obtaining a stable and effective formation controller, the experimental results of the UGVs



Machines 2022, 10, 872 18 of 25

formation transformation under the influence of formation transformation factors are
presented based on this paper.

Firstly, we simulate the formation transformation under the condition of the road
narrowing. It is assumed that the UGVs fleet consists of five identical UGVs, each with
the same configuration. All vehicles can be leaders, and the fleet adopts the formation
controller given in Section 2.1. Table 2 provides the relevant parameters for the UGVs fleet,
the map environment and changing the formation.

Table 2. The relevant parameters in case of road narrowing.

Number of UGVs Vehicle Width Distance between
Vehicles lx

’ of the Initial Fleet ly
’ of the Initial Fleet

5 2 m 5 m [0, 0, 0, 0] m [−5, −10, 5, 10] m

Leader Initial
Position

Leader initial line
speed

Leader initial angular
velocity

Leader Initial
Direction angle

Maximum vehicle line
speed

(5,40) m 2 m/s 0 rad/s 0 rad 5 m/s

Maximum road width Minimum road width Minimum distance
between vehicles lx

′ of the changed fleet ly
′ of the changed fleet

80 m 12 m 3 m [0, −5, 0, −5] m [−3, −1.5, 3, 1.5] m

K1 K2 A B C

1 2 0.0062 0.55 1

Figure 20 presents a map of the road narrowing and the result of the path of the fleet
under this map.
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Figure 20. Trajectory of the UGVs fleet in the case of road narrowing ahead.

It can be seen that in the initial stage the fleet keeps the preset formation moving
forward. When it is detected that the road ahead is unable to maintain the current distance
between vehicles safely, the fleet starts to tighten the fleet width to ensure passing through
due to the effect of formation change influence factors. Continuing forward, the fleet finds
that the road continues to narrow. At this point, the factors are higher than the maximum
limit, and continuing to tighten the fleet will cause the distance between the vehicles to fall
below the minimum distance. Therefore, the fleet starts to continue to reduce the width
by changing the geometry of the fleet according to the logical relations determined by the
formation change library. Eventually, the UGVs fleet is able to pass the narrow road safely.

When entering the narrow section, the fleet trajectory oscillates to a certain extent
because of the smaller distance between the two sides of the road and the fleet, and the
oscillation of the rear vehicles is more obvious due to the formation. Since this paper
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presents a kinematic model of the UGV for control rather than a kinetic model, this makes
the fleet as a whole more sensitive to changes in linear and angular velocities and prone
to oscillations. However, the magnitude of this oscillation is small and does not exceed
the width of the UGV itself. Again, in practice, the slight oscillation of the fleet will not
affect the inability to pass narrow sections of road, so this phenomenon is within acceptable
limits.

Since the leader is the decision center of the UGVs fleet and the direct object of the
formation change influence factor, Figures 21–23 provide the changes of the linear velocity
vl , angular velocity ωl and direction angle θl of the leader throughout the movement. The
overall change trend of the followers is the same as that of the leader due to the presence of
the formation controller. In the initial stage, the fleet keeps the original vl , ωl and θl moving
forward. When narrowing of the road is detected, the fleet moves away from the road
boundary on the closer side under the influence factor, ωl starts to increase, and θl also
starts to change. When the fleet gradually approaches the entrance of the narrow passage,
ωl decreases and θl reverses, and finally stabilizes in a small range of variation. As part of
this process, vl also decreases due to the narrowing of the road, and finally tends to change
smoothly.
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Figure 21. The variation curve of vl for the leader during the movement.
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Figure 22. The variation curve of ωl for the leader during the movement.



Machines 2022, 10, 872 20 of 25Machines 2022, 10, 872 20 of 25 
 

 

 
Figure 23. The variation curve of 𝜃𝜃𝑙𝑙 for the leader during the movement. 

Figures 24 and 25 illustrate the variation of the relative distances 𝑙𝑙𝑥𝑥 and 𝑙𝑙𝑦𝑦 between 
the followers and the leader. The specific changes in the formation during the movement, 
including the transition from dynamic adjustment to geometric transformation, can be 
seen in these results. 

 
Figure 24. The variation curves of 𝑙𝑙𝑥𝑥 for each follower during the movement. 

 
Figure 25. The variation curves of 𝑙𝑙𝑦𝑦 for each follower during the movement. 

3.3. Road Obstruction 
Next is the simulation experiment of formation change in case of road obstacles. 

Compared to road narrowing, this terrain is more complex and will require a greater level 
of decision making and control of the fleet. It is assumed that the UGVs fleet consists of 
five identical UGVs, each with the same configuration, all of which can be leaders, and 
the fleet uses the formation controller described in the previous section. Table 3 details the 
parameters related to the UGVs fleet, the map environment and the changing formation. 

time(s)

th
et

a
l(ra

d)

time(s)

l x(
m

)

Follower1

Follower2

Follower3

Follower4

time(s)

l y(m
)

Follower1

Follower2

Follower3

Follower4

Figure 23. The variation curve of θl for the leader during the movement.

Figures 24 and 25 illustrate the variation of the relative distances lx and ly between
the followers and the leader. The specific changes in the formation during the movement,
including the transition from dynamic adjustment to geometric transformation, can be seen
in these results.
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Figure 25. The variation curves of ly for each follower during the movement.

3.3. Road Obstruction

Next is the simulation experiment of formation change in case of road obstacles.
Compared to road narrowing, this terrain is more complex and will require a greater level
of decision making and control of the fleet. It is assumed that the UGVs fleet consists of
five identical UGVs, each with the same configuration, all of which can be leaders, and
the fleet uses the formation controller described in the previous section. Table 3 details the
parameters related to the UGVs fleet, the map environment and the changing formation.
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Table 3. The relevant parameters in case of road obstruction.

Number of UGVs Vehicle Width Distance between
Vehicles lx

’ of the Initial Fleet ly
’ of the Initial Fleet

5 2 m 5 m [0, 0, 0, 0] m [−5, −10, 5, 10] m

Leader Initial
Position

Leader Initial Line
Speed

Leader Initial Angular
Velocity

Leader Initial
Direction Angle

Maximum Vehicle
Line Speed

(5,40) m 2 m/s 0 rad/s 0 rad 5 m/s

Maximum road width Minimum Road
Width

Minimum Distance
between Vehicles

lx
′of the Changed

Fleet
ly
′of the Changed

Fleet

80 m 18 m/15 m 3 m [0, 0] m and 0 m [5, 10] m and −5 m

K1 K2 A B C

1 2 0.006 0.545 1

Figure 26 details the map in case of a road obstacle and the result of the fleet’s path
under this map.
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Figure 26. Trajectory of the UGVs fleet in the case of road obstruction ahead.

In the initial stage the fleet moves forward in a preset formation. When an obstacle is
detected on the road ahead, the decision layer chooses to change the formation geometry
according to the logical relationships in the formation transformation library, and divides
the fleet into sub-fleets consisting of 3 vehicles and 2 vehicles, respectively. The two sub-
fleets are affected by the formation transformation influence factor generated by the obstacle
and start to gradually approach the passages on both sides of the obstacle. Continuing
to move forward, the fleet found that the road continued to narrow. Under the influence
factor, the influence from the obstacle gradually decreases until it disappears; while the
influence from the road on both sides drives the sub-fleets to enter the passages on both
sides of the obstacle at a safe angle and distance.

After splitting into two sub-fleets, each group of fleets will have one leader each.
Figures 27–29 outline the changes of linear velocity vl , angular velocity ωl and direction
angle θl of the two leaders during the whole moving process. In the initial stage, the fleets
move forward with the original vl , ωl and θl . When an obstacle is detected on the road,
the fleets move to each side of the obstacle due to the influence factor, ωl starts to increase,
and θl also starts to deflect. When the fleets gradually approach the entrance of the narrow
passage, ωl decreases and θl slews, and finally stabilizes in a small range of variation. In
this process, vl also decreases continuously due to the narrowing of the road, and finally
tends to change smoothly.



Machines 2022, 10, 872 22 of 25Machines 2022, 10, 872 22 of 25 
 

 

 
Figure 27. The variation curves of 𝑣𝑣𝑙𝑙 for the leaders during the movement. 

 
Figure 28. The variation curves of 𝜔𝜔𝑙𝑙 for the leaders during the movement. 

 
Figure 29. The variation curves of 𝜃𝜃𝑙𝑙 for the leaders during the movement. 

Since the sub-fleets are differentiated from the original fleet, the controller parame-
ters of the fleet remain the same as the original. However, the sub-fleets have changed in 
fleet size and structure compared with the original fleet, and the original parameters may 
not be able to better match the current sub-fleets control. Combined with the kinematic 
model, this also explains the fluctuation of 𝜔𝜔𝑙𝑙 in Figure 28. However, the overall fluctu-
ations are small and have little impact on the fleets running and are within the acceptable 
range. 

Figures 30 and 31 express the variation of the relative distances 𝑙𝑙𝑥𝑥 and 𝑙𝑙𝑦𝑦 between 
the followers and the leader of each sub-fleet. The specific changes in the formation during 
the movement can be seen in these results. It shows that the stability within the fleet can 
still be maintained during the movement. 

0 10 20 30 40 50 60

time(s)

1.6

1.8

2

2.2

2.4

v
l(m

/s
)

leader1

leader2

time(s)

w
l(ra

d/
s)

leader1

leader2

time(s)

th
et

a
l(ra

d)

leader1

leader2

Figure 27. The variation curves of vl for the leaders during the movement.
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Figure 28. The variation curves of ωl for the leaders during the movement.
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Figure 29. The variation curves of θl for the leaders during the movement.

Since the sub-fleets are differentiated from the original fleet, the controller parameters
of the fleet remain the same as the original. However, the sub-fleets have changed in fleet
size and structure compared with the original fleet, and the original parameters may not be
able to better match the current sub-fleets control. Combined with the kinematic model,
this also explains the fluctuation of ωl in Figure 28. However, the overall fluctuations are
small and have little impact on the fleets running and are within the acceptable range.

Figures 30 and 31 express the variation of the relative distances lx and ly between the
followers and the leader of each sub-fleet. The specific changes in the formation during the
movement can be seen in these results. It shows that the stability within the fleet can still
be maintained during the movement.
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Figure 30. The variation curves of lx for each follower during the movement. Follower 1-1 indicates
the position of follower No.1 in sub-fleet No.1, and follower 2-1 indicates the position of follower
No.1 in sub-fleet No.2.
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4. Conclusions

In this paper, we propose formation change influence factors to solve the unmanned
fleet formation and formation change problem. Since the traditional formation control
method lacks a mechanism by which to effectively deal with the complex road conditions
that occur during the movement, the perspective of formation change is used to manage
this. First, this paper adopts the leader–follower method with more flexible control to
design the formation controller. Using the input-output linearization method, a control law
that can make the UGVs formation system stable is derived to ensure that the fleet always
maintains the preset formation during the movement. Based on this controller, we propose
a formation change influence factor and a formation change library to provide the UGVs
fleet with the ability to change formation flexibly according to the complex terrains ahead.
Different formation geometries and dynamic adjustment methods that may be required
are added to the formation change library, and the formation change logic is determined.
Afterwards, the formation change influence factor for different terrain is generated by the
terrain ahead obtained from the distance detection device of the fleet, and this influences
the overall line speed and angular speed of the fleet to ensure that the fleet can pass the
complex terrain safely.

The experimental results show that the UGVs fleet can flexibly and effectively cope
with complex terrains under the influence factor of formation change. When the road
becomes narrower or obstacles appear, the fleet can flexibly adjust the formation structure
according to the terrain to ensure that the fleet passes the terrain safely, which is difficult to
achieve for the traditional formation methods. At the same time, the new formation and
change method proposed in this paper can also maintain the internal stability of the UGVs
fleet, which effectively improves the safety of the UGVs fleet operation and the possibility
of application in practice.

Because we assume a vehicle model with perfect speed control, only the kinematic
model of the vehicle is considered in this paper, not the dynamics model. In addition,
this paper only details experiments for applications in two structured terrains. For other
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different terrains, the formation change library can be further updated according to the
terrain characteristics. How to cope with unstructured terrain during formation change
and how to solve the slight oscillation of the convoy forward route caused by narrow road
sections are topics for future research.
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