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ABSTRACT 
 

Since most samplings of local species communities are bound to remain substantially incomplete for 
practical reasons, a wide variety of nonparametric estimators of the number of unrecorded species 
have been proposed over the past fifty years. Unfortunately, the distinct formulations of each of 
these estimators naturally lead to substantially divergent estimates. The will to try to select, in each 
case, the estimator expected to be the more accurate has long been carried out only on a purely 
empirical, even arbitrary, basis (as is evident from the extensive consultation of much of the past 
literature on estimating species richness of incompletely sampled communities). So that 
extrapolating the true species richness of a community from its incomplete survey has long 
remained quite unsatisfactory. Indeed, the definition of a truly rational procedure for selecting the 
most accurate (least-biased) estimator actually requires a solidly established theoretical framework, 
involving to conform, as best as possible, to the general mathematical characteristics of the Species 
Accumulation Function. Accordingly, unveiling, first of all, these mathematical characteristics of the 
Species Accumulation Function was a decisive step forward in this perspective. Thereby making it 
now possible to propose an objective key to rationally select the one, within the series of various 
estimators, which, depending on each particular sampling, happens to be the least biased in this 
particular case, thus providing the most accurate estimate of the number of still unrecorded species. 
And, consequently, making it possible, now, to deliver the best estimate of the true species richness 
of a local community, despite its being incompletely surveyed. 
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1. INTRODUCTION 
 
Among the most commonly cited descriptors of 
species communities in the wild, the species 
richness is usually considered as having the 
“greatest ecological significance” (with the 
degree of unevenness of species abundances 
coming immediately second). Thus, as already 
emphasized by BROSE et al. [1], “beyond the 
exhaustive list of their identities, the estimated 
total number of species in a community or in a 
given area is, by itself, critical to the development 
of evolutionary and ecological theories”. 
 
Yet, unfortunately, achieving (sub-) exhaustive 
samplings usually reveals quasi-impossible in 
practice for most communities in the wild. 
Community samplings are, thus, often doomed to 
remain more or less incomplete.  And this is all 
the more so when dealing with species-rich 
communities having rather unevenly distributed 
species abundances. This is particularly the case 
for either floras or invertebrate faunas, especially 
(while not only) under tropical climates. 
 
Hence, the strong incentive to develop numerical 
extrapolation procedures, intended to estimate 
the number of species that have escaped 
sampling. Thereby allowing a reliable estimation 
of the “true” total species richness of 
communities, despite their being incompletely 
sampled. 
 
Early attempts in this perspective have led, 
during the second half of the last century, to the 
propositions of a series of estimators, formulated 
as various functions of the numbers f1, f2, …fx of 
singletons, doubletons, … , x-tons (i.e., species 
encountered once, twice, …, x-times during 
sampling).  The most often mentioned estimators 
being the series of ‘Jackknife’ estimators (JK-1 = 
f1, JK-2 = 2f1 – f2, JK-3 = 3f1 – 3f2 + f3, etc…) and 
the ‘Chao’ estimator (Chao1 = f1

2
/(2.f2)) [2].  

 
Now, all these estimators, each of them being 
formulated in such different ways, can only 
deliver substantially distinct estimates of the 
number of unrecorded species, for a same given 
sample! Which, naturally, led to the question of 
how to reliably choose which one of these 
different estimators might be more appropriate 
and the most accurate, with respect to the 
particular sample under consideration. Now, in 
the obvious impossibility of being able to answer 

properly this question on a rational basis, it has 
been witnessed, in the literature, a veritable 
anthology of empirical or even arbitrary 
proposals, each of them as unsatisfactory                   
as the other: see, for example a critical review in 
[1]. This, in the end, had regrettably                   
contributed to cast much doubt on the reliability 
of numerical extrapolation from incomplete 
samples, in order to estimate the true               
species richness of incompletely sampled 
communities. 
 
This very unsatisfactory situation has finally led, 
at the beginning of this century, to the hypothesis 
that, among all these different estimators, it may 
be likely that only one of them could, in turn, 
prove to be the most appropriate. More 
specifically, the estimator to be preferred being, 
in each case, dependent upon the particular 
sampling under consideration. In this new 
perspective, no estimator could rationally claim to 
be universally – or, at least, usually – the most 
appropriate. Hence the necessity to select, in 
each case (i.e. for each particular sampling), 
which particular estimator, from the set of 
available estimators could really be considered 
the most appropriate, i.e. the least biased one. 
With this selection being based upon a strictly 
rational procedure. Indeed, this point of view 
turned out to be correct and, then, prompted the 
research and development of such a kind of 
more or less rigorous selection procedure. 
 
In their seminal paper, BROSE et al.  [1] 
deliberately comply with this approach. In 
particular, they suggest that each of the 
estimators, within the Jackknife series, could, in 
turn, be optimal according to the (yet still 
unknown) degree of completeness of the 
sampling under consideration. Specifically, these 
authors argued that the lower the completeness 
of the sampling, the higher should be the order of 
the Jackknife estimator to be selected. However, 
this first attempt, as meritorious as it was, could 
not lead, yet, to a satisfactory solution in practice 
(see Discussion section below). And this, in 
particular, because of the circularity of the 
procedure which implies that completeness be 
involved both as a means of selection and then 
as the result of this selection. Yet, the paper by 
BROSE et al. [1] finally rightly highlighted the 
possible avenue toward a future, truly rational 
procedure for selecting the desired “optimal 
nonparametric estimator”.  
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To go further in this direction, a decisive element 
was still missing to the preceding attempt – 
namely unveiling the relevant mathematical 
relationship which universally constrains the 
general expression of the so-called “Species 
Accumulation Function”. And this is required 
because the extrapolation of the Species 
Accumulation Curve (S.A.C.) has the potential to 
forecast, all-along progressive sampling, the 
continuous updating of what could be the species 
richness of the community under consideration. 
So that a reliable estimator of the number of still 
unrecorded species should correspond to – and 
thus comply with – the (numerical) extrapolation 
of this S.A.C., continued beyond the currently 
achieved partial sampling. 
 
Deriving the mathematical relationship 
universally constraining the Species 
Accumulation Curve is, thus, intended to play a 
decisive role in enabling the development of the 
procedure for rationally selecting (according to 
each particular sampling) the particular type of 
estimator able to deliver the least-biased 
estimate of the number of still unrecorded 
species. The derivation of this mathematical 
relationship had been carried out recently [3-5], 
thus finally opening up the perspective for a 
rational estimation of the true species richness of 
communities, despite having to rely only upon 
partial samplings. 
 
 
Based upon this previously established 
mathematical relationship [3-5], I describe, 
hereafter, the procedure allowing to rationally 
select, in each case, which estimator turns out to 
be the least-biased one, among the most 
commonly referenced nonparametric estimators. 
 
 

2. METHODS  
 
The so-called Species Accumulation Curve 
(S.A.C.) accounts for the progressive increase in 
the number of recorded species along the 
progressive sampling of a community of species. 
 
Clearly, the shape of the S.A.C. is, in every 
detail, entirely dependent on the specific 
distribution of species abundances within the 
sampled community. Accordingly, there are as 
many different shapes – and kinds of 
mathematical expressions – for the S.A.C.s than 
there are different possibilities of species 
abundance distributions within species 
communities. That is, a virtual infinity. This 

explains that no general mathematical 
expression has ever been derived for the 
S.A.C.s, at least on a rational basis. Only 
empirically designed models have been 
proposed, as pure approximations [6,7], thus 
irrelevant to our purpose. However, the 
indefinitely various mathematical shapes that the 
S.A.C.s could potentially take are yet, in no way, 
arbitrary. In fact, all of these various 
mathematical shapes are expected to comply 
with a universal, specific mathematical 
constraint, inherent in the very nature of the 
process of incremental discovery of new species, 
during the progress of on-going sampling.  
 
It turns out that this mathematical constraint, 
framing the virtual infinity of expressions that the 
S.A.C.s can take, applies to the series of 
derivatives of increasing order of the S.A.C.. 
With, more specifically, the derivative of order x 
being related to the observed number, fx, of x-
tons (species which are recorded x-times in the 
on-going sampling). The existence and 
formulation of this mathematical relationship, 
universally constraining the expressions of the 
S.A.C.s, was demonstrated first in 2014, as 
reported in reference [3], see also [8]: 
 
 
∂

x 
R(N)/∂N

x
  =  (-1)

x-1
 fx (N) /CN, x      (1)  

 
with: 
 
* N as the sample size, in term of the number 

encountered individuals,  
* R(N) as the number of currently recorded 

species – namely the “Species  
Accumulation Function”,  
 
      * fx (N) as the number of x-tons,  
      * CN, x = N!/x!/(N-x)! as the number of 
combinations of x items among N. 
 
Leaving aside the very beginning of sampling (of 
no practical relevance here), the sampling-size N 
rapidly widely exceeds the numbers x of practical 
concern, so that, in practice, the preceding 
equation simplifies as: 
 
∂

x 
R(N)/∂N

x
  =  (– 1)

x-1 
(x!/N

x
).fx (N)        (2) 

 
Specifically, these relations (either (1) or (2)) 
have general relevance because their derivation 
– and thus their validity – does not require any 
specific assumption relative to the particular 
shape of the distribution of species abundances 
in the sampled assemblage of species. 
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Accordingly, the above relations actually 
constrain the indefinitely diverse theoretical 
expressions of all possible kinds of Species 
Accumulation Curves. 
 
In addition, it is to be noted that a second, 
independently established, demonstration of this 
relation was provided later [4,5] (a summary of 
these two alternative demonstrations is provided 
in Appendix). Finally, a third, again independent, 
demonstration was published recently by LI & LI 
[9], based upon the specific properties of the so-
called Bernstein functions. The coexistence of 
these three independent demonstrations clearly 
underlines the robustness of this relation, 
universally constraining the expressions of the 
S.A.C.s in whole generality and, thereby, 
warrants the reliability of using relations (1) or (2) 
for practical purposes. 
 
Now, related to our concern of establishing an 
objective procedure to rationally select the best 
type of nonparametric estimator, two additional 
relationships, directly stem from equation (2), are 
examined below. 
 

2.1 Derivation of the Expression of the 
First Derivative of the Number of x-
tons, fx (N)  

 
It comes from equation (2) (as already shown in 
references [10, 11]): 
 
 
fx (N) = (– 1)

x-1 
(N

x
/x!) [∂

x 
R(N)/∂N

x
 ]         (3) 

 
The derivation of equation (3), with respect to 
sample size N, then gives: 
 
 
∂fx (N)/∂N = (– 1)

x-1
/x! {x. N

x-1
.[∂

x
 R(N)/∂N

x
] + 

N
x
.[∂

x+1 
R(N)/∂N

x+1
]}        

   
 
Applying successively equation (2) to the 
expressions of [∂

x 
R(N)/∂N

x
] and of [∂

x+1 

R(N)/∂N
x+1

] finally leads to:     
      
∂fx (N)/∂N = [ x.fx (N) – (x+1).fx+1 (N)]/N     (4) 
 
Equation (4) thus provides the expression                  
of the first derivative of the number fx (N) at                      
any given sample-size N, in terms of the                   
values taken by fx (N) and fx+1 (N), at sampling-
size N.   
 

2.2 Derivation of the Expression of the 
First Derivative of the Number of still 
Unrecorded Species Δ(N) 

 
Let Δ(N) be the number of unrecorded species 
(i.e., species having still escape recording by the 
on-going sampling of a community). Let St be the 
(unknown) true species richness of the sampled 
community; then Δ(N) = St – R(N). Accordingly, 
from equation (2), the first derivative of Δ(N) 
satisfies: 
 
∂Δ(N)/∂N = – f1 (N)/N               (5) 
 

3. PROCEDURE OF SELECTION OF THE 
MORE ACCURATE TYPE OF 
ESTIMATOR OF THE NUMBER OF 
UNRECORDED SPECIES 

 
The ideal goal of a nonparametric estimator E(N) 
of the number Δ(N) of still unrecorded species is, 
of course, to comply, as closely as possible, to 
Δ(N). In particular, by decreasing with sample 
size N at the same rate as Δ(N) decreases. 
Thus, an ideal goal would be: 
 
∂E(N)/∂N = ∂Δ(N)/∂N = – f1 (N)/N         (6) 
 
Now, if this ideal goal for E(N) to consistently 
match Δ(N) cannot be strictly achieved (as is 
likely), it is at least desirable, for the careful sake 
of conservatism, that the estimation E(N) be a 
slight underestimate of Δ(N), rather than an 
overestimate. For this purpose, the rate of 
decrease of E(N) with N – for lack of being able 
to consistently match the rate of decrease of 
Δ(N) itself – should be slightly faster than this 
decrease of Δ(N) (rather than slightly slower). So 
that, in practice, the criterium of selection among 
the available kinds of estimators should rely on 
the absolute rate of decrease |∂E(N)/∂N| of E(N) 
with N. With this rate of decrease, |∂E(N)/∂N|, 
being thus required to be either equal - or if not - 
somewhat higher than is the absolute rate of 
decrease, |∂Δ(N)/∂N|, of Δ(N):   
 

|∂E(N)/∂N| > |∂Δ(N)/∂N|   
 

that is (since ∂Δ(N)/∂N is, in essence, negative):  
 

∂E(N)/∂N < ∂Δ(N)/∂N   
 

Then: 
 

∂E(N)/∂N < – f1 (N)/N     (7) 
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3.1 Practical Key of Selection among the 
Top Five Jackknife Estimators (JK-1 
to JK-5) 

 
As already underlined, I shall focus upon the 
most often mentioned nonparametric estimators, 
namely the series of ‘Jackknife’ estimators of 
increasing orders and the ‘Chao’ estimator.  
 
Let consider, first, the series of ‘Jackknife’ 
estimators of increasing orders. That is: JK-1 = 
f1, JK-2 = 2f1 – f2, JK-3 = 3f1 – 3f2 + f3, … and, 
more generally, at order ‘m’ (see reference [5]): 
 
JK-m  = Σx=1 to m [(-1)

(x-1)
.C(m, x).fx ]           (8) 

 
where Σx=1 to m stands for the summation from x = 
1 to x = m and C(m, x) = m!/x!/(m–x)! is the number 
of combinations of x objects among m.   
 
According to equation (7), it then follows that if 
the Jackknife estimator at order m, (JK-m), is to 
be selected, then the first derivative ∂(JK-m)/∂N 
of ‘JK-m’ should satisfy: 
 
∂(JK-m)/∂N < – f1 (N)/N        (9) 
In particular: 
 
(i) for Jackknife at order 1, i.e. JK-1 = f1: 
 
∂(JK-1)/∂N = ∂f1 (N)/∂N   
 
and from equation (4), it comes: 
 
∂(JK-1)/∂N = ∂f1 (N)/∂N = [f1 (N) – 2f2 (N)]/N   
    
Then, from equation (9), it follows: 
 
[f1 (N) – 2f2 (N)]/N < – f1 (N)/N 
 
that is: 
 
f1 (N) < f2 (N)      (10) 
 
 (ii)  for Jackknife at order 2, i.e. JK-2 = 2f1 – f2: 
 
∂(JK-2)/∂N = 2.∂f1 (N)/∂N – ∂f2 (N)/∂N   
 
and from equation (4), it comes: 
 
∂(JK-2)/∂N = 2.[f1 (N) – 2f2 (N)]/N – [2.f2 (N) – 3f3 

(N)]/N 
 
Then, from equation (9), it follows: 
 
2.[f1 (N) – 2f2 (N)]/N – [2.f2 (N) – 3f3 (N)]/N < – f1 

(N)/N 

that is: 
 
f1 (N) < 2.f2 (N) – f3 (N)       (11) 
 
 (iii)  for Jackknife at order 3, i.e.  JK-3 = 3f1 – 
3f2 + f3: 
 
∂(JK-3)/∂N = 3.∂f1 (N)/∂N – 3.∂f2 (N)/∂N + ∂f3 

(N)/∂N     
 
and from equation (4), it comes: 
 
∂(JK-3)/∂N = 3.[f1 (N) – 2f2 (N)]/N – 3.[2.f2 (N) – 
3f3 (N)]/N + [3.f3 (N) – 4f4 (N)]/N 
Then, from equation (9), it follows: 
 
3.[f1 (N) – 2f2 (N)]/N – 3.[2.f2 (N) – 3f3 (N)]/N + [3.f3 

(N) – 4f4 (N)]/N <  – f1 (N)/N 
that is: 
 
f1 (N) < 3.f2 (N) – 3.f3 (N) + f4 (N)      (12) 
 
 (iv)  for Jackknife at order 4, i.e.  JK-4 = 4f1 – 
6f2 + 4f3 – f4: 
 
∂(JK-4)/∂N = 4.∂f1 (N)/∂N – 6.∂f2 (N)/∂N + 4∂f3 

(N)/∂N  – ∂f4 (N)/∂N   
 
and, similarly, it comes finally: 
 
f1 (N) < 4.f2 (N) – 6.f3 (N) + 4.f4 (N) – f5 (N)     (13) 
  
 (v) more generally, for Jackknife at order m, 
i.e.  JK-m (= Σx=1 to m [(-1)

(x-1)
.C(m, x).fx ]): 

 
∂(JK-m)/∂N  = Σx=1 to m [(-1)

(x-1)
.C(m, x). (∂fx (N)/∂N)] 

 
Then, applying similarly equation (4) and 
equation (9) successively, it comes finally for JK-
m: 
 
f1 (N)  <  Σx = 2 to m [(-1)

x
.(C(m+1, x) – C(m, x)).fx (N)] + 

(-1)
m+1

.fm+1(N)         (14) 
 
The five inequalities (10) to (14) thus define the 
respective domains of selection of Jackknife 
estimators JK-1 to JK-5, allowing each of them to 
be the one offering the least-biased estimation of 
the number of still unrecorded species, 
depending on the particular sampling. 
 
Let now summarize, combining the series of 
inequalities above. 
 
It comes the following key of selection for the top 
five Jackknife estimators. 
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This key of selection highlights the conditions (in 
terms of the relative values of f1 as compared to 

f2, f3, f4, f5, at the right side) that ensure the 
Jackknife at the corresponding order (at the left 
side) to provide the ‘least-biased’ estimation of 
the number of still unrecorded species (i.e., 
species having still escape recording by the on-
going sampling of a community).  
 

It is worth noting that – as it should be – there is 
no discontinuity in the estimates at both sides of 
the boundary between the respective domains of 
two Jackknife of successive orders. Thus, at the 
boundary between:  
 

* JK-1 and JK-2 (i.e. when f1 = f2), both JK-1 and 
JK-2 = f2 ; 
* JK-2 and JK-3 (i.e. when f1 = 2f2 – f3), both JK-2 
and JK-3 = 3f2 – 2f3 ;  
* JK-3 and JK-4 (i.e. when f1 = 3f2 – 3f3 + f4), both 
JK-3 and JK-4 = 6f2 – 8f3 + 3f4 ; 
* JK-4 and JK-5 (i.e. when f1 = 4f2 – 6f3 + 4f4 – f5), 
both JK-4 and JK-5 = 10f2 – 20f3 + 15f4 – 4f5 

 

As simple illustrative examples of application, 
Figures 1 and 2 provide the estimated numbers 

of unrecorded species obtained by the series of 
Jackknife estimators, for two Butterfly 
communities sampled at the same site, in years 
1987 and 2013, at Gariwang-san (Korea), as 
reported in reference [12]. 
 

Important Notice 
 
The recorded values of the numbers of x-tons (f1, 

f2, f3, f4, f5) are inevitably subject to a certain 
dispersion, due to the random draw of individuals 
during sampling of a community. Accordingly, the 
resulting risk of bias in the evaluation of the 
numbers fx of x-tons should not be overlooked – 
since these numbers play the determinant role, 
regarding both the values taken by the 
nonparametric estimators and by the criteria of 
selection of the ‘least-biased’ estimator. Thus, to 
reduce this risk as far as possible, it is 
appropriate to regress the distribution of the 
recorded values of the series f1, f2, f3, f4, f5. 
Practical experience suggests that a simple 
regression “by eye” is relevant in this respect. 
For illustrative purposes some examples are 
provided in Figures 3 to 7.  

 

 
 

Figs. 1 and 2. The numbers of unrecorded species estimated by the series of Jackknife 
estimators, for two Butterfly communities sampled in 1987 (left) and 2013 (right) at Gariwang-

san (Korea) [12]. The selected Jackknife estimator is JK-3 (= 27) for year 1987  
while it is JK-4 (= 30.7) for year 2013 

Select preferentially: 
 

JK-1 (= f1)   when  f1 < f2 
 

JK-2 (= 2f1 – f2)  when  f2 < f1 < 2f2 – f3 
 

JK-3 (= 3f1 – 3f2 + f3)  when  2f2 – f3 < f1 < 3f2 – 3f3 + f4 
 

JK-4 (= 4f1 – 6f2 + 4f3 – f4)  when  3f2 – 3f3 + f4 < f1 < 4f2 – 6f3 + 4f4 – f5 
 

JK-5 (= 5f1 – 10f2 + 10f3 – 5f4 + f5)  when  f1 > 4f2 – 6f3 + 4f4 – f5 
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Figs. 3 to 7. The numbers fx of species recorded x times for the partial samplings of five reef-
associated fish communities investigated off Jakarta Bay [13]. Note that although x is 

considered from 1 to 5, the regression is continued up to x = 15, for providing a more extended 
view of the values taken by the fx, which is best appropriate for the visual regression.  

As recorded: grey discs; visually regressed: black discs 
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3.2 What about the Chao Type of 
Nonparametric Estimators 

 
In their seminal paper, BROSE et al. [1] 
considered that the series of Jackknife was self-
sufficient to account for all the cases of more or 
less incomplete samplings situations, thus 
requiring to consider no other types of 
nonparametric estimators. In particular, it does 
not appear any need to resort to Chao-type 
estimator (as Chao 1 = f1

2
/(2.f2)), according to 

these authors.  
 
Our own theoretical approach also agrees with 
this statement. Moreover, the Chao type 
estimators regrettably suffer from a conceptual 
defect, intrinsically linked to their nonlinear 
formulation in terms of fx. As already pointed out 
previously [14], for this very reason the Chao-
type estimators cannot satisfy, as obviously 
required, the rule of additivity [14]. As a result, 
when using the Chao-type estimators, the 
estimate made on a set comprising several 
subsets unfortunately does not correspond to the 
sum of the estimates made on each of these 
subsets (as required – at least for a point 
estimator). 
Thus, in accordance with the previous option of 
BROSE et al. [1], it appears that the series of 
Jackknife estimators (in practice, aptly limited to 
the set of the five first Jackknife) is sufficient by 
itself to offer a relevant panoply of potential 
estimators, among which to choose for an 
optimized estimation of the number of still 
unrecorded species.  
 

4. DISCUSSION 
 
As recalled in Introduction, the possibility of 
estimating the number of unrecorded species in 
a presumably incomplete survey began with a 
rather unsatisfactory situation, up to the end of 
the preceding century. Namely, the puzzling 
dilemma of having to choose, among a lot of 
available estimators providing divergent 
estimates. And this, without disposing, however, 
of any reliable key to select rationally the 
particular type of estimator expected to reliably 
provide the least-biased estimation. This very 
uncomfortable era eventually came to an end 
with the publication of the seminal paper by 
BROSE et al. [1], where is relevantly highlighted 
that no unique, universally best estimator can 
reasonably exist. Regrettably however, this 
publication remained too much ignored 
thereafter, since many authors regrettably persist 
in choosing, still rather arbitrarily, the kind of 

estimator which they personally consider – or 
even claim - as being the "best". While BROSE et 
al. put forward that, in fact, the best – least 
biased – estimator might well differ in each 
practical case, being particular to each given 
sampling. They further suggested that the 
sampling criterion to be considered first was the 
degree of completeness of the sample under 
consideration. A practical procedure of iterative 
selection thus arises from this, inviting to 
determine which estimator among the lot of 
available ones (in particular the Jackknife series) 
is intended to perform best, i.e. more accurately. 
The question arguably remained, however, as to 
whether this advocated relation between the 
degree of sampling incompleteness on the one 
hand and the preferred order of Jackknife 
estimator on the other hand is: 
 
     (i)  solidly confirmed from a theoretical point of 
view, 
     (ii) the only effective factor to be considered 

and accounted for, when trying to select 
the least biased estimator of the number of 
still unrecorded species. 

 
Thanks to the procedure developed in this work, 
it now reveals possible to address and to answer 
(in fact by the negative) each of these two 
fundamental questions. 
 
Figure 8 summarized the results from a wide 
series of reported case studies [7, 12, 13, 15-29] 
involving the numerical extrapolations of 62 
incomplete samplings of various animal 
communities distributed worldwide, both marine 
and terrestrial. The numerical extrapolations 
were carried out using the procedure of selection 
of the “least-biased” estimator of the number of 
unrecorded species initially proposed in [5] and 
alternatively argued above in section 3.1. Thanks 
to its theoretically based establishment, this key 
of selection of the “lest-biased” estimator may 
admittedly serve as a reliable reference            
against which to compare other procedures of 
selection, such as – here – the one previously 
proposed by BROSE et al. [1]. The                    
features highlighted in Figure 8 aptly allow, 
accordingly, to address the two questions put 
forward above. 
 
First, as advocated by BROSE et al., it obviously 
exists a trend for the order of the selected 
Jackknife estimator to actually increase with 
decreasing levels of completeness of samplings. 
Second, there remains, yet, much scatter in this 
relationship.  
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Fig. 8. The selected least-biased Jackknife estimator (among JK-1 to JK-5) of the number of 
unrecorded species plotted against the corresponding estimated sampling completeness,  

for a series of 62 samplings [7, 11, 13, 15-29]. Obviously, the order of the selected Jackknife 
estimator tends to increase with decreasing sampling completeness – as suggested by BROSE 

et al. [1]. However, the dispersion turns out to be much too wide to allow to reliably rely upon 
this criterion only to select the best estimator, as too optimistically proposed by BROSE et al 

 
Thus, pointing out that other factors, besides the 
degree of sampling-incompleteness, are likely to 
be also involved. And, accordingly, that these 
other factors are to be considered, as well, in the 
rational selection of the least-biased estimator. 
 
More precisely, the coefficient of determination of 
the correlation between the order of the selected 
Jackknife estimator on the one hand and the 
level of sampling incompleteness on the other 
hand, is r

2
 = 0.48 only. This emphasizes that the 

degree of sampling incompleteness is no more 
than part only (48%) of the factors involved in 
determining the selected order of the actually 
least-biased Jackknife estimator.  
 
This indeed is no surprise. Arguably, the 
particular distribution of the species abundances 
in the sampled community, especially the degree 
of unevenness of species abundance distribution 
(including the distribution of abundances of the 
still unrecorded species), is likely to also play a 
key role in this matter. Indeed, it turns out that 
the actually recorded numbers f1, f2, …fx of 
singletons, doubletons, …, x-tons (and, thus, the 
Jackknife estimators, as any other nonparametric 
estimators) are sensitive not only to the level of 
sampling incompleteness, but also to the degree 
of unevenness of the species abundance 
distribution within the community of species 

under consideration. And, more generally, that 
the non-parametric estimators are sensitive to all 
the factors involved in defining the extrapolation 
of the Species Accumulation Curve R(N), which 
ultimately forecasts the number of still 
unrecorded species – as highlighted by the 
universal relationship (1) constraining this Curve. 
 

5. CONCLUSION 
 
Incomplete samplings are common cases in 
most local biodiversity surveys – especially those 
addressing invertebrate local communities 
worldwide. Thus, the estimation of the number of 
species still remaining unrecorded is key to 
evaluate the true species richness of these 
communities – indeed a major descriptor of 
species diversity. 
 
However, estimating the number of species 
remaining unrecorded due to unavoidable 
incomplete samplings proves being quite a 
difficult matter. As proof, the difficulties 
encountered in this regard throughout the 
second-half of the 20

th
 century. Difficulties 

paradoxically resulting from the somewhat 
“plethoric” creativity of the statisticians, delivering 
a multiplicity of competing – and unfortunately 
diverging – nonparametric estimators. The 
horizon in this matter then began to brighten with 
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the founding publication of BROSE et al. in year 
2003. A publication which marked a decisive step 
ahead, although remaining still partial, due to its 
still insufficient theoretical foundation. Finally, it is 
only the unveiling of the fundamental 
mathematical relation constraining, in all 
generality, the shape of the Species 
Accumulation Curve which ultimately made it 
possible to establish the sound, theoretical 
foundation required to derive a rational 
procedure of numerical extrapolation of the 
Species Accumulation Curve. And, by doing so, 
offering the key to a procedure making it possible 
to rationally select, in each case, which among 
the series of available estimators actually 
happens to be the least biased. 
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APPENDIX 
 
A.1 Derivation of a universal mathematical framing of the Species Accumulation Function 

R(N): the constraining relationship between ∂
x
R(N)/∂N

x
  and  fx(N) 

 
The shape of the theoretical Species Accumulation Curve is directly dependent upon the particular 
Species Abundance Distribution (the “S.A.D.”) within the sampled assemblage of species. That 
means that beyond the common general traits shared by all Species Accumulation Curves, each 
particular species assemblage give rise to a specific Species Accumulation Curve with its own, unique 
shape, considered in detail. Now, it turns out that, in spite of this diversity of particular shapes, all the 
Species Accumulation Curves are, nevertheless, constrained by a same mathematical relationship 
that rules their successive derivatives (and, thereby, rules the details of the curve shape since the 
successive derivatives altogether define the local shape of the curve in any details). Moreover, it turns 
out that this general mathematical constraint relates bi-univocally each derivative at order x, 
[∂

x
R(N)/∂N

x
], to the number, fx(N), of species recorded x-times in the considered sample of size N. And, 

as the series of the fx(N) are obviously directly dependent upon the particular Distribution of Species 
Abundance within the sampled assemblage of species, it follows that this mathematical relationship 
between ∂

x
R(N)/∂N

x
 and fx(N), ultimately reflects the indirect but strict dependence of the shape of the 

Species Accumulation Curve upon the particular Distribution of the Species Abundances (the so 
called S.A.D.) within the assemblage of species under consideration. In this respect, this constraining 
relationship is central to the process of species accumulation during progressive sampling, and is 
therefore at the heart of any reasoned approach to the extrapolation of any kind of Species 
Accumulation Curves. 
 
This fundamental relationship may be derived as follows. 
 
Let consider an assemblage of species containing an unknown total number 'S' of species. Let R be 
the number of recorded species in a partial sampling of this assemblage comprising N individuals. Let 
pi be the probability of occurrence of species 'i' in the sample This probability is assimilated to the 
relative abundance of species ‘i' within this assemblage or to the relative incidence of species ‘i' (its 
proportion of occurrences) within a set of sampled sites. The number Δ of missed species 
(unrecorded in the sample) is Δ = S – R. 
 
The estimated number Δ of those species that escape recording during sampling of the assemblage is 
a decreasing function Δ(N) of the sample of size N, which depends on the particular distribution of 
species abundances pi: 
 
Δ(N)  = Σi (1-pi)

N            
(A1.1) 

 
with Σi  as the operation summation extended to the totality of the 'S' species 'i' in the assemblage 
(either recorded or not) 
 
The expected number fx of species recorded x times in the sample, is then, according to the binomial 
distribution: 
 
fx  =  [N!/X!/(N-x)!] Σi [(1-pi)

N-x
 pi

x 
]   = CN, x  Σi (1-pi)

N-x
 pi

x 
       (A1.2)  

 
with CN, x  = N!/X!/(N-x)!  
 

We shall now derive the relationship between the successive derivatives of R(N), the theoretical 
Species Accumulation Curve and the expected values for the series of ‘fx’.  
According to equation (A1.2): 
 
►    f1 = N Σi [(1-pi)

N-1
 pi] = N Σi [(1-pi)

N-1
 (1- (1-pi))]  = N Σi [(1-pi)

N-1
] - N Σi [(1-pi)

N-1
(1-pi))]  = N Σi [(1-pi)

N-

1
] - N Σi [(1-pi)

N
].      

 
Then, according to equation (A1) it comes: f1 = N (Δ(N-1) - Δ(N))  = - N (Δ(N) - Δ(N-1))   
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= - N (∂ Δ(N)/∂N) = - N Δ'(N)   
  
where Δ'(N) is the first derivative of  Δ(N) with respect to N.    Thus:    
 
f1  =  - N Δ'(N)     ( = - CN,1  Δ'(N)  )         (A1.3) 
 
Similarly: 
 
►   f2 = CN, 2 Σi [(1-pi)

N-2
 pi²]     according to equation (A1.2) 

 
= CN, 2 Σi [(1-pi)

N-2
 (1- (1-pi²))]   = CN, 2  [Σi [(1-pi)

N-2
] - Σi [(1-pi)

N-2
(1- pi²)]] 

= CN, 2 [Σi [(1-pi)
N-2

] - Σi [(1-pi)
N-2

(1- pi)(1+ pi)]]  = CN, 2 [ Σi [(1-pi)
N-2

] - Σi [(1-pi)
N-1

(1+ pi)]] 
= CN, 2 [(Δ(N-2) - Δ(N-1)) - f1/N ]     according to equations (A2.1) and  (A1.2) 
= CN, 2 [- Δ'(N-1) - f1/N]  = CN, 2  [ - Δ'(N-1) + Δ'(N)]   since  f1 = - N Δ'(N)     (cf. equation (A1.3)). 
= CN, 2 [(∂ Δ'(N)/∂N)] = [N(N-1)/2] (∂² Δ(N)/∂N²) = [N(N-1)/2] Δ''(N) 
 
where Δ''(N) is the second derivative of  Δ(N) with respect to N.    Thus: 
 
f2  =  [N(N-1)/2]  Δ''(N)     =  CN, 2  Δ''(N)            (A1.4) 
 
►  f3 = CN, 3 Σi [(1-pi)

N-3
 pi

3
]   which, by the same process, yields: 

 
= CN, 3 [Σi (1-pi)

N-3
 - Σi (1-pi)

N-2
 - Σi [(1-pi)

N-2
 pi] - Σi [(1-pi)

N-2
 pi

2 
)]]   

 
= CN, 3 [(Δ(N-3) - Δ(N-2)) - f1*/(N-1) - 2 f2/(N(N-1))]  according to equations (A2.1) and  (A1.2) 
 
where f1* is the number of singletons that would be recorded in a sample of size (N - 1) instead of N.   
 
According to equations (A1.3) & (A1.4):   
 
f1*  =  - (N-1) Δ'(N-1)  =  - CN-1, 1  Δ'(N-1)    and    f2  =  [N(N-1)/2] Δ''(N)   = CN-1, 2  Δ''(N)     (A1.5) 
where Δ'

 
(N-1)  is the first derivate of  Δ(N) with respect to N, at point (N-1).   Then,   

f3  = CN, 3 [(Δ(N-3) - Δ(N-2)) + Δ'(N-1) - Δ''(N) ]   =  CN, 3 [ -Δ'(N-2) + Δ'(N-1) - Δ''(N) ]   
=  CN, 3 [ Δ''(N-1) - Δ''(N) ]  = CN,3 [ - ∂ Δ''(N)/∂N ] =  CN, 3 [ - ∂

3
 Δ(N)/∂N

3
] = CN, 3 Δ'''(N) 

 
where Δ'''(N) is the third derivative of  Δ(N) with respect to N.  Thus : 
 
f3 =  - CN, 3 Δ'''(N)              (A1.6) 
 
Now, generalising for the number fx of species recorded x times in the sample: 
 
►  fx = CN, x  Σi [(1-pi)

N-x
 pi

x
]    according to equation (A1.2), 

 
= CN, x Σi [(1-pi)

N-x
 (1 - (1 - pi

x
)) ]  = CN, x [Σi (1-pi)

N-x
 - Σi [(1-pi)

N-x
 (1 - pi

x
)]]   

= CN, x [Σi (1-pi)
N-x

 - Σi [(1-pi)
N-x

 (1 - pi)( Σj pi
j 
)]]    

with Σj  as the summation from j = 0 to  j = x-1. It comes: 
fx  = CN, x [Σi (1-pi)

N-x
 - Σi [(1-pi)

N-x+1
 ( Σj pi

j
)]]   

= CN, x [Σi (1-pi)
N-x

 - Σi (1-pi)
 N-x+1

 - Σk [(Σi (1-pi)
 N-x+1

 pi
k 
)]] 

 
 with Σk  as the summation from k = 1 to k = x-1 ; that is: 
 
fx  = CN, x [(Δ(N-x) - Δ(N-x+1)) - Σk (fk*/C(N-x+1+k), k )]  according to equations (A1.1) and  (A1.2)) 
 
where C(N-x+1+k), k = (N-x+1+k)!/k!/(N-x+1)! and fk* is the expected number of species  recorded k times 
during a sampling of size (N-x+1+k)  (instead of size N).   
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The same demonstration, which yields previously the expression of f1* above (equation (A1.5)), 
applies for the fk* (with k up to x-1) and gives:  
   
fk* = (-1)

k
 (C(N-x+1+k), k ) Δ

(k)
(N-x+1+k)         (A1.7) 

 
where Δ

 (k)
(N-x+1+k)  is the k

th 
derivate of  Δ(N) with respect to N, at point (N-x+1+k).   Then,   

 
fx  = CN, x [(Δ(N-x) - Δ(N-x+1)) - Σk ((-1)

k
 Δ

(k)
(N-x+1+k) )]            , 

 
which finally yields : 
  
fx  = CN, x [(-1)

x
 (∂Δ

(x-1)
(N)/∂N) ] = CN, x [(-1)

x
 (∂

x
Δ(N)/∂N

x
)].   That is:  

 
fx = (-1)

x
 CN, x Δ

(x)
(N)  = (-1)

x
 CN, x [∂

x
Δ (N)/∂N

x
]      (A1.8)  

 
where  [∂

x
 Δ (N)/∂N

x
] is the x

th
 derivative of  Δ(N) with respect to N, at point N.    

 
Conversely: 
 
[∂

x 
Δ(N)/∂N

x
] = (-1)

x
 fx /CN, x                   (A1.9)  

 
Note that, in practice, leaving aside the beginning of sampling, N rapidly increases much greater than 
x, so that the preceding equation simplifies as: 
 
[∂

x 
Δ(N)/∂N

x
] = (– 1)

x 
(x!/N

x
) fx(N)                   (A1.10) 

 
In particular: 
 
[∂Δ(N)/∂N] = f1(N)/N               (A1.11) 
 
[∂

2 
Δ(N)/∂N

2
] = 2 f2(N)/N

2
      (A1.12)                

 
This relation (A1.9) has general relevance since it does not involve any specific assumption relative to 
either (i) the particular shape of the distribution of species abundances in the sampled assemblage of 
species or (ii) the particular shape of the species accumulation rate. Accordingly, this relation 
constrains any theoretical form of species accumulation curves. As already mentioned, the shape of 
the species accumulation curve is entirely defined (at any value of sample size N) by the series of the 
successive derivatives [∂

x
R(N)/∂N

x
] of the predicted number R(N) of recorded species for a sample of 

size N: 
 
[∂

x
R(N)/∂N

x
] = (-1)

(x-1)
 fx /CN, x                   (A1.13)  

 
with [∂

x
R(N)/∂N

x
] as the x

th
 derivative of  R(N) with respect to N, at point N and CN, x = N!/(N-x)!/x! (since 

the number of recorded species R(N) is equal to the total species richness S minus the expected 
number of missed species Δ(N)).  
 
As above, equation (A1.13) simplifies in practice as: 
 
∂

x
R(N)/∂N

x
  =  (– 1)

(x-1) 
(x!/N

x
) fx(N)                   (A1.14) 

 
Equation (A1.13) makes quantitatively explicit the dependence of the shape of the                                  
species accumulation curve (expressed by the series of the successive derivatives [∂

x
R(N)/∂N

x
] of 

R(N)) upon the shape of the distribution of species abundances in the sampled assemblage of 
species. 
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A2 An alternative derivation of the relationship between ∂xR(N)/∂N
x and fx(N) 

 
Consider a sample of size N (N individuals collected) extracted from an assemblage of S species and 
let Gi be the group comprising those species collected i-times and fi(N) their number in Gi. The number 
of collected individuals in group Gi is thus i.fi(N), that is a proportion i.fi(N)/N of all individuals collected in 
the sample. Now, each newly collected individual will either belong to a new species (probability 1.f1/N 
= f1/N) or to an already collected species (probability 1– f1/N), according to [8]. In the latter                         
case, the proportion i.fi(N)/N of individuals within the group Gi accounts for the probability that the 
newly collected individual will contribute to increase by one the number of species that belong to the 
group Gi (that is will generate a transition [i-1 → i] under which the species to which it belongs                    
leaves the group Gi-1 to join the group Gi). Likewise, the probability that the newly collected individual 
will contribute to reduce by one the number of species that belong to the group G i (that is will generate 
a transition [i → i+1] under which the species leaves the group G i to join the group Gi+1) is 
(i+1).fi+1(N)/N. 
 
Accordingly, for i > 1: 
 
 ∂fi(N)/∂N  =  [i.fi(N)/N – (i+1).fi+1(N)/N](1 – f1/N)    (A2.0) 
 
Leaving aside the very beginning of sampling, and thus considering values of sample size N 
substantially higher than f1, it comes: 
 
                   ∂fi(N)/∂N  =  i.fi(N)/N – (i+1).fi+1(N)/N                 (A2.1) 
 
Let consider now the Species Accumulation Curve R(N), that is the number R(N) of species that have 
been recorded in a sample of size N. The probability that a newly collected individual belongs to a still 
unrecorded species corresponds to the probability of the transition [0 → 1], equal to i.f i(N)/N with i = 1, 
that is: f1(N)/N (as already mentioned).  
 
Accordingly, the first derivative of the Species Accumulation Curve R(N) at point N is   
 
∂R(N)/∂N = f1(N)/N                             (A2.2) 
 
In turn, as f1(N) = N.∂R(N)/∂N (from equation (A2.2)) it comes:                       
        
∂f1(N)/∂N = ∂[N(∂R(N)/∂N)]/∂N = N(∂

2
R(N)/∂N

2
) + ∂R(N)/∂N 

 
On the other hand, according to equation (A2.1):  
 
∂f1(N)/∂N = 1.f1(N)/N – 2.f2(N)/N  =  f1(N)/N – 2f2(N)/N,  
 
and  
 
therefore: 
 
N(∂

2
R(N)/∂N

2
) + ∂R(N)/∂N =  f1(N)/N – 2f2(N)/N 

 
And as ∂R(N)/∂N = f1(N)/N according to equation (A2.2): 
 
∂

2
R(N)/∂N

2
  =  – 2f2(N)/N

2
                       (A2.3) 

 
Likewise, as f2(N) = –N

2
/2.(∂

2
R(N)/∂N

2
), it comes: 

 
∂f2(N)/∂N  =  ∂[–N

2
/2.(∂

2
R(N)/∂N

2
)]/∂N  =  – N(∂

2
R(N)/∂N

2
) – N

2
/2.(∂

3
R(N)/∂N

3
) 

 
As ∂f2(N)/∂N = 2f2(N)/N – 3f3(N)/N,  according to equation (A2.1), it comes: 
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– N(∂
2
R(N) /∂N

2
) – N

2
/2.(∂

3
R(N)/∂N

3
) = 2f2(N)/N – 3f3(N)/N 

 
and as ∂

2
R(N)/∂N

2
 = – 2f2(N)/N

2
, according to equation (A2.3), it comes: 

 
∂

3
R(N)/∂N

3
  =  + 6f3(N)/N

3
                       (A2.4) 

 
More generally: 
 
∂

x
R(N)/∂N

x
  =  (– 1)

(x-1) 
(x!/N

x
) fx(N)                   (A2.5) 
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