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Workforce scheduling process consists of three major phases: workload prediction, shift generation, and staff rostering. Shift
generation is the process of transforming the determined workload into shifts as accurately as possible. )e Shift Minimization
Personnel Task Scheduling Problem (SMPTSP) is a problem in which a set of tasks with fixed start and finish times must be
allocated to a heterogeneous workforce. We show that the presented three-phase metaheuristic can successfully solve the most
challenging SMPTSP benchmark instances. )e metaheuristic was able to solve 44 of the 47 instances to optimality. )e
metaheuristic produced the best overall results compared to the previously published methods.)e results were generated as a by-
product when solving a more complicated General Task-based Shift Generation Problem. )e metaheuristic generated com-
parable results to the methods using commercial MILP solvers as part of the solution process.)e presentedmethod is suitable for
application in large real-world scenarios. Application areas include cleaning, home care, guarding, manufacturing, and delivery
of goods.

1. Introduction

Workforce scheduling process consists of three major
phases: workload prediction, shift generation, and staff
rostering (see, e.g., [1]). Workload prediction is the phase of
determining the workload based on known and predicted
events. Shift generation is the process of transforming the
determined workload into shifts as accurately as possible.
)e generated shifts form an input for the staff rostering
phase, where employees are assigned to the shifts.

From the practical point of view, the workforce
scheduling process relies on both optimization resources
and human resources. It links the organization together,
optimizing processes and streamlining decision-making. A
shift scheduler should consider legal as well as human as-
pects of shift work. From an employee perspective, shift
work is associated with pressure on social and family life,
health issues, motivation, and loyalty. When the input data
for the shift generation and for the staff rostering are well
validated, significant benefits in financial efficiency and

employee satisfaction can be achieved by applying relevant
optimization methods. A good literature review of work-
force scheduling can be found in [2].

)e shift generation phase creates a shift structure
including the tasks to be carried out in the shifts, the timing
of the tasks and breaks, and the skills required in the shifts.
)e generation of shifts is based on either the varying
number of required employees working during the plan-
ning horizon or the tasks that the shifts must cover. We call
these employee-based and task-based shift generation
problems.

)e main contributions of this paper are the following:

(i) )e presented three-phase metaheuristic can suc-
cessfully solve the most challenging SMPTSP
benchmark instances

(ii) )e metaheuristic was able to solve 44 of the 47
instances to optimality

(iii) )e metaheuristic produced the best overall results
compared to the previously published methods
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(iv) )e metaheuristic generates comparable results to
the methods using commercial MILP solvers as part
of the solution process

(v) )e results can be reached when solving a more
complicated General Task-based Shift Generation
Problem

)e paper is organized as follows: first, we describe the
Shift Minimization Personnel Task Scheduling Problem and
the General Task-based Shift Generation Problem. )en, we
introduce the set of most challenging benchmark instances
for SMPTSP.We describe the three-phase metaheuristic that
we have used to solve a wide variety of combinatorial
problems. Lastly, we present our computational results and
compare them to the best-known results.

1.1. Related Work. )e first major contribution for the
employee-based shift generation problem was the study by
Musliu et al. [3]. )ey introduced a problem in which the
workforce requirements for a certain period were given,
along with constraints about the possible start times and the
length of shifts, and an upper limit for the average number of
duties per week per employee. Di Gaspero et al. [4] proposed
an employee-based problem in which the most important
issue was to minimize the number of different kinds of shifts
used. Application areas of employee-based shift generation
include hospitals, retail stores, and call centers, where the
number of employees required at certain timeslots can be
predicted from the arrival times of customers.

In the task-based shift generation problem, the goal is to
create shifts and assign tasks to these shifts so that the
employees can be assigned to the shifts. Application areas
include cleaning, home care, guarding, manufacturing, and
delivery of goods. )e first major contribution of the task-
based problem was the study by Dowling et al. [5]. )ey
created a master roster, a collection of working shifts, and off
shifts, and then allocated a set of tasks to personnel with the
requisite skills who are available for work on that day. Valls
et al. [6] presented a model where they minimized the
number of workers required to perform amachine load plan.
Later, Krishnamoorthy and Ernst [7] introduced a similar
group of problems, which they called Personnel Task
Scheduling Problems (PTSPs). Given the staff that are
rostered on a particular day, the PTSP is to allocate each
individual task, with specified start and end times, to
available staff who have skills to perform the task.

Subsequently, Krishnamoorthy et al. [8] introduced a
special case referred to as Shift Minimization Personnel Task
Scheduling Problem (SMPTSP) in which the only cost in-
curred is due to the number of personnel (shifts) that are
used. Nurmi et al. [9] defined the General Task-based Shift
Generation Problem (GTSGP) in which the task is to create
anonymous shifts and assign tasks to these shifts so that
employees can be assigned to the shifts.

2. Materials and Methods

2.1. Problem Description. )e Shift Minimization Personnel
Task Scheduling Problem (SMPTSP) consists of assigning a

set of tasks with specific start and end times to employees
who have specific skill sets and availability intervals. )e
objective is to find a feasible assignment of all the tasks that
minimizes the number of employees used. )e objective is
motivated by situations where a large pool of casual em-
ployees is available and management would like to minimize
the pool usage.

SMPTSP can be defined formally as follows. A set of
tasks J� {t1, . . ., tn} needs to be allocated to a set of het-
erogeneous employees E� {e1, . . ., em} over a specified
planning horizon. )e processing time interval at which a
task t has to be carried out is determined by a timetable with
fixed start time st and finish time ft. Each employee e has a set
of tasks Je⊆ J that e can carry out. Each task t has a set of
employees Et⊆E that can carry t. All sets Je and Et are defined
based on skills of employees/skill requirements of tasks and
availability of employees/time windows of tasks. )e ob-
jective is to minimize the number of employees required to
carry out the given set of tasks. )e mathematical formu-
lation of the problem was first given in [8].

Figure 1 shows a simplified instance of SMPTSP. )e
instance and the presented solution have the following
characteristics:

(i) )e planning period is divided into 18 timeslots
(ii) )e number of tasks is fourteen and the number of

employees is seven (indicated by letters from A to
G)

(iii) )e duration of the tasks is given by the length of
the corresponding rectangles

(iv) )e employees able to carry out a task are indicated
in the rectangles

(v) )e colors indicate which tasks belong to the same
shift

(vi) )e number of employees used to carry out the
shifts is six

(vii) An employee carrying out a task is denoted by
parentheses (employee G has no tasks)

)e following basic assumptions for SMPTSP hold:

(A1) Preemption of tasks is not allowed
(A2) )ere are no precedence constraints among the
tasks
(A3) Each task is processed exactly once without
interruption
(A4) Each employee can execute at most one task at a
time

)e General Task-based Shift Generation Problem
(GTSGP) is to create anonymous shifts and assign tasks to
these shifts so that employees can be assigned to the shifts.
Instead of minimizing the number of employees required
to carry out the given set of tasks, the objective is to
maximize the number of feasible (shift, employee) pairs. A
pair (s, e) is considered feasible if employee e can carry out
shift s. )e mathematical formulation of the problem was
first given in [10].
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)e motivation for GTSGP derives from the workforce
scheduling process. In the shift generation phase, we should
create as versatile shifts as possible to ensure that the ros-
tering of the staff can be completed. We should ensure that
the resulting set of shifts can be carried out by the employees;
that is, each shift can be assigned to an employee s.t. all shifts
are assigned to someone and no employee is assigned to
multiple shifts. In practical applications of GTSGP, the full-
time permanent and temporary employees are expected to
cover 100% of the total workload.)is is opposite to the idea
behind SMPTSP.

SMPTSP is a considerably simplified version of the
GTSGP. Nonetheless, as Kroon et al. showed in [11],
SMPTSP is NP-hard in the strong sense, even if preemption
of tasks is allowed (A1). GTSGP has the same assumptions as
SMPTSP besides (A2). GTSGP differs from SMPTSP in
several important ways:

(B1) Tasks are not explicitly assigned to employees
(B2) Tasks are not fixed in time
(B3) Tasks may have shift-local precedence constraints
(B4) Transition times between tasks are considered
(B5) Employees have total working time restrictions
(B6) Employees have availability restrictions

To the best of our knowledge, eight significant and notable
solution methods have been designed to tackle the problem.
Krishnamoorthy et al. [8] used a Lagrangian approach to solve
large instances of SMPSTP. )ey relaxed the task assignment
constraints and used the deviations in the objective function
with Lagrange coefficients, then solved each worker’s problem
independently. Lin and Ying [12] developed a three-phase
heuristic for SMPTSP. )ey obtained an initial solution using
a simple but very effective construction heuristic, which is
then improved using an iterated greedy heuristic, which in

turn is used as an initial upper bound while solving the MIP
model of the problem. )e experimental results underlined
the superiority of the proposed algorithm over the Krish-
namoorthy et al. algorithm.

Smet et al. [13] used a 2-phase constructive meta-
heuristic approach. In phase one, they used three con-
structive heuristic methods, and in phase two, they used a
hybrid search and optimization method. )eir method was
the first one to solve all the instances of the first SMPTSP
benchmark set (see the next subsection) to optimality. )e
authors stated that their novel algorithm holds the state of
the art for the SMPTSP. Fages and Lapegue [14] used
constraint programming with both a top-down and a
bottom-up approach. )eir extensive experiments showed
that their contribution significantly improved a straight-
forward SMPTSP model, so that it competed with the best-
known approaches.

Baatar et al. [15] developed a branch and bound scheme,
which was used in conjunction with two column generation-
based approaches and a heuristic algorithm to create an
efficient solution procedure. )e authors demonstrated that
their approach performs better than just using a standard
commercial MILP solver (CPLEX). Hojati [16] proposed a
novel greedy heuristic for SMPTSP. )e results showed that
the heuristic performs well relative to the current solution
methods and has the added advantage of being able to solve
very large instances fast. )e author noted that his method
requires no commercial MILP solver as the other methods
described earlier. Niraj Ramesh et al. [17] solved the problem
by decomposing it into separate subproblems and developed
several exact and heuristic methods to solve the resulting
subproblems. )e authors stated that even though they
proved interesting theoretical results, their methods fulfilled
the expectations practically by easily surpassing other
comparable exact methods.
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Figure 1: A simplified instance of SMPTSP and a feasible solution to the instance.)e letters indicate employees able to carry out a task. An
employee assigned to carry out a task is denoted by parentheses (employee G has no tasks). )e colors indicate generated shifts.
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Chirayil Chandrasekharan et al. [18] improved the
metaheuristic introduced in [12] and presented a decom-
position-based method where subproblems are solved to
optimality using exact techniques. )e optimal solutions of
subproblems are subsequently utilized to construct a feasible
solution for the entire problem. )e new features not only
improved solution quality, but they also played a pivotal role
in improving the scalability of the algorithm. )e authors
state that the method is suitable for application in large real-
world scenarios. )eir method was the first one to solve all
the instances of the second SMPTSP benchmark set (see the
next subsection) to optimality. Furthermore, they were able
to produce optimal solutions to almost all the instances from
the third SMPTSP benchmark set (see the next subsection).

Currently, only one solution method has been published
for the General Task-based Shift Generation Problem. )e
problem was only recently introduced in Nurmi et al. [9].
)e authors used the PEAST metaheuristic to solve the
GTSGP test instances introduced in [10]. We will give in-
sight into the metaheuristic in )e )ree-Phase Meta-
heuristic section.

2.2. SMPTSP Benchmark Instances. To the best of our
knowledge, no real-world benchmark instances for SMPTSP
have been published. )us far, three sets of artificial
benchmark instances have been published. Krishnamoorthy
et al. [8] presented the first data set of 137 instances for
SMPTSP. )e data set is referred to as KEB instances. )e
instances were generated by five characteristics: number of
employees, number of tasks, lengths of the tasks, tightness
level, and multiskilling level. )e tightness level is defined as
the total length of all tasks as a percentage of the total
availability of all employees. When this level is 100%, the
tasks could cover exactly the timeslots available for the
employees. )e multiskilling level is defined as the average
percentage of the total number of tasks each employee is
qualified for. When this level is 100%, each employee can
carry out all tasks. From now on, we will call the multis-
killing level as the task skill level. )e number of employees
in the KEB data set ranges from 22 to 422, while the number
of tasks ranges from 40 to 2105. )e shift lengths are fixed to
1440. )e lengths of the tasks vary between 50 and 400. )e
tightness level is fixed to about 90%, and the skill level is
either 33% or 66%.

Smet et al. [13] generated the second data set of ten in-
stances, because they were able to solve all the KEB instances to
optimality. )e data set is referred to as SWMB instances. )e
number of employees ranges from 44 to 153, while the number
of tasks ranges from 258 to 1577. )e shift lengths are fixed to
1440. )e length of the tasks is either 120 or 280. )e tightness
level is fixed to about 90%, and the skill level is either 20% or
30%. Fages and Lapègue [14] generated the third data set of 100
instances, since the KEB and SWMB instances are trivial with
respect to finding good-quality lower bounds. )is data set is
referred to as FL instances. )e number of employees ranges
from 62 to 948, while the number of tasks ranges from 71 to
1583.)e shift lengths are fixed to 1560.)e length of the task is
either 120 or 280. )e tightness level is fixed to about 90%, and

the skill level is fixed to about 25%. A good summary of the
three data sets can be found in [16].

In the interest of brevity, we will not solve all the 247
instances from the three data sets. Some of the instances are
easy to solve, andmost of the eight methods described earlier
in this section perform well on most of the instances. We
next determine 47 of the most challenging instances of the
three data sets as follows:

KEB: the VAWA heuristic of Krishnamoorthy et al. [8]
was not able to find the optimum solution, and the
solution obtained by the constructive heuristic of Lin
and Ying [12] was at least 5% inferior to the optimum
solution totaling 14 of the 137 instances.
SWMB: all the 10 instances.
FL: the greedy heuristic of Hojati [16] was not able to
find the optimum solution, or the solution obtained by
the constraint programming approach of Fages and
Lapègue [14] was at least 3% inferior to the optimum
solution totaling 23 of the 100 instances.

Tables 1–3 show the characteristics of the selected in-
stances. In addition to the tightness and skill levels, we define
five other hardness indicators.)e @AVGmeasure indicates
the estimated average number of tasks per nonempty shift.
)e number of tasks is divided by a lower bound for the
minimum number of shifts. For the lower bounds, we use
the values published in [16] using the general lower
bounding procedure by Solyali [19]. In addition to the task
skill level, we define the shift skill level which describes how
qualified an average employee is to carry out all the tasks of
an average shift, i.e., tsl ∗ n/lb, where tsl� task skill level,
n� number of tasks, and lb� Solyali lower bound. )e
overlap level is the probability of two tasks to overlap. To
calculate the probability, we need to iterate all task pairs
once.

)e %ICH measure indicates the percentage of the tasks
feasibly assigned by the iterated constructive heuristic de-
scribed in )e )ree-Phase Metaheuristic section. )e
heuristic maximizes the number of feasible (shift and em-
ployee) pairs, i.e., solving the GTSGP problem, as described
earlier. )e @PAIRS measure indicates an estimation of the
average number of feasible pairs per nonempty shift. )e
number of feasible pairs generated by the iterated con-
structive heuristic is divided by the Solyali lower bound.
Note that the GTSGP solution generated by the heuristic is
quite far from the optimum.)e values shown for %ICH and
@PAIRS are the best of ten runs.

Recall that we have selected to solve the most challenging
instances. )e following observations can be drawn from the
characteristics of the instances:

(i) FL instances have fewer tasks per shift than in most
of the other instances. Partly due to this, also the
shift skill levels of FL instances are higher. )ese
should make them easier to solve.

(ii) )e tightness levels of FL instances are lower than
in the other instances. )is should make them
easier to solve.
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Table 1: )e characteristics of the 14 KEB instances.

KEB# Opt #Emps #Tasks @AVG Tightness level Task skill level Shift skill level Overlap level %ICH @PAIRS
9 40 49 104 2.6 89.9 35.0 6.52 57.3 98.1 4.15
11 20 24 119 6.0 90.0 36.2 0.24 26.0 96.6 0.90
45 60 67 420 7.0 90.0 33.9 0.05 24.1 97.9 0.92
59 59 70 525 8.9 91.4 34.4 0.01 19.4 96.8 0.83
75 60 72 665 11.1 90.0 34.2 0.001 15.4 98.2 0.88
77 160 180 688 4.3 90.0 33.4 0.87 36.8 99.0 2.77
79 80 94 689 8.6 90.1 33.6 0.01 19.8 99.4 0.99
80 99 112 691 7.0 90.9 33.8 0.05 24.4 99.4 1.03
89 70 88 788 11.3 90.1 34.0 0.001 15.3 98.6 0.86
94 80 93 881 11.0 90.0 33.8 0.001 15.6 98.9 0.89
98 80 91 896 11.2 90.0 34.2 0.001 15.3 99.2 0.94
106 100 121 1096 11.0 90.0 33.3 0.001 15.6 99.7 0.96
107 100 114 1112 11.1 90.0 33.7 0.001 15.4 99.8 0.96
108 128 162 1115 8.7 91.4 33.6 0.008 19.9 99.5 1.00
)ree bold values on a row indicate a hard instance.

Table 2: )e characteristics of the 10 SWMB instances.

SWMB# Opt #Emps #Tasks @AVG Tightness level Task skill level Shift skill level Overlap level %ICH @PAIRS
1 40 50 258 6.5 89.6 19.5 0.003 25.6 91.9 0.63
2 40 44 510 12.4 87.6 19.6 0.000 13.3 93.5 0.58
3 77 102 525 6.8 93.5 30.0 0.027 25.4 96.8 0.92
4 98 113 647 6.6 91.7 20.0 0.002 25.7 96.4 0.86
5 59 77 777 13.2 91.5 29.7 0.000 13.2 96.4 0.85
6 116 135 777 6.7 92.9 19.9 0.002 25.8 96.3 1.68
7 59 70 781 12.8 88.5 19.9 0.000 13.1 95.0 0.64
8 79 88 1022 12.8 90.0 19.9 0.000 12.8 96.0 0.65
9 98 125 1308 13.2 90.9 19.8 0.000 13.2 96.5 0.75
10 116 153 1577 13.6 93.1 19.9 0.000 13.6 95.8 0.66
)ree bold values on a row indicate a hard instance.

Table 3: )e characteristics of the 23 FL instances.

FL# Opt (LB∗) #Emps #Tasks @AVG Tightness level Task skill level Shift skill level Overlap level %ICH @PAIRS
5 30∗ 81 110 3.7 17.8 26.4 0.76 10.5 98.2 87.0
28 105 262 402 3.8 19.1 26.0 0.58 11.0 99.5 31.7
29 95 248 355 3.7 18.5 28.3 0.90 11.6 100 39.7
31 116 290 488 4.2 21.0 25.7 0.33 10.4 97.7 32.0
33 132 338 534 4.0 20.3 25.7 0.41 10.8 99.4 35.1
35 118 308 469 4.0 19.8 26.6 0.52 11.1 99.4 37.3
39 108 284 446 4.1 19.8 25.7 0.36 10.6 98.4 29.9
45 144 376 586 4.1 20.5 27.0 0.49 11.4 99.7 50.8
46 157 409 635 4.0 20.2 26.6 0.47 11.2 99.4 46.1
54 190 498 850 4.5 22.5 25.8 0.23 10.7 96.8 48.0
60 173 443 783 4.5 21.9 27.0 0.27 10.7 98.6 46.3
61 222 551 891 4.0 20.0 26.3 0.47 11.0 98.2 66.2
62 262 610 1096 4.2 20.8 25.5 0.33 10.2 99.0 64.8
63 203 524 905 4.5 21.9 26.5 0.27 11.1 98.1 56.4
64 140 366 570 4.1 20.2 26.2 0.43 11.0 99.1 43.8
68 219 561 958 4.4 21.4 27.3 0.35 11.0 99.3 66.0
69 211 550 891 4.2 21.1 26.1 0.34 10.8 99.3 62.8
77 248 648 1123 4.5 22.1 26.6 0.25 10.7 98.4 69.7
79 246 638 1052 4.3 21.0 26.3 0.33 10.8 99.4 74.1
80 222 578 885 4.0 19.6 27.0 0.54 11.2 99.5 77.5
84 247 644 1121 4.5 21.9 26.1 0.22 10.4 99.2 68.4
89 319∗ 790 1371 4.3 21.0 25.6 0.29 10.5 99.6 82.3
94 313 812 1394 4.5 21.9 25.7 0.24 10.6 98.3 78.1
)ree bold values on a row indicate a hard instance.
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(iii) About half of KEB and SWMB instances have high
overlap levels, which should make them easier to
solve.

(iv) )e percentage of the tasks feasibly assigned by the
iterated constructive heuristic (%ICH) is lower for
SWMB instances, which could make them harder to
solve. KEB and FL instances seem to be equally easy
(or hard) to solve in this sense.

(v) FL instances are very similar to each other. )is
should make them equally hard (or easy) to solve.

According to the @PAIRS value, barely one employee is
skilled to carry out each shift in KEB and SWMB instances.
For FL instances, the generated solution will be such that
quite many employees may carry out several shifts. )is
could make FL instances easier to solve.

2.3. +e +ree-Phase Metaheuristic. We have created the
PEAST metaheuristic (see, e.g., [20]) to solve real-world
scheduling problems. )e metaheuristic has been in com-
mercial use for several years, for example, in staff rostering
and in professional sports league scheduling. Furthermore,
we have used it to solve more academic problems, such as
balanced incomplete block design, single round robin
tournaments with balanced home-away assignments and
preassignments, days-off scheduling, and constraint mini-
mum break problems. However, it should be clear that even
though a metaheuristic can be powerful for several problem
types, it is not guaranteed to work well for other problem
types. )e No Free Lunch )eorem [21] implies that there
cannot exist a superior optimization method.

Recently, we have started to work with a new real-world
problem, which is an application of GTSGP. As part of this
process, we have created a solution method suitable for
commercial use. )e method is based on the PEAST met-
aheuristic. In all the previous adoptions of PEAST, we have
used random initial solutions. We have found no evidence
that a sophisticated initial solution improves results. On the
contrary, random initial solutions seem to yield superior or
at least as good results. However, due to the running time
requirements, PEAST alone is too slow for the largest
practical instances of GTSGP. We need a fast heuristic to
generate very good initial solutions. Note that not reaching
the best possible (academic) solution is not an issue in
practical applications of GTSGP. After the optimization
process, new tasks may arise and some of the tasks may need
to be changed or removed.

We generate an initial solution using a simple ruin and
recreate heuristic (RRH) similar to that described in [22].
)e pseudocode is given in Figure 2. )e ruin operator
removes strings of adjacent tasks of random length from the
solution. All tasks assigned to the incumbent solution are
processed in random order. For each task t, a random string
that contains t is removed unless the shift containing t has
already been removed. When the total number of removed
tasks exceeds the given parameter, the ruin operator quits.
)e recreate operator adds free tasks one by one to their
respective best positions in the incumbent solution. First, all

free tasks are sorted in random order. For each task t, all
feasible addition positions in the incumbent solution are
evaluated. Note that the concept of a position depends on the
exact problem.

For GTSGP, a position is determined by an immediate
predecessor, e.g., a task or an employee. Note that the tasks
can have wide time windows in GTSGP; hence, the order of
tasks within a shift is not predetermined. In SMPTSP, there
are no time windows, which fixes the order of tasks within a
shift. Task t is then added to the position that leads to the best
objective function value, with a small chance to skip over to
the next best position. Consecutive skipping is not con-
strained in any way, so tmight not get assigned even if it has
feasible addition positions. When all free tasks have been
processed, the recreate operator quits.

We further speed up the overall running time by gen-
erating an initial solution to the ruin and recreate heuristic.
Initial solutions are generated by using a very fast iterated
constructive heuristic (ICH) based on the ideas presented in
[12].)e pseudocode is given in Figures 3(a) and 3(b).)is is
the heuristic referred in )e )ree-Phase Metaheuristic

round ← 0, bestSol ← null
while round < f do

storedSol ← currentSol 
seed ← random task from T 
sm ← maximum number of shi�s to ruin 
tm ← maximum number of tasks to ruin per shi� 
tasks ← list of all tasks in random order 
T′ = ∅
for t ∈ tasks

if t ∉ T′

l ← U (1, min(|S (t)|, tm))
Remove a random string of l tasks from S(t) 
Update ruin quota 
T′ ← T′ ∪ t

end if 
if ruin quota is full 

break
end if 

end for 
tasks ← list of all unassigned tasks in random order 
for t ∈ tasks

P ← all spots in all current shi�s where adding t is
feasible in worsening order of objective 

for p ∈ P
if U (1, 100) ≥ lowLevelSkipChance 

Add task t to spot p
break 

end if 
end for

end for
Update bestSol if necessary
if U (1, 100) ≤ highLevelSkipChance 

currentSol ← storedSol
end if
round ← round + 1

end while 

Figure 2: )e pseudocode of the ruin and recreate heuristic.
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section when calculating the %ICH measure. )e heuristic
assigns the unassigned tasks one by one to an assignable shift
until all tasks have been considered (STEP 3). When trying
to assign a task, we choose the shift with no employee and
task conflicts and with the largest total cumulative pro-
cessing time. A reassignment procedure (STEP 5) is re-
peatedly applied to allocate each unassigned task of to a shift
until all tasks have been assigned or cycling exists. When
trying to assign task t, we choose shift s with no employee
conflicts and with the least total cumulative processing time

with the tasks that are currently in conflict with task t. To
reassign task t to shift s, we remove all tasks in shift s that
conflict with task t.

)e PEAST metaheuristic tries to improve the solution
generated by the ruin and recreate heuristic (and the iterated
constructive heuristic). In practical applications of GTSGP,
the PEAST metaheuristic

(i) generates as versatile shifts as possible to

STEP 0 
Set T = set of tasks tij, where i denotes the task index and j runs through 

all the possible start times of the task i
Set rij = false, for each task in T (restricted tasks) 
Set n = number of tasks (task indexes) 
Set ai = true, for each task i (assignable task indexes)
Set number of restricted iterations rmax = number of employees 
Set di = duration of task i 
Set number of assigned tasks m = 0 
Set maximum number of assigned tasks mmax = 0 

STEP 1 
Set TaskPairwiseConflict (tij, tkl) = true, if tasks tij and tkl overlap in time;

otherwise set to false 
Set TaskConflict (tij, s) = true, if task tij has a pairwise conflict with at 

least one of the tasks currently in the shift s; otherwise set to false 
Set EmployeeConflict (tij, s) = true, if the employee s is not skilled 

for task tij; otherwise set to false 

STEP 2 
Sort tasks in T by ascending start time, time window and task index 

STEP 3 
For each task tij in T, where ai = true

InsertToBestShift (tij) 

STEP 4 
If m = n, STOP 
If cycle occurred, i.e. the same tasks and start times have been assigned

to the shifts, Goto STEP 7 

STEP 5 
For each task tij in T , where ai = true and rij = false 

MoveToAnotherShift (tij) 
If task tij has been processed at this step more than rmax times,

set rij = true

STEP 6 
Set rij = false, for each task in T, if at least one of the tasks has been 

restricted more than rmax iterations 
Goto STEP 3 

STEP 7 
Set left over tasks to random shifts and random (feasible) start times

(a)

InsertToBestShift (tij) 

Process the shifts in random order 
Choose the shift s for which 

EmployeeConflict(tij, s) = false and 
TaskConflict(tij, s) = false and 
Σdk = max, where task k € s

If such shift can be found 
Insert task tij to shift s 
Set ai = false 
Set m = m + 1 
If m > mmax, save the current solution and update mmax

MoveToAnotherShift (tij) 
Process the shifts in random order 
Choose the shift s for which 

EmployeeConflict (tij, s) = false and 
Σdk = min, where task k € s and TaskPairwiseConflict(tij, tk∗) = true 

If such shift can be found 
For each task tkl for which TaskPairwiseConflict(tij, tkl) = true 

Remove the task k from shift s and set ak = true 
Set m = m – 1 

Insert task tij to shift s 
Set ai = false 
Set m = m + 1

(b)

Figure 3: (a), (b) )e pseudocode of the iterated construction heuristic.
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(ii) ensure that the rostering of the staff can be com-
pleted, so that

(iii) the computation time is still acceptable considering
the release time of the rosters.

)erefore, we do not seek the fastest possible solution
method. For our purposes, it is advantageous to use more
computation time in order to achieve shifts that are more
versatile.

)e pseudocode of the PEASTmetaheuristic is given in
Figure 4. We have created PEASTP (see, e.g., [20]) by
combining features from six well-known metaheuristics:
MH1, genetic algorithm; MH2, ejection chain method;
MH3, tabu search; MH4, simulated annealing; MH5, vari-
able neighbourhood search;MH6, ruin and recreate method.

)e performance of these metaheuristics has been sci-
entifically justified, and a significant number of experimental
studies have been run at the algorithmic level. )ey have
indisputably introduced true novelties to the repertoire of
optimization methods. By combining and carefully tuning
the most efficient operators of the scientifically valid met-
aheuristics, an experienced heuristic designer can solve real-
life optimization problems efficiently. As stated at the be-
ginning of the section, there is evidence that PEAST can
successfully solve different problem domains. To the best of
our knowledge, no other method combines metaheuristic
features such as in PEAST.

PEASTP uses a population of solutions in each iteration
(MH1). )e reproduction operation is, to a certain extent,
based on steady-state reproduction: the new solution re-
places the old one if it has a better or equal objective function
value. Furthermore, the worst solution is replaced with the
best one at given intervals, i.e., elitism is used. )e ejection
chain search is the heart of PEASTP. It explores promising
areas in the search space. )e ejection chain search (MH2)
extends a basic hill-climbing step to generate a sequence of
moves in one step, leading from one solution candidate to
another. )e ejection operator actually implements several
simple local search operators to work on a single solution
(MH1).

)e ejection chain search is improved by introducing a
tabu list, which prevents reverse order moves in the same
sequence of moves (MH3). A simulated annealing refine-
ment is used to decide whether to commit to a sequence of
moves in the ejection chain search (MH4).)is refinement is
different from the standard simulated annealing. It is used in
a three-fold manner. )e simulated annealing refinement
and tabu search are used to avoid staying stuck in promising
search areas too long. Shuffling operators assist in escaping
from local optima. )ey are used to perturb a solution into a
potentially worse solution in order to escape from local
optima (MH5). A shuffling followed by several ejection
chain searches obtains better solutions using the same idea
as the ruin and recreate method (MH6).

PEASTuses a population of solutions in each iteration. A
new solution instantly replaces an old one if it has a better or
equal objective function value. Furthermore, the worst so-
lution is replaced with the best one at given intervals, i.e.,
elitism is used. PEAST uses a traditional penalty method,

which assigns positive weights (penalties) to the hard and
soft constraints and sums the violation scores to get a single
value to be optimized.)e soft constraints are assigned fixed
weights according to their significance. However, the hard
constraints are assigned dynamic weights using a unique
ADAGEN method described in [20].

Each of the five metaheuristic components in PEAST is
crucial to produce good-quality solutions. )is was verified
for three different problem domains in [20]. Recently, the
results in solving GTSGP instances [10] showed that when
any one of the components was removed, the results were
clearly worse. )e same held even if PEAST was given twice
as much time to run without one of the components.

)e implementation of PEAST has changed so distinctly
that we call the new version PEASTP. )e data structures
have been recoded, and the calculation of the cost function
in ejection chain search has been renewed. )e modifica-
tions have enabled us to parallelize PEAST (hence PEASTP),
which in turn enables us to solve problem instances far larger
than before. Nonetheless, we cannot use random initial
solutions when solving practical GTSGP instances.

3. Results and Discussion

)is section presents our computational results for SMPTSP
benchmark instances introduced in the previous section.)e
results are juxtaposed against the results of all other recent
SMPTSP solution methods known to us. Recall that we solve
the instances as GTSGP instances and that SMPTSP is a
considerably simplified version of GTSGP. As a result, we
are not only optimizing the minimum number of shifts, but
also at the same time generating as versatile shifts as possible.
)at is to say, we generate the SMPTSP results as a by-
product when solving a more complicated General Task-
based Shift Generation Problem. Due to the goal of this
paper, we only present our SMPTSP results here, and not the
actual GTSGP results. We used the same version of PEAST
that was used when solving the GTSGP instances in [10]. We
used no domain-specific knowledge to generate better so-
lutions, nor did we do any parameter fine-tuning. In fact, we
used the same version that is in commercial use for staff
rostering and sports scheduling. )e parameter values have
been verified in several earlier implementations and appli-
cations of PEAST, see, e.g., the very detailed experiments in
[20].

Table 4 shows the summary of the published results of
the eight solution methods described in the previous section.
)ree of the solution methods are purely heuristic methods:
K10 [8], LY14 [12], and H18 [16]. Our results are shown in
column NK20. )e five other methods use commercial
MILP solvers as part of the solution process: S14 [19], FL13
[14], B15 [15], R18 [17], and C20 [18]. Table 5 shows the
detailed results.

Chirayil Chandrasekharan et al. [18] noted that FL in-
stances were unavailable when S14 method was published
and that a summary of the S14 results was obtained upon
request.)e authors provided us the instance-specific results
of the S14 method for FL instances.
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As was explained earlier, we run our metaheuristic using
as much computation time as practicably possible. For
practical GTSGP applications, this could be several hours
depending on the length of the planning period and on the
number of processors and cores available for the compu-
tation. We ran our metaheuristic for eight hours for each of
the benchmark instances. )e calculation was not inter-
rupted when the optimum SMPTSP value was reached since
we were solving the GTSGP problem. To achieve the best
possible GTSGP solution, we needed to use the entire cal-
culation time for each instance. )e test runs were carried
out on a standard laptop, Intel Core i7-8550 at 1.8GHz with
8GB RAM running Windows 10.

)e results show that our three-phase metaheuristic can
successfully solve the most challenging SMPTSP benchmark
instances. Another observation is that our metaheuristic
generates comparable results to the methods using com-
mercial MILP solvers as part of the solution process. We can
also state that our metaheuristic produced the best overall
results compared to the other methods. )e metaheuristic
was able to solve 44 of the 47 instances to optimality. For two
instances, our solutions might be optimal. Only one instance
was such that our solution was inferior.

Recall that we have selected to solve the most challenging
instances. It is obvious that the number of tasks and the
number of employees have a direct influence on the hardness
of the instance, since they enlarge the search space. To be
more exact, the combinatorial search space explodes when

the average number of tasks for an employee increases.
Accordingly, Lin and Ying [12] stated that instances with
longer task lengths should be relatively easy to solve. Smet
et al. [13] noted that shorter tasks and lower task skill levels
make an instance harder to solve.

SWMB instances were generated based on these ob-
servations. Krishnamoorthy and Ernst [7] stated that the
tightness of an instance should be close to 90% to make it
challenging. FL instances were generated so that the max-
imal number of overlapping tasks does not provide a good
lower bound for an instance [14]. Furthermore, the instances
have an average more available employees per task than KEB
instances, but they use a significantly smaller percentage of
these employees in optimal solutions. )is should make an
instance more challenging. )e SWMB instances were the
only instance set where our method did not yield the best
results out of all compared methods.

)e above assumptions are in line with our reasoning
given in the previous section. Based on our test runs, we can
quite safely state that a low shift skill level, a low%ICH value,
and a low @PAIRS value indicate a hard instance. )us, the
bold values in Tables 1–3 indicate a hard instance. Note that
the bold values have been selected with respect to the other
instances in the same data set.

In general, we argue that FL instances should be quite
easy to solve, because quite many employees may carry out
several shifts. For our metaheuristic, FL instances are quite
easy to solve, excluding the instances FL#5 and FL#89. Our

Set iteration limit t, population size n,
elitism interval e, shuffling interval s and ADAGEN update interval a

Generate a random initial population of solutions Si for 1 <= i <= n
Set best_solution = null, iteration = 1 
WHILE iteration ≤ t

pop = 1 
WHILE pop <= n

Apply ejection chain search to solution Spop to get a new solution 
IF Cost (Spop) < Cost (best_solution) THEN Set best_solution = Spop
pop = pop + 1 

END WHILE 
Update simulated annealing framework 
IF round 0 (mod a) THEN Update the ADAGEN framework
IF round 0 (mod s) THEN Apply shuffling operators 
IF round
Set iteration = iteration + 1 

END WHILE 
Output best_solution

0 (mod e) THEN Replace the worst solution with the best one 

Figure 4: )e pseudocode of the PEASTP metaheuristic.

Table 4: )e summary of the nine solution methods.

# K10 LY14 S14 FL13 B15 H18 R18 C20 NK20
KEB 14 14 5 0 0 2 0 1 1 0
SWMB 10 − − 5 9 4 10 5 0 1
FL 23 − − 2∗ 16 − 15 − 4 2
Total solved 0/14 5/14 40/47 22/47 16/24 22/47 18/24 42/47 44/47

∗)e authors provided the detailed results. )e values on the colored cells denote the number of instances that were not solved to optimality (or to the lower
bound value if applicable).
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solution for these instances is one above the lower bound
value. )ese solutions were reached very easily. )erefore,
we speculate that these two instances might be such that the
lower bound value is not the optimum value. Note that the

instances were also unsolved by the Chirayil Chan-
drasekharan et al. method in [18].

)e KEB instances are easy to solve. )e instances have
the highest task skill levels. Furthermore, as is the case for FL

Table 5: )e detailed results of nine solution methods for KEB, SWMB, and FL instances.
KEB Opt K10 LY14 S 14 FL13 B15 H18 R18 C20 NK20
9 40 1 1
11 20 1
45 60 7
59 59 9
75 60 11
77 160 2
79 80 13 1
80 99 8
89 70 16
94 80 11
98 80 10 2
106 100 13 4 2
107 100 12 3 3
108 128 17 4 −
SWMB Opt K10 LY14 S14 FL13 B15 H18 R18 C20 NK20
1 40 7 1 2
2 40 1 4 4
3 77 11 1
4 98 6 2
5 59 2 −
6 116 9 1 3
7 59 2 6 5 − 1
8 79 1 7 5 −
9 98 1 7 8 3 −
10 116 2 10 10 4 −
FL Opt K10 LY14 S14 FL13 B15 H18 R18 C20 NK20
5 30 1 1 1 1 1
28 105 1
29 95 5 1
31 116 5
33 132 1
35 118 1
39 108 1
45 144 5
46 157 5
54 190 6
60 173 6
61 222 1
62 262 1
63 203 8 2
64 140 1
68 219 8 1
69 211 9
77 248 8 1 1
79 246 3 1
80 222 2 1
84 247 10
89 319 1 6 1 1 1
94 313 8 6

∗)e authors provided the detailed results. Green color indicates that the optimum value was reached. Red color denotes the difference to the optimum value
(or to the lower bound). White color indicates that results have not been published.
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instances, KEB instances have high percentage of the tasks
feasibly assigned by the iterated constructive heuristic.

We note that SWMB#7 instance is extremely hard for
our metaheuristic. We have no conclusions for this at this
time. Table 2 shows that SWMB#2 instance should be at least
as hard to solve. However, it is not that hard for our
metaheuristic. For SWMB#7 instance, in addition to the
standard setup for our metaheuristic, we tried many dif-
ferent setups for iterated construction heuristic, ruin and
recreate heuristic, and PEASTP. We even increased the
running time. Nonetheless, our run-time measures showed
that we are not even close enough to be able to solve the
instance. As a final experiment, we tried to use Gurobi to
improve our best solution. Unfortunately, we could not find
a better solution or prove the solution optimal with seven
days of computation time. Table 5 shows that as many as two
solution methods have successfully solved the instance.
Furthermore, the published results showed that the solutions
were generated fairly fast.

Finally, we registered the running time elapsed to reach
the first solution to SMPTSP while we were continuing to
reach the best possible GTSGP solution within the given
computation time. For the KEB instances, the median time
to reach the SMPTSP solution was 0.9 minutes. )e mini-
mum time was 0.001 minutes, and the maximum time was 9
minutes. For the SWMB instances, the corresponding times
were 86, 15, and 207 minutes, and for the FL instances 0.7,
0.1, and 19 minutes. )is verifies our earlier discussions that
SWMB instances should be the most challenging ones.

4. Conclusions

We presented a three-phase metaheuristic to Shift Mini-
mization Personnel Task Scheduling Problem (SMPTSP).
)e metaheuristic actually solves a more complicated
General Task-based Shift Generation Problem (GTSGP).
)e results for SMPTSP were generated as a by-product
when solving GTSGP.

In the first phase of the method, we generated a pop-
ulation of initial solutions by using a very fast iterated
constructive heuristic. In the second phase, a ruin and
recreate heuristic was used to improve the solutions. Finally,
the parallelized PEASTmetaheuristic used the population of
solutions to generate a final solution. In all the previous
adoptions of PEAST, we have used random initial solutions.
However, PEAST alone is too slow for the largest practical
instances of GTSGP. )e size of these instances is equal to
the size of the largest SMPTSP instances solved in this paper.

)e computational complexity of GTSGP and SMPTSP
instances depends mainly on the number of tasks, the
number of employees, and especially the average number of
tasks per shift. )ese values set the limit for practical use of
the PEAST method. Recall that we have only a couple of
hours to generate solutions. Our test runs have shown that
we cannot use PEAST when we have more than thousand
tasks, especially when we have several hundred of em-
ployees or the average number of tasks per shift approaches
ten. In these cases, we should only use ICH and RRH
heuristics. However, the solutions could still be acceptable

for practical applications, since after the shift generation
and staff rostering have completed, new tasks will most
certainly arise and some of the tasks need to be changed or
removed.

We solved each instance using eight hours computation
time on a standard laptop. Our test runs have shown that for
practical instances on a high-computing environment, this
corresponds to two hours. )is requires using high-perfor-
mance computers with high number of processors and cores
and with very fast memory. Two hours is acceptable con-
sidering the entire workforce scheduling process and the
release time of the final rosters. However, the running time is
significantly higher than the running times of comparable
methods.

We showed that the presented three-phase metaheuristic
can successfully solve the most challenging SMPTSP
benchmark instances. )e metaheuristic produced the best
overall results compared to the previously published
methods. Furthermore, the metaheuristic generated com-
parable results to the methods using commercial MILP
solvers as part of the solution process.)e comparison is not
entirely fair, as our method takes more time but also solves a
more complex problem.

)emetaheuristic was able to solve 44 of the 47 instances
to optimality. For two instances, our solutions might be
optimal. Only one instance was such that our solution was
inferior. We are still working on finding out whether the two
remaining FL instances can be solved to the lower bound.
We also continue to examine why one of the SWMB in-
stances is extremely difficult for our metaheuristic. Deter-
mining the cause should help us improve the generality of
our solution method. We might encounter similar results on
some of the easy instances, e.g., the ones not included in our
experiments.

In the near future, we will publish a fourth data set for
SMPTSP. We will also present an extension of SMPTSP.

Data Availability

)e data for the SMPTSP instances are available online. )e
three data sets can be found in [23] (T. Lapègue, “Personnel
Task Scheduling Problem Library” (online)), available at
https://sites.google.com/site/ptsplib/smptsp/instances (last
access 15 January 2021).
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