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In this paper, based on the extreme eigenvalues of the matrices arisen from the given elasticity tensor, S-type upper bounds for the
M-eigenvalues of elasticity tensors are established. Finally, S-type sufficient conditions are introduced for the strong ellipticity of
elasticity tensors based on the S-type M-eigenvalue inclusion sets.

1. Introduction

Let M � 1, 2, . . . , m{ } and N � 1, 2, . . . , n{ }; a real tensor
A � (aijkl) ∈ Rm×n×m×n is called an elasticity tensor, if

aijkl � akjil � ailkj, i, k ∈M, j, l ∈ N. (1)

Consider the following optimization problem with an
elasticity tensor A � (aijkl) [1, 2]:

maxf(x, y) � 
m

i,k�1


n

j,l�1
aijklxiyjxkyl,

s.t. x
T
x � 1, y

T
y � 1,

x ∈ Rm
, y ∈ Rn

.

(2)

Qi et al. introduced the following definition of M-ei-
genvalues of an elasticity tensor [3, 4].

Definition 1. (see [3, 4]). Let A � (aijkl) ∈ Rm×n×m×n be an
elasticity tensor, if there exist nonzero vectors, x ∈ Rm and
y � ∈ Rn, and a real number λ ∈ R, such that

Ayxy � λx,

Axyx � λy,

xTx � 1, yTy � 1,

⎧⎪⎪⎨

⎪⎪⎩
(3)

where

(Ayxy)i � 
k∈M


j,l�1n

aijklyjxkyl, (Axyx)l � 
i,k∈M


j�1n

aijklxiyjxk.

(4)

.en, λ is called an M-eigenvalue ofA, and the nonzero
vectors x and y are called the correspondingM-eigenvectors.

Qi in [3, 5, 6] presented some basic studies for tensor
computations and approximations. Li et al. [7–10], Bu et al.
[11], Che et al. [12], and Zhao et al. [13, 14] worked on
analyzing the M-eigenvalues for various elasticity tensors.
.e authors in [15] proposed a tensor-based FTV model for
the three-dimensional image deblurring problem, and some
properties for Z-eigenvalues of tensor are given in [16–18].
Let

f(x, y) � 
m

i,k�1


n

j,l�1
aijklxiyjxkyl � 

m

i,k�1
xixky

T
Biky

� 
n

j,l�1
yjylx

T
Cjlx,

(5)

where Bik ∈ Rn×n and Cjl ∈ Rm×m are symmetric matrices
with entries
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Bik( st � aiskt, Cjl 
st

� asjtl. (6)

And, assume that λmin(A) is the minimal eigenvalue of a
matrix A, λmax(A) is the maximal eigenvalue of a matrix A,
and ρ(A) is the spectral radius of a matrix A. In 2021, Li et al.
established the following bounds for M-eigenvalues of an
elasticity tensor.

Theorem 1 (see [19]). Let A � (aijkl) ∈ Rm×n×m×n be an
elasticity tensor and λ be an M-eigenvalue of A. &en,

max δ1, δ2 ≤ λ≤min θ1, θ2 , (7)

where

δ1≕min
l∈N

λmin Cll(  − g1(l) , θ1≕min
l∈N

λmax Cll(  + g1(l) ,

δ2≕min
i∈M

λmin Bii(  − g2(i) , θ2≕min
i∈M

λmax Bii(  + g2(i) ,

(8)

and

g1(l) � 
j∈N,j≠l

ρ Cjl , g2(i) � 
k∈M,k≠i

ρ Bik( .
(9)

Theorem 2 (see [19]). Let A � (aijkl) ∈ Rm×n×m×n be an
elasticity tensor and ρM(A) be the M-spectral radius of A.
&en,

ρM(A)≤ c≕min c1, c2 , (10)

where

c1 � max
j,l∈N,j≠l

1
2

ρ Cll(  +

���������������������������

ρ2 Cll(  + 4g1(l) g1(j) + ρ Cjj  



 ,

c2 � max
i,k∈M,k≠i

1
2

ρ Bii(  +

���������������������������

ρ2 Bii(  + 4g2(i) g2(k) + ρ Bkk( ( 



 .

(11)

.e following necessary and sufficient condition for
strong ellipticity for general anisotropic elastic materials is
presented by Han et al. [20].

Theorem 3 (see [20]). Let A � (aijkl) ∈ Rm×n×m×n be an
elasticity tensor. &e strong ellipticity condition holds, i.e.,

f(x, y) � 
m

i,k�1


n

j,l�1
aijklxiyjxkyl > 0, (12)

for all nonzero vectors x ∈ Rm, y ∈ Rn if and only if the
smallest M-eigenvalue of A is positive.

One application of the lower bound in .eorem 1 is to
identify the strong ellipticity condition of an elasticity
tensor, and the upper bound in .eorem 2 is given to ac-
celerate convergence of the WQZ-algorithm [19]. In this
paper, by breaking N into disjoint subsets S and its com-
plement, new S-type upper bounds for the M-spectral radius

of an elasticity tensor are given in Section 2. In Section 3,
S-type sufficient conditions are also given to identify the
strong ellipticity condition of an elasticity tensor.

2. S-Type Upper Bounds

In this section, we give S-type upper bounds for the largest
M-eigenvalues of an elasticity tensor, and the relationship
between the S-type upper bounds and existed upper bounds
is also established. .e sets Sm, Sm, Sn, and Sn are defined by
M � Sm⋃ Sm and Sm ∩ Sm � ∅, N � Sn⋃ Sn, and
Sn ∩ Sn � ∅.

Theorem 4. Let A � (aijkl) ∈ Rm×n×m×n be an elasticity
tensor and ρM(A) be the M-spectral radius of A. &en,

ρM(A)≤ τ≕min τ1, τ2 , (13)

where

τ1 � max
i∈Sm,k∈Sm

1
2

g
Sm

2 (i) + g
Sm

2 (k) +

�����������������������������

g
Sm

2 (i) − g
Sm

2 (k) 
2

+ 4g
Sm

2 (i)g
Sm

2 (k)


⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

τ2 � max
j∈Sn,l∈Sn

1
2

g
Sn

1 (j) + g
Sn

1 (l) +

����������������������������

g
Sn

1 (j) − g
Sn

1 (l) 
2

+ 4g
Sn

1 (j)g
Sn

1 (l)


⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,
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g
Sn

1 (l) � 
j∈Sn

ρ Cjl , g
Sn

1 (l) � 

j∈Sn

ρ Cjl ,

g
Sm

2 (i) � 
k∈Sm

ρ Bik( , g
Sm

2 (i) � 

k∈Sm

ρ Bik( .

(14)

Proof. Let λ be an M-eigenvalue of A with the M-eigen-
vectors x, y,

xp



 � max
k∈Sm

xk


 , xs


 � max

k∈Sm

xk


 . (15)

Obviously, at least one of |xp| and |xs| is nonzero.
Case I. If |xp‖xs|≠ 0, from the p-th equation of λx �

Ayxy, we have

λxp � 
m

k�1


n

j,l�1
apjklyjxkyl. (16)

.en, we can get

λxp � 
k∈Sm


j,l∈N

apjklyjxkyl + 

k∈Sm


j,l∈N

apjklyjxkyl

� 
k∈Sm

xk 
j,l∈N

apjklyjyl
⎛⎝ ⎞⎠ + 

k∈Sm

xk 
j,l∈N

apjklyjyl
⎛⎝ ⎞⎠

� 
k∈Sm

xky
T
Bpky + 

k∈Sm

xky
T
Bpky.

(17)

Taking modulus in the above equation, we have

λ‖xp



≤ 
k∈Sm

xk‖yT
Bpky



 + 

k∈Sm

xk‖yT
Bpky





≤g
Sm

2 (p) xp



 + g
Sm

2 (p) xs


.

(18)

.en,

|λ| − g
Sm

2 (p)  xp



≤g
Sm

2 (p) xs


. (19)

If |λ| − g
Sm

2 (p)> 0, similarly we can get

|λ| − g
Sm

2 (s)  xs


≤g

Sm

2 (s) xp



. (20)

Multiplying (20) with (21), we have

|λ| − g
Sm

2 (p)  |λ| − g
Sm

2 (s) ≤g
Sm

2 (p)g
Sm

2 (s). (21)

.erefore,

|λ|≤
1
2

g
Sm

2 (p) + g
Sm

2 (s) +

������������������������������

g
Sm

2 (p) − g
Sm

2 (s) 
2

+ 4g
Sm

2 (p)g
Sm

2 (s)


⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (22)

If |λ| − g
Sm

2 (p)< 0, then

|λ|<g
Sm

2 (p), (23)

which means that (23) also holds.

Case II. |xp‖xs| � 0. If |xs| � 0, by inequality (5), then
|λ| − g

Sm

2 (p)≤ 0; it yields that (7) also holds. If |xp| � 0, by

inequality (6), then |λ| − g
Sm

2 (s)≤ 0; it yields that (7) also
holds.

Let |yq| � max
j∈Sn

|yj|  and |yt| � max
j∈Sn

|yj| , from the q-th
equation of λy � Axyx, we have

λyq � 
i,k∈M


j∈Sn

aijkqxiyjxk + 
i,k∈M



j∈Sn

aijkqxiyjxk,
(24)

and similarly, we can get

|λ|≤
1
2

g
Sn

1 (q) + g
Sn

1 (t) +

����������������������������

g
Sn

1 (q) − g
Sn

1 (t) 
2

+ 4g
Sn

1 (q)g
Sn

1 (t)


⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (25)

□

We compare the S-type upper bounds in .eorem 4
with the results in [19], which shows that our new
S-type upper bounds are always tighter than the results in
[19].

Theorem 5. Let A � (aijkl) ∈ Rm×n×m×n be an elasticity
tensor. &en,

ρM(A)≤ τ ≤ c. (26)
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Proof. If ρM(A)≤ τ, then

ρM(A)≤
1
2

g
Sm

2 (i) + g
Sm

2 (k) +

�����������������������������

g
Sm

2 (i) − g
Sm

2 (k) 
2

+ 4g
Sm

2 (i)g
Sm

2 (k)


⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
(27)

or

ρM(A)≤
1
2

g
Sn

1 (j) + g
Sn

1 (l) +

����������������������������

g
Sn

1 (j) − g
Sn

1 (l) 
2

+ 4g
Sn

1 (j)g
Sn

1 (l)


⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (28)

We only proof the following case, and the other case can
be proved similarly. If

ρM(A)≤
1
2

g
Sm

2 (i) + g
Sm

2 (s) +

�����������������������������

g
Sm

2 (i) − g
Sm

2 (s) 
2

+ 4g
Sm

2 (i)g
Sm

2 (s)


⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (29)

from the proof of .eorem 4,

|λ| − g
Sm

2 (i)  |λ| − g
Sm

2 (s) ≤g
Sm

2 (i)g
Sm

2 (s). (30)

Let Sm � i, Sm � M\i, then

|λ| − ρ Bii( (  |λ| − g2(s)( ≤g2(i)ρ Bss( . (31)

From inequalities (20) or (21), there is an i ∈M with
|λ| − ρ(Bii)≤g2(i); for this index i, we have

|λ| − ρ Bii( ( |λ|≤ |λ| − ρ Bii( ( g2(s) + g2(i)ρ Bss( 

≤g2(i) g2(s) + ρ Bss( ( ,
(32)

and therefore, ρM(A)≤ c. □

In 2009, the following WQZ-algorithm was presented to
compute the largest M-eigenvalue of an elasticity tensor [4].

eijkl � 1, if i � k and j � l,

eijkl � 0, otherwise.

⎧⎪⎨

⎪⎩
(33)

xt+1 � Aytxtyt,

xt+1 �
xt+1

xt+1
����

����
,

yt+1 � Axt+1ytxt+1,

yt+1 �
yt+1

yt+1
����

����
,

t � t + 1.

(34)

λmax(A) � f x∗, y∗(  − υ, (35)

f x∗, y∗(  � 
i,k�1m


j,l�1n

aijklx
∗
i y
∗
j x
∗
k y
∗
l , υ � 

1≤s≤t≤mn

Ast


.

(36)

.e following example in [4] is taken to show that the
tighter upper bound can accelerate convergence of the
WQZ-algorithm.

Example 1. Consider the tensor A � (aijkl) of Example 4.1
in [4, 21], where

A(:, :, 1, 1) �

−0.9727 0.3169 −0.3437

−0.6332 −0.7866 0.4257

−0.3350 −0.9896 −0.4323

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A(:, :, 2, 1) �

−0.6332 −0.7866 0.4257

0.7387 0.6873 −0.3248

−0.7986 −0.5988 −0.9485

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A(:, :, 3, 1) �

−0.3350 −0.9896 −0.4323

−0.7986 −0.5988 −0.9485

0.5853 0.5921 0.6301

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A(:, :, 1, 2) �

0.3169 0.6158 −0.0184

−0.7866 0.0160 0.0085

−0.9896 −0.6663 0.2559

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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A(:, :, 2, 2) �

−0.7866 0.0160 0.0085
0.6873 0.5160 −0.0216

−0.5988 0.0411 0.9857

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

A(:, :, 3, 2) �

−0.9896 −0.6663 0.2559
−0.5988 0.0411 0.9857
0.5921 −0.2907 −0.3881

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

A(:, :, 1, 3) �

−0.3437 −0.0184 0.5649
0.4257 0.0085 −0.1439

−0.4323 0.2559 0.6162

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

A(:, :, 2, 3) �

0.4257 0.0085 −0.1439
−0.3248 −0.0216 −0.0037
−0.9485 0.9857 −0.7734

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

A(:, :, 3, 3) �

−0.4323 0.2559 0.6162
−0.9485 0.9857 −0.7734
0.6301 −0.3881 −0.8526

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(37)

In [4], υ is taken as follows:


1≤s≤t≤mn

Ast


 � 23.3503. (38)

Let Sm � Sn � 1{ }; by Corollary 2 in [22], we have

ρ(A)≤ 11.7253. (39)

By .eorem 2, we have

ρ(A)≤ 4.2523. (40)

Let Sn � 1, 3{ }; by .eorem 4, we have

ρ(A)≤ 4.1528. (41)

Example 2. Consider the elasticity tensor A � (aijkl) of
CaMg(CO3)2-dolomite [21], whose nonzero entries are

a2222 � a1111 � 196.6, a3311 � a2233 � 83.2, a3333 � 110,

a2323 � a3232 � a1313 � a3131 � 54.7, a1212 � a2121 � 64.4,

a2223 � a2232 � −a1213 � −a2131 � −31.7, a1122 � 132.2,

a2132 � a1223 � −35.84, a3112 � a1321 � 44.8,

a2321 � a1232 � −a1311 � −a1131 � −25.3.

(42)

In [4], υ is taken as follows:


1≤s≤t≤mn

Ast


 � 23.3503. (43)

Let Sm � Sn � 1{ }; by Corollary 2 in [22], we have

ρ(A)≤ 491.7400. (44)

By .eorem 2, we have

ρ(A)≤ 462.2316. (45)

Let Sm � 2, 3{ }; by .eorem 4, we have

ρ(A)≤ 211.4729. (46)

In Figure 1, we can find that, when taking υ � 211.4729,
the sequence generated in the WQZ-algorithm converges to
the largest M-eigenvalue more rapidly than taking
υ � 1998.6000 and υ � 462.2316.

3. S-Type M-Eigenvalue Inclusion Sets and
Strong Ellipticity Conditions

In this section, based on the S-type M-eigenvalue inclusion
sets of an elasticity tensor, S-type sufficient conditions for
strong ellipticity conditions are given. Let
(Ax2)jl � 

n
j,l�1 aijklxixk and (Ay2)ik � 

m
i,k�1 aijklyjyl, we

need the following lemma.

Lemma 1 (see [23]). Let A � (aijkl) ∈ Rm×n×m×n be an
elasticity tensor. &en, the strong ellipticity condition holds if
and only if the matrix Ax2 ∈ Rn×n (or Ay2 ∈ Rm×m) is
positive definite for each nonzero x ∈ Rm (or y ∈ Rn).

Theorem 6. Let A � (aijkl) ∈ Rm×n×m×n be an elasticity
tensor and λ be anM-eigenvalue ofAwith theM-eigenvectors
x, y. &en,

λ ∈ Δ1(A)∩Δ2(A), (47)

where

Δ1(A) � ∪
j∈Sn,l∈Sn

z ∈ R: z − x
T

Cjjx


 − h
Sn

1 (j)  z − x
T
Cllx



 − h
Sn

1 (l) ≤g
Sm

1 (j)g
Sm

1 (l) ⎛⎝ ⎞⎠

∪ ∪
j∈Sn

z ∈ R: |z − x
T
Cjjx|≤ h

Sn

1 (j)  ,
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Δ2(A) � ∪
i∈Sm,k∈Sm

z ∈ R: z − y
T
Biiy



 − h
Sm

2 (i)  z − y
T
Bkky



 − h
Sm

2 (k) ≤g
Sm

2 (i)g
Sm

2 (k)  

∪ ∪
i∈Sm

z ∈ R: z − y
T
Biiy



≤ h
Sm

2 (i)  ,

h
Sn

1 (l) � 
j∈Sn,j≠l

ρ Cjl , h
Sn

1 (l) � 

j∈Sn,j≠l

ρ Cjl ,

h
Sm

2 (i) � 
k∈Sm,k≠i

ρ Bik( , h
Sm

2 (i) � 

k∈Sm,k≠i

ρ Bik( .

(48)

Proof. Let λ be an M-eigenvalue of A with the M-eigen-
vectors x and y,

xp



 � max
k∈Sm

xk


 , xs


 � max

k∈Sm

xk


 . (49)

Obviously, at least one of |xp| and |xs| is nonzero.

Case I. If |xp‖xs|≠ 0, from the p-th equation of λx � Ayxy,

we have

λxp � 
m

k�1


n

j,l�1
apjklyjxkyl. (50)

.en, we can get

λxp − yT
Bppyxp � 

k∈Sm,k≠p

xky
T
Bpky + 

k∈Sm

xky
T
Bpky.

(51)

Taking modulus in the above equation, we have

λ − yT
Bppy‖xp



≤ 
k∈Sm,k≠p

xk‖yT
Bpky



 + 

k∈Sm

xk‖yT
Bpky





≤ h
Sm

2 (p) xp



 + g
Sm

2 (p) xs


.

(52)

.en,

τ=1998.6
τ=462.2316
τ=211.4729

196.5

197

197.5

198

198.5

199

199.5

200

La
rg

es
t M

-E
ig

en
va

lu
es

 an
d 

gl
ob

al
 m

ax
im

um

250100 150 3500 30050 200
Iteration Numbers

Figure 1: Numerical results for the WQZ-algorithm with different τ.

Step 0: given a tensor A � (aijkl), vectors x0 ∈ Rm and y0 ∈ Rn. Set t � 0 and A � υI + A, where I � (eijkl) ∈ Rm×n×m×n with the
entries as follows:
Step 1: compute
Output x∗, y∗.
Step 2: find the largest M-eigenvalue λmax(A) of the tensor A:
where

ALGORITHM 1: WQZ-algorithm.
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λ − yT
Bppy



 − h
Sm

2 (p)  xp



≤g
Sm

2 (p) xs


. (53)

If |λ − yTBppy| − h
Sm

2 (p)> 0, similarly we can get

λ − yT
Bssy



 − h
Sm

2 (s)  xs


≤g

Sm

2 (s) xp



. (54)

Multiplying (53) with (54), we have

λ − yT
Bppy



 − h
Sm

2 (p)  λ − yT
Bssy



 − h
Sm

2 (s) ≤g
Sm

2 (p)g
Sm

2 (s), (55)

so that λ ∈ Δ2(A). If |λ − yTBppy| − h
Sm

2 (p)≤ 0; then,

λ − yT
Bppy



≤ h
Sm

2 (p), (56)

which means that λ ∈ Δ2(A).

Case II. |xp‖xs| � 0. Without loss of generality, let |xs| � 0,
by inequality (8), then |λ − yTBppy| − h

Sm

2 (p)≤ 0; it yields
that λ ∈ Δ2(A).

Let |yq| � max
j∈Sn

|yj|  and |yt| � max
j∈Sn

|yj| , from the q-th
equation of λy � Axyx, similarly we can get λ ∈ Δ1(A). □

Theorem 7. Let A � (aijkl) ∈ Rm×n×m×n be an elasticity
tensor. If there exists Sm or Sn such that

λmin Bii( > h
Sm

2 (i) for all i ∈ Sm,

λmin Bii(  − h
Sm

2 (i)  λmin Bkk(  − h
Sm

2 (k) >g
Sm

2 (i)g
Sm

2 (k) for all i ∈ Sm, k ∈ Sm,
(57)

or

λmin Cjj > h
Sn

1 (j) for all j ∈ Sn,

λmin Cjj  − h
Sn

1 (j)  λmin Cll(  − h
Sn

1 (l) >g
Sn

2 (j)g
Sn

2 (l) for all j ∈ Sn, l ∈ Sn,
(58)

then the strong ellipticity condition holds.

Proof. Let λ be an M-eigenvalue of A and λ≤ 0. From
.eorem 6, we obtain λ ∈ Δ(B). If λ ∈ Δ2(B), there are
i ∈ Sm and k ∈ Sm such that

λ − yT
Biiy



 − h
Sm

2 (i)  λ − yT
Bkky



 − h
Sm

2 (k) ≤g
Sm

2 (i)g
Sm

2 (k)

(59)

or

λ − yT
Biiy



≤ h
Sm

2 (i). (60)

.en,

λ − yT
Biiy



 − h
Sm

2 (i)  λ − yT
Bkky



 − h
Sm

2 (k) 

≥ yT
Biiy − h

Sm

2 (i)  y
T
Bkky − h

Sm

2 (k) 

≥ λmin Bii(  − h
Sm

2 (i)  λmin Bkk(  − h
Sm

2 (k) 

>g
Sm

2 (i)g
Sm

2 (k)

(61)

and

λ − yT
Biiy



≥ y
T
Biiy ≥ λmin Bii( > h

Sm

2 (i), (62)

which contradicts λ ∈ Δ(B). .erefore, λ> 0. .en, by
.eorem 3, the strong ellipticity condition holds for the
elasticity tensor A.

If λ ∈ Δ1(B), the second conclusion can be obtained
similarly. □

.e following sufficient conditions for strong ellipticity
are given by Li et al. [19].

Theorem 8. Let A � (aijkl) ∈ Rm×n×m×n be an elasticity
tensor. If

λmin Bii( >g2(i), for all i ∈M, (63)

or

λmin Cll( >g1(l), for all l ∈ N, (64)

then the strong ellipticity condition holds.

Based on the above theorems, we introduce the defi-
nitions strictly diagonally dominated (M-SDD) and S-type
strictly diagonally dominated (M-SSDD) elasticity tensors,
which are based on the eigenvalues of matrices of Bik andCjl.

Definition 2. Let A � (aijkl) ∈ Rm×n×m×n be an elasticity
tensor. If

Journal of Mathematics 7



λmin Bii( >g2(i), for all i ∈M, (65)

or

λmin Cll( >g1(l), for all l ∈ N, (66)

then the elasticity tensor A is called strictly diagonally
dominated(M-SDD).

Definition 3. Let A � (aijkl) ∈ Rm×n×m×n be an elasticity
tensor. If there exists Sm or Sn such that

λmin Bii( > h
Sm

2 (i) for all i ∈ Sm,

λmin Bii(  − h
Sm

2 (i)  λmin Bkk(  − h
Sm

2 (k) >g
Sm

2 (i)g
Sm

2 (k) for all i ∈ Sm, k ∈ Sm,
(67)

or

λmin Cjj > h
Sn

1 (j) for all j ∈ Sn,

λmin Cjj  − h
Sn

1 (j)  λmin Cll(  − h
Sn

1 l( ) >g
Sn

2 (j)g
Sn

2 (l) for all j ∈ Sn, l ∈ Sn,
(68)

then the elasticity tensorA is called S-type strictly diagonally
dominated(M-SSDD).

Next, we give the relationships between the M-SDD
elasticity tensor and the M-SSDD elasticity tensor.

Theorem 9. Let A � (aijkl) ∈ Rm×n×m×n be an elasticity
tensor. If A is an M-SDD elasticity tensor, then A is an
M-SSDD elasticity tensor.

Proof. IfA is an M-SDD elasticity tensor, we only prove the
following case; the other case can be proved similarly. For all
i ∈M,

λmin Bii( >g2(i). (69)

.en, for all i ∈ Sm and k ∈ Sm,

λmin Bii( >g2(i)> h
Sm

2 (i),

λmin Bii(  − h
Sm

2 (i)>g
Sm

2 (i), λmin Bkk(  − h
Sm

2 (k)>g
Sm

2 (k),

(70)

which imply that

λmin Bii( > h
Sm

2 (i),

λmin Bii(  − h
Sm

2 (i)  λmin Bkk(  − h
Sm

2 (k) >g
Sm

2 (i)g
Sm

2 (k),

(71)

and then A is an M-SSDD elasticity tensor. □

Now, the following example is explored to show the
efficiency of the results in .eorems 8 and 9.

Example 3. LetA � (aijkl) ∈ R2×2×2×2 be an elasticity tensor,
where

a1111 � a1212 � 2.5, a2121 � a2222 � 4,

a1112 � a2122 � a1122 � −a1121 � −a1222 � 1,
(72)

and other aijkl � 0.
Obviously, we have

B11 �
2.5 1

1 2.5
 ,

B22 �
4 1

1 4
 ,

B12 � B21 �
−1 1

1 −1
 ,

C11 � C22 �
2.5 −1

−1 4
 ,

C12 � C21 �
1 1

1 1
 .

(73)

Let Sm � 1{ }, by direct computation, we have

λmin B11(  � 1.5> 0 � h
Sm

2 (1), λmin B22(  � 3> 0 � h
Sm

2 (2),

(74)

and

λmin B11(  − h
Sm

2 (1)  λmin B22(  − h
Sm

2 (2)  � 4.5> 4 � g
Sm

2 (1)g
Sm

2 (2). (75)
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.en, A satisfies the sufficient conditions of .eorem 7,
and the conditions of .eorem 8 do not hold by λmin(B11) �

1.5< 2 � g2(1) and λmin(C11) � 1.6707< 2 � g1(1). .ere-
fore, the strong ellipticity condition holds for the elasticity
tensorA by.eorem 7. In fact, the smallest M-eigenvalue of
A is 3.5.

Let Sm � Sn � 1{ }; by .eorem 11 in [22], we have

α1 − r
1
1(A)  α2 − r

2
2(A)  � 7.5< r

2
1(A)r

1
2(A) � 20, (76)

where α1, r11(A), α2, r22(A), r21(A), r12(A) are defined in
[22], which shows that the conditions of .eorem 11 in [22]
do not hold.
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