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In this paper, based on the extreme eigenvalues of the matrices arisen from the given elasticity tensor, S-type upper bounds for the
M-eigenvalues of elasticity tensors are established. Finally, S-type sufficient conditions are introduced for the strong ellipticity of
elasticity tensors based on the S-type M-eigenvalue inclusion sets.

1. Introduction

Let M =1{1,2,...,m} and N ={1,2,...,n}; a real tensor
A = (a;jy) € R™™™ is called an elasticity tensor, if

Aji = Ak = Ay bk € M, j,l € N. (1)

Consider the following optimization problem with an
elasticity tensor & = (aijk,) [1, 2]

max f(x, y) = Y Y @Xiy %y
ik=1jl=1 @
s.t. xTx = l,yTy =1,
xeR™, yeR"
Qi et al. introduced the following definition of M-ei-
genvalues of an elasticity tensor [3, 4].

Definition 1. (see [3, 4]). Let o = (a,-jk,) € R he an
elasticity tensor, if there exist nonzero vectors, x € R™ and
y = € R", and a real number A € R, such that

Ayxy = X,

dxyx = Ly, (3)
T, _ 4 T _

xx=1yy=1,

where

(Ayxy)i= D Y @y ixys (AxyX) = Y Y auxyX.
KeM jimtn kM =10

(4)

Then, A is called an M-eigenvalue of &/, and the nonzero
vectors x and y are called the corresponding M-eigenvectors.

Qi in [3, 5, 6] presented some basic studies for tensor
computations and approximations. Li et al. [7-10], Bu et al.
[11], Che et al. [12], and Zhao et al. [13, 14] worked on
analyzing the M-eigenvalues for various elasticity tensors.
The authors in [15] proposed a tensor-based FTV model for
the three-dimensional image deblurring problem, and some
properties for Z-eigenvalues of tensor are given in [16-18].
Let

fxy=

|
Tz

n m
T
Z AijaXiy i XKk Vi = Z XXy By
ik=1 jl=1 ik=1

(5)

n
T
Z yiyx Cjx,
jl=1

where By € R™" and C; € R™"" are symmetric matrices
with entries
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(Bit)st = igke> (le)st = Agjg- (6)

And, assume that A ;, (A) is the minimal eigenvalue of a
matrix A, A, (A) is the maximal eigenvalue of a matrix A,
and p (A) is the spectral radius of a matrix A. In 2021, Li et al.
established the following bounds for M-eigenvalues of an
elasticity tensor.

Theorem 1 (see [19]). Let of = (aijkl) € R™™IMN he an
elasticity tensor and A be an M-eigenvalue of /. Then,

max{51, 82} SASmln{el) 92}) (7)
where
8121 l'llggl{lmin (Cll) - 91 (l)}, 61:: rllg}\l]‘l{lmax (Cll) + 9 (l)}’
6,= llflggl{Amm (B;;) — g, ()}, 0,= I}gﬁl{/\max (Bi) + 9, (D},
(8)
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and

ga= Y pCiha= Y p(Br): (g

JEN, j#l keM k+#i

Theorem 2 (see [19]). Let o = (a.1) € R™™mX1 he gn
elasticity tensor and p,; () be the M-spectral radius of .
Then,

pu (&) <y=min{y;,y,}, (10)

where

1
y; = max _{P(Cu) + \/P2 (Cu) +49:(D(91 () +p(Cy))) }

JIEN,j# 2

(11)

vo= max = Jp(B,) + \p (Bo) + 49, () (9, )+ p (By) |

max
ikeMk#i 2

The following necessary and sufficient condition for
strong ellipticity for general anisotropic elastic materials is
presented by Han et al. [20].

Theorem 3 (see [20]). Let o = (a;;y) € R he gp
elasticity tensor. The strong ellipticity condition holds, i.e.,

m

f&Y) =) Y auxyixy >0 (12)
ik=1 j,l=1

for all nonzero vectors x € R™,y € R" if and only if the
smallest M-eigenvalue of </ is positive.

One application of the lower bound in Theorem 1 is to
identify the strong ellipticity condition of an elasticity
tensor, and the upper bound in Theorem 2 is given to ac-
celerate convergence of the WQZ-algorithm [19]. In this
paper, by breaking N into disjoint subsets S and its com-
plement, new S-type upper bounds for the M-spectral radius

of an elasticity tensor are given in Section 2. In Section 3,
S-type sufficient conditions are also given to identify the
strong ellipticity condition of an elasticity tensor.

2. S-Type Upper Bounds

In this section, we give S-type upper bounds for the largest
M-eigenvalues of an elasticity tensor, and the relationship
between the S-type upper bounds and existed upper bounds
is also established. The sets S,,, S,,,, S,,, and S, are defined by
M=S,S, and S, NS, =@, N=S,1JS, and
S,NS, = 3.

Theorem 4. Let o = (a;;;) € R™™™" be an elasticity
tensor and py; (&) be the M-spectral radius of of. Then,

py (&) <t =min{r, 1,}, (13)

where

1

i€S,,,keS,, 2

— — 2 —
7, = max - {gi’" (i) + g5 (k) + \kgim (i) - g5 (k)) +4gy (i)gy (k) }

1

Jj€S, €S, 2

— — 2 —
= max —{gf"<j>+gf"(l>+J(gf" ()= gv () +4g7 gy ) }
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g0 =Y p(Cy) g =Y p(Cp).

j€Su jeS,
S, S, (14)
9 (i)=Y p(By) 9" () =) p(By).
keS,, keS,,
Proof. Let A be an M-eigenvalue of & with the M-eigen- Taking modulus in the above equation, we have
vectors X, Y,
x| < X Jxily By + X [xilly Byl
o] = max{la . x| = max x|} (15) kes, kS, (18)
S S,
<gy " )
Obviously, at least one of IxPI and |x,| is nonzero. =92 (P)|xp' 92 (p)|x5|
Case 1. If |, llx] #0, from the p-th equation of Ax = Then,
dyxy, we have _
m (I = 82" (p) |, | < g5 (p)] . (19)
Z z apikty Xk Vi (16) S o
k=1ji=1 If Al = g," (p) >0, similarly we can get
Then, we can get <|A| - gg’” (s))|x5| < gg’” (s)|xp|. (20)
= a, VXY + a, VX . .
kezs:m j,lgN piklY %1 k;m jgN piklY %k Multiplying (20) with (21), we have
(M- g () (N - g3 ) ) < g% (P)g (9. (21)
= Z Xk Z ApiktyiVi | + z Xk z apikty Vi
keS,, jleN keS,, jleN Therefore,
= ) % Buy+ ) Xy By
kESm kEgm
(17)
S, S, 2 S, S
A< {gz (p) + gy () + \/(gz'" (p) -9 (s)) +4g," (p)gy" () } (22)
If A - gi’“ (p) <0, then inequality (6), then |A| - gg'“ (s) <05 it yields that (7) also
S, 3 holds.
Al < gy" (p), (23) Let |y, —r]nax{lyjl} and |y, —mgx{lyjl} from the g-th
which means that (23) also holds. equatlon of 1y ="g/xyx, we have /<
= Qo Xy i Xp + ;o Xy i X
Case II. lx,llx;| = 0. If |x,] =0, by inequality (5), then ,-,,;M ];n e il i,gM Jg‘ kaTiZ Tk (24)
Al - g2 (p) <0; it yields that (7) also holds. If Ix | =0, by
and similarly, we can get
S, S 2 S, S,
<> {gl (@) + gy (1) + J(g; @ -9 ) +4g7 (@g} © } (25)

O

We compare the S-type upper bounds in Theorem 4 ~ Theorem 5. Let o = (a;;y) € R™™™" be an elasticity
with the results in [19], which shows that our new tensor. Then,

?l—;}]lpe upper bounds are always tighter than the results in o () <T<Y. (26)



Proof. If py; (&) <1, then
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— — 2 _
pus (1) <3 {gim (i) + g (k) + \/(gs () - g3 () +4g5" (g3 (k) } (27)

or

— — 2 —
pur (1) <3 {gf" (D+gr )+ J(gf" () -gv () +4g" Gy ) } (28)

We only proof the following case, and the other case can
be proved similarly. If

1 . 3 ) < 2 s
P ()< {gim (i) + 63" (5) + J(gi ()= 93" (9)) +4g3 ()g3 (9 } (29)
Aoy (&) = y) -, 35
from the proof of Theorem 4, max () = f (oy7) —v (35)
(1Ml - g5 (i))<|)t| — g (s)) <> ()G (s). (30) FEY) =Y Y auxiyixyv= ) A4
ik=1m jl=1" 1<s<t<mn
Let S, =i, S,, = M\i, then (36)

(IM = p(By)) (1Al = g, (s)) < g, (Dp (By,). (31

From inequalities (20) or (21), there is an i € M with
[Al = p(B;;) < g, (i); for this index i, we have

(1M1= p(Bi))IA < (1Al = p(Bi)) g2 (5) + g2 ()p (Bys)
<9,(1)(g,(s) + p(By)),
and therefore, p), (&) <. O

(32)

In 2009, the following WQZ-algorithm was presented to
compute the largest M-eigenvalue of an elasticity tensor [4].

eljkl = 1, ifi = kandj = l,
(33)

e =0, otherwise.

X = EYtXth’
X1
TRl
Vil = EXHlYtXHl’ (34)
Vit
Vet |
t=t+1.

Yer1 = |

The following example in [4] is taken to show that the
tighter upper bound can accelerate convergence of the
WQZ-algorithm.

Example 1. Consider the tensor & = (a;;y) of Example 4.1
in [4, 21], where

[-0.9727 0.3169 —0.34377
o (5, 1,1) =] -0.6332 -0.7866 0.4257 |,
[ -0.3350 —0.9896 -0.4323 ]
[—0.6332 —0.7866 0.4257 7
of(:,:,2,1) =] 0.7387 0.6873 -0.3248 |,
[ —0.7986 —0.5988 —0.9485 |
[-0.3350 —-0.9896 —0.43237
A(:,:3,1) = -0.7986 —0.5988 —0.9485 |,
L 0.5853

[ 0.3169

0.5921
0.6158

0.6301
—0.0184 1
o, 1,2) = —0.7866

0.0160 0.0085 |,

L -0.9896 —-0.6663 0.2559
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[—0.7866 0.0160 0.0085
o (::,2,2) = 0.6873 0.5160 —0.0216 |,
| —0.5988 0.0411 0.9857
[—0.9896 —0.6663 0.2559 T
(5 3,2) =] -0.5988 0.0411 0.9857 |,
L 0.5921 -0.2907 -0.3881
[—0.3437 —0.0184 0.5649 T
o(:;:,1,3) = 0.4257 0.0085 -0.1439 |, (37)
| —0.4323 0.2559 0.6162 |
[ 0.4257 0.0085 -0.14397
o (::2,3) =] -0.3248 —0.0216 —0.0037 |,
| —0.9485 0.9857 -0.7734 ]
[—0.4323 0.2559 0.6162 T
(5 3,3) =|-0.9485 0.9857 -0.7734|.
L 0.6301 -0.3881 —-0.8526 ]
In [4], v is taken as follows:
Y |Ag| =23.3503. (38)

1<s<t<mn

Let S,, =S, = {1}; by Corollary 2 in [22], we have

p () <11.7253. (39)
By Theorem 2, we have

p () <4.2523. (40)
Let S, = {1, 3}; by Theorem 4, we have

p () <4.1528. (41)

Example 2. Consider the elasticity tensor o = (a;j,) of
CaMg(CO3)2-dolomite [21], whose nonzero entries are

A2 = Ayi11 = 196.6, 331y = dyy33 = 83.2, ay355 = 110,
Ay303 = A3p3p = Ay313 = G313 = 547, Apypy = Aypy) = 644,
Ayyps = Gp3p = —Gy13 = —Gg131 = —3L.7, aypyy = 1322,

Ay13p = Gipp3 = —35.84, agyy, = ay3y; = 44.8,

Ayzp1 = Aoz = —Ay31; = —dyp3 = —25.3.
(42)
A () = U
j€S, €S,

U (]E%”{Z e R: |Z - XTijxl Shfn (])})’

5

In [4], v is taken as follows:

Y |Ay] =23.3503. (43)

L<s<t<mn

Let S,, =S, = {1}; by Corollary 2 in [22], we have

p () <491.7400. (44)
By Theorem 2, we have

p () <462.2316. (45)
Let S,, = {2, 3}; by Theorem 4, we have

p () <211.4729. (46)

In Figure 1, we can find that, when taking v = 211.4729,
the sequence generated in the WQZ-algorithm converges to
the largest M-eigenvalue more rapidly than taking
v =1998.6000 and v = 462.2316.

3. S-Type M-Eigenvalue Inclusion Sets and
Strong Ellipticity Conditions

In this section, based on the S-type M-eigenvalue inclusion

sets of an elasticity tensor, S-type sufficient conditions for

strong  ellipticity =~ conditions  are  given.  Let
2y 2y =

(%) = ¥ ajuxixi and (y*)y = Yoy Qi y Y1 we

need the following lemma.

Lemma 1 (see [23]). Let o = (a;;) € R™MX1 he  an
elasticity tensor. Then, the strong ellipticity condition holds if
and only if the matrix Jx* € R™" (or dy* € R™™) is
positive definite for each nonzero x € R™ (or y € R").

Theorem 6. Let o = (a;;y) € R™™™" be an elasticity
tensor and A be an M-eigenvalue of of with the M-eigenvectors

x, y. Then,
Ae A (A)NA, (), (47)

where

Jzer: (|- x| -1 () (| - x"Cux| - B ) < gt (g (D})
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FIGURE 1: Numerical results for the WQZ-algorithm with different 7.

Step 0: given a tensor & = (a; ), vectors X, € R™ and y, € R". Set t = 0 and o =v.F + o, where .J = (ejji) € R™™ with the
entries as follows:

Step 1: compute

Output x*, y*.

Step 2: find the largest M-eigenvalue A, (&) of the tensor &/:

max

where
ALGORITHM 1: WQZ-algorithm.
Ay (of) = ( Uz eri (2= 5 By -3 )|z - ' Bus] - B 0 3 (g (k)})
i€S,,.keS,,
U (LSJ {z € R: |z— yTB,-iy| shgm (i)}),
i€S,,
S S (48)
0= T oC)H0- T olcy)
j€Spj#l €S, j#l
S S
hy" (i) = Z p(By), hy" (i) = Z p(By)-
keS,, k#i keS,, ki
Proof. Let A be an M-eigenvalue of &/ with the M-eigen- Then, we can get
vectors x and y,
)pr —YTBPPYxP = ) Szk xkyTBPky + Z xkyTBPky. (51)
'xp| = Ezzsix{lxk”, || = max{|x|}. (49) Sy
m ke,
" Taking modulus in the above equation, we have
Obviously, at least one of IxPI and |x,| is nonzero. |)t —YTBPPY||?CP| < Z |xk||YTBka' + Z 'xk”YTBka|
keS, . k#p keS
Case 1. If |x, || x| # 0, from the p-th equation of Ax = J/yxy, _ o
we have <hy (P)'xpl + 65" (P)]x,).
N (52)

Mz

Ax, = Apik1Y i Xk Y- (50)

k=1 jl=1 Then,

Il
—_
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(1= ¥ Bop| = ) )|y < a3 ). 53)

If [\ - y"B,,yl - K57 (p) >0, similarly we can get

(|)L ~Y'Bpy| - 3 ( p))<|A -y By

so that A € A, (). If A —y"B, y| - i5" (p) <0; then,

ppY|
T S,
N -y"B,,y| <h3" (p), (56)
which means that A € A, ().

Case II. pr||xs| = 0. Without loss of generality, let |x,| = 0,
by inequality (8), then |A - yTBPPyI - hi"’ (p) <0; it yields
that A € A, ().

7

<|A_YTBSSY _hgm (s))|x5|§g§m (S)'xp|- (54)
Multiplying (53) with (54), we have

—hy (S)> < gy (p)g5" (s), (55)

Let |yq| = meslx{lyjl} and |y,| = mz_ix{lyﬂ}, from the g-th
jes, j
equation of ly = &/xyx, similarly wecan getle A (). O

Theorem 7. Let o = (a;;y) € R™™™" be an elasticity
tensor. If there exists S,, or S, such that

Ain (Bi) > By (i) foralli € S,,,

(hin (B) — (i))(amin (By) - b (k)) > g3 ()gS (k) foralli€ S, k€5,

or

(57)

/\min(cjj) >hy(j) foralljes,

("min(cjj) - hfy‘ (]))<Amln (Cll) - hfn (l)

then the strong ellipticity condition holds.

Proof. Let A be an M-eigenvalue of &/ and 1<0. From
Theorem 6, we obtain A € A(%). If A € A, (9RB), there are
ieS, and k € S, such that

(P=y"Bay| -2 @) (- "By - 3 () < 03 (g ()

(59)
or
I\ -y Byy| <3 (i), (60)
Then,
<|A -y By - by (D)(]A -y Byy| -1y (k)>
= (v By = 15 )" By - i () o
> (i (Bi) = 13" () (Au (Bis) = " ()
> 65" (i)g" (K)
and
X =¥ Byy| >y Biy 2 Ain (By) > 3 (i), (62)

> g (j)g> (1) foralljes,leS,

(58)

which contradicts A € A(%B). Therefore, A>0. Then, by
Theorem 3, the strong ellipticity condition holds for the
elasticity tensor <.

If A € A, (AB), the second conclusion can be obtained
similarly. O

The following sufficient conditions for strong ellipticity
are given by Li et al. [19].

Theorem 8. Let o = (a;;y) € R™™™" be an elasticity
tensor. If

Amin (Bii) > g, (i), foralli € M, (63)
or

Amin (Cll) > 91 (l)a

then the strong ellipticity condition holds.

foralll € N, (64)

Based on the above theorems, we introduce the defi-
nitions strictly diagonally dominated (M-SDD) and S-type
strictly diagonally dominated (M-SSDD) elasticity tensors,
which are based on the eigenvalues of matrices of By and Cj;.

Definition 2. Let o = (a;;y) € R™™™" be an elasticity
tensor. If
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Amin (Bii) > g2 (), foralli € M, (65) then the elasticity tensor & is called strictly diagonally
dominated(M-SDD).
or
Ain (C1) > g, (), foralll € N, (66) Definition 3. Let of = (a;3y) € R™™™" be an elasticity
tensor. If there exists S, or S, such that
Ain (Bi) > h37 (i) forall i€S,,
S (5 S, S r S . S (67)
(A (B) — (1))(Amm (By) — b (k)) > g (Vg (k) foralli €S,k €S,
or
Awin(Cj;) > Hi" (j) forall j €,
(68)

(i C35) = 1 () (M (Ci) = 5 (D) > g3 (g () forall j € 5,,1 €5,

then the elasticity tensor & is called S-type strictly diagonally
dominated(M-SSDD).

Next, we give the relationships between the M-SDD
elasticity tensor and the M-SSDD elasticity tensor.

Theorem 9. Let o = (a;;y) € R™™™" be an elasticity
tensor. If o is an M-SDD elasticity tensor, then & is an
M-SSDD elasticity tensor.

Proof. If o is an M-SDD elasticity tensor, we only prove the
following case; the other case can be proved similarly. For all
ieM,

Amin (Bi) > 92 (1) (69)
Then, for alli€ S, and k € S,,,
Aumin (Bir) > g2 () > h3" (i),
Auin (Bi) = B3 () > 93" (), A (Bua) = 3" () > g3 (K),
(70)
which imply that
Ain (Bir) > H3" (i),
(Amin (By) — by (i))<Amin (Byi) = hgm (k)) > gi’" (i)g>" (k),
(71)
and then o is an M-SSDD elasticity tensor. O

Now, the following example is explored to show the
efficiency of the results in Theorems 8 and 9.

Example 3. Letd = (a;;) € R**#*2*2 be an elasticity tensor,
where

Ay = A1 = 2.5, A1y = Aypp = 4,

(72)
Ay = 12y = Ay = ~Apiy1 = ~G1pp = 1
and other a,;; = 0.
Obviously, we have
25 1
B :[ 1 25 ]
41
By, = [ 1 4 ],
-1 1
Bu:Bﬂ:- ) _1], (73)
[2.5 -1
C11:(:22—__1 4 :|)
(11
C12=C21=_1 1:|'

Let S,, = {1}, by direct computation, we have

Min (B1y) = 1.5>0 = B (1), A,in (Byy) = 3>0 = b (2),

(74)

min (

and

(Ao (Bu1) = 5% (D) (Ao (Br) = 37 (2)) = 45> 4 = g3 (1)g* (). (75)
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Then, o/ satisfies the sufficient conditions of Theorem 7,
and the conditions of Theorem 8 do not hold by A, ;. (B;) =
1.5<2=g,(1) and A, (C,;) = 1.6707 <2 = g, (1). There-
fore, the strong ellipticity condition holds for the elasticity
tensor & by Theorem 7. In fact, the smallest M-eigenvalue of
A is 3.5.

Let S, =

., = {1}; by Theorem 11 in [22], we have
(ay =71 (D)) (o = 75 () = 7.5 <7} ()7, () = 20, (76)
where a;, 71 (), ay, 75 (A), 72 (A), 75 (o) are defined in
[22], which shows that the conditions of Theorem 11 in [22]
do not hold.
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