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1. Introduction and Preliminary Results

The representation of a graph is expressed by numbers,
polynomials, and matrices. Graphs have their own char-
acteristics that may be calculated by topological indices, and
under graph automorphism, the topology of graphs remains
unchanged. Degree-based topological indices are excep-
tionally important in different classes of indices and take on
a vital role in graphic theory and in particular in science.

Silicate is a chemical compound and has many com-
mercial uses. It is used for the manufacture of different glass
and ceramics organic compounds in large scale due to its
cheapness and availability everywhere in the world. Silicates
can be obtained from the Earth’s crust. In general, solid
silicates are well-characterized and stable. Silicates like so-
dium orthosilicate and metasilicate, which have alkali cat-
ions and tiny or chain-like anions, are water soluble. When
crystallised from a solution, they generate multiple solid
hydrates. Water glass, which is made up of soluble sodium
silicates and combinations, is a significant industrial and
home chemical. For the construction of networks rhombus
oxide and silicate, we refer the readers to 10. Rhombus
silicate network RHSL(t) and rhombus oxide network
RHOX () are shown in Figures 1 and 2, respectively.

In this article, € is considered a network with a V (%)
vertex set and an edge set of E(¥) and d, is the degree of

vertex v € V (&). Let Sg, () denote the sum of the degrees of
all vertices adjacent to a vertex r. Graovac et al. defined fifth
M-Zagreb indices as polynomials for a molecular graph [1],
and these are characterized as follows.

Let & be a graph. Then,

M\G5(8)= ) (Sg(r)+S5(s)), (1)
rseE(%)

M,G5 (%)= ) (Sg(r)+S5(s)). (2)
rs€E(%)

V. R. Kulli [2], motivated by the above indices, described
some new topological indices, and he named them as the
fifth M-Zagreb indices of first and second type and fifth
hyper-M-Zagreb indices of first and second type of a graph
Z. They are defined as

MiGs()= Y (S(r)+S(9)", 3)
rs€E(%)

M5Gs(9) = Y (Sg(r) +S ()" (4)
rseE(%)

HM\Gs (%)= Y (Sq(r)+S(5)), (5)
rs€E(%)
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FIGURE 1: Graph of rhombus silicate network (RHSL(¢)).

FIGURE 2: Graph of rhombus oxide network (RHOX(t)).

HM,G5(%) = Y (Sg(r)+S5(s))". )
rs€E(%)

They also define a new version of Zagreb index which is
called as the third Zagreb index or fifth M,-Zagreb [3].

MiG5 ()= ) [S5(r) =S (s)]. )
rs€E(%)

Corresponding to the above indices, he defined the
general fifth M,-Zagreb polynomial and the general fifth
M,-Zagreb polynomial of a molecular graph & as

M{Gs(%x) = ] xlo0o0), ®)
rs€E(%)

MJGs(9,2) = [ x(60m0), ©)
rseE(9)

The fifth M, - and M, - Zagreb polynomials of a graph are
defined as

M,Gs(%,x) = 1—[ x(SG (r)+Sg (s))’ (10)
rs€E(%)

MZGS(?) .X') = H x(SG(r)JrSG(S)). (11)
rs€E(%)

The fifth HM, and HM, Zagreb polynomials of the
graph are defined as

HM\Gs (%) = [ x(e05e0), (12)
rs€E(%)
HM,G;(%,x) = H x(SG(r)+Sc(s)) ) (13)

rs€E(%)
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2. Main Results

We have studied the topological indices introduced by Kulli
[2, 4] named as fifth M-Zagreb indices, fifth M-Zagreb
polynomials, and M; — Zagreb index and computed exact
formulae of these indices for rhombus-type silicate and
oxide networks. Ali et al. studied degree-based topological
indices for various networks [5-8]. For the basic notations
and definitions, see [9-11].

2.1. Results for the Rhombus Type of Silicate Networks. In this
section, we calculate degree-based topological indices of the
dimension ¢ for rhombus-type silicate networks. In the

M,Gs5(%,) = Z (Sg (r) + S5 (s))s

rs€E (%))

following theorems, we compute M-Zagreb indices and
polynomials.

Theorem 2.1.1. Let &, = RHSL(t) be the rhombus-type
silicate network; then, the first and second fifth M-Zagreb
indices are equal to

M,G;(%,) = 36(1 - 10t + 18),
(14)
M,G;(%,) = 18(119 - 490t + 480¢°).

Proof. 'The outcome can be obtained by using the edge
partition in Table 1.
By using equation [5],

M,Gs (%)) = (12 + 12)|E, (£, ()] + (12 + 24)|E, (Z, ()] + (15 + 15)|E5 (%, ()] + (15 + 24)|E, (Z, ()
+ (15 + 27)|Es (9, (1)) + (18 + 24)|E (€, ()] + (18 + 27)|E, (%, (1))
+ (18 + 30)|E (2, ()] + (24 + 27)|Eo (€, ()] + (27 + 27)|Eyo (€, ()] + (27 + 30)|Ey, (%, ()] (15)

+(30+30)[E(, (€, ()],

= (12 + 12)(6) + (12 + 24) (6) + (15 + 15) (4 — 4) + (15 + 24) (8) + (15 + 27) (16t — 24)
+ (18 +24)(2) + (18 +27) (8t — 12) + (18 + 30)(6t2 — 20t + 16) +(24 +27)(8)

+ (27 +27) (8t — 14) + (27 + 30) (8¢ — 16) + (30 + 30)(6t2 — 24t + 24).

By doing some calculations, we obtain

M,G;(%,) = 36(1 - 10t + 18°). (16)

M,G; () = Z (SG (r)+ Sq (5)))

rseE (?1)

Thus, from [6],

M,G;5(%,) = (12 x 12)|E; (&, (1))| + (12 x 24)|E, (&, ()| + (15 X 15)|E; (&€, (1))] + (15 x 24)|E, (&, (1))]
+ (15 x 27)|E5 (&, (1))] + (18 x 24)|E¢ (&, (1))| + (18 x 27)|E, (&, (1))
+ (18 x 30)|Eg (€, (1))| + (24 X 27)|Eo (€, ()] + (27 x 27)|E ;o (€, ()] + (27 % 30)|Ey; (&, (1))] (17)

+(30 X 30)[E, (& (1)],

=(12x12)(6) + (12 x 24)(6) + (15 x 15) (4t — 4) + (15 % 24)(8) + (15 x 27) (16t — 24)

+ (18 x 24) (2) + (18 x 27) (8¢ — 12) + (18 x 30)(6t2 — 20t + 16) +(24 x 27)(8)

+ (27 x 27) (8t — 14) + (27 x 30) (8¢ — 16) + (30 x 30)(6t2 — 24t + 24).

By doing some calculations, we obtain

M,G5(%,) = 18(119 - 490t + 480¢°). (18)

Theorem 2.1.2. Consider the rhombus-type silicate network
g, = RHSL(t) for t € N. Then, the first and second general

fifth M-Zagreb indices are equal to
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TaBLE 1: Edge partition of rhombus-type silicate network (RHSL(t)) based on sum of degrees of end vertices of each edge.

(S,.S,) Number of edges
Where rs € E(Z)

(12,12) 6
(12,24) 6

(15, 15) 4t -4
(15,24) 8
(15,27) 16t — 24
(18,24) 2
Where rs € E(Z))

(18,27) 8t—-2
(18, 30) 612 — 20t + 16
(24,27) 8
(27,27) 8t — 14
(27,30) 8t — 16
(30,30) 612 — 24t + 24

M?GS (?1) — [(21+3a31+u + 23+2a31+a5a —4x 31+2a5a + 61+2a _ 23+a31+u7a _ 22+u15a + 3a161+a + 21+a21a
—7x21727% + 8% 39" + 8 x 517 — 16 x 57%) + (=5 x 374172 - 27*231*A50 4 92150 4 Hanya

+2%727% 1 8 x 457 + 8 x 57“) + t2(21+4“3 + 2”2“3““5“)],

MZGS (51) — [((21+4a31+2a + 21+5a31+2a _ 22+a31+5a —8x 31+4a5a + 23+2a31+2a25a + 21+4a27a + 81+a45a + 81+a81a (19)
+4770135% — 4% 225% - 2779405% — 14 x 729%) + 1(-27"2312925% — 2017277 + 4 x 2257 + 2772437
+16 x 405 + 2779405 + 8 x 729%) + £7(21293135% 4 61720257,
MIG; (%) = Se (1) + S5 (s))”.
Proof. Let &, be the rhombus-type silicate network. Table 1 b m;g) (S 6(s) (20)
shows such an edge partition of RHSL(¢). Thus, from [9], it
follows that By using edge partitions in Table 1, we obtain

M{Gs (%)) = (12 + 12)°|E, (&, ()] + (12 + 24)*|E, (&, ()| + (15 + 15)7|E5 (&, (1))
+(15+ 24)|E, (&1 (1) + (15 + 27)*|E5 (€, ()| + (18 + 24)|E¢ (& (1))| + (18 + 27)*|E, (€, (1))
+ (18 +30)"|Eg (%, (1) + (24 + 27)°|Eo (%, (1))| + (27 + 27)|Eo (%, (1))
+(27 + 30)|Ey; (€, ()] + (30 + 30)°|Ey, (%, (1)), (21)
= (12 +12)7(6) + (12 + 24)° (6) + (15 + 15)" (4t — 4) + (15 +24)" (8) + (15 + 24)" (16t — 24)
+ (18 +24)" (2) + (18 +27)" (8¢ — 12) + (18 + 30)°(6t” — 20t + 16) + (24 +27)" (8)

+ (27 +27)% (8t — 14) + (27 + 30)* (8t — 16) + (30 + 30)“(6t2 — 24t + 24).

By doing some calculations, we have

M?GS (?1) _ [(21+3a31+u + 23+2u31+a5a —4x 31+2a5a + 61+2u _ 23+u31+a7u _ 22+a15a + 3u161+a + 21+a21u
=7 x217%27% + 8 x 39" + 8 x 517 — 16 x 57% + t( =5 x 37412 — 315 4 92 50 (22)

+24921% 4+ 2319279 4 8 x 457 + § x 57“) + t2(21*4“31*“ + 2”2“3“”5“))].

From [12], we have
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M2G, (%) = Z (S (r) + Sg ()" (23) By using edge partitions in Table 1, we obtain
rseE(9)

M5Gs (%) = (12 x 12)|E, (&, (1)) + (12 x 24)*|E, (€, ()| + (15 x 15)7|E5 (&, (1))] + (15 x 24)*|
E (G, (1) +(15x 27)"|E5 (€, ()| + (18 x 24)*|E¢ (&, (1))| + (18 x 27)*|E, (%, (1))
+ (18 x 30)|Eg (& (1))] + (24 x 27)*|E (€, (1))| + (27 x 27)*|E o (&1 (1)) + (27 % 30)*

|E;; (€, ()] + (30 x 30)*|E}, (€, (1))], (24)
= (12 x 12)%(6) + (12 x 24)? (6) + (15 x 15)* (4t — 4) + (15 x 24)* (8) + (15 x 24)? (16t — 24)

+ (18 x 24)" (2) + (18 x 27)" (8t — 12) + (18 x 30)"(6t> - 20t + 16) +(24 x 27)°
(8) + (27 x 27)* (8t — 14) + (27 x 30)* (8¢ — 16) + (30 x 30)“(6t2 — 24t + 24).

By doing some calculations, we have

M;Gs (?1) — [(21+4a31+2u + 21+5u31+2a _ 22+a31+5u —8x 31+4u5u + 23+2u31+2u25a + 21+4a27u + 81+a45a + 81+a81a
+4771135% — 4 % 2257 - 2"7405" — 14 x 729% + (-27"2731%2025% — 201727% + 4 x 225" + 277243° (25)

+16 x 405% + 2°79405% + 8 x 729“) + t2(21*2“3”3“5“ + 6”2“25“))].

Theorem 2.1.3. Consider the rhombus-type silicate network ~ Proof. Let &, be the rhombus type of silicate network.
&, = RHSL(t) for t € N. Then, the first and second hyper-  Table 1 shows such an edge partition of RHSL (¢). Thus, from

fifth M-Zagreb indices are equal to [13], it follows that

HM,G5(%,) = 36(221 - 976t + 984t%), 06 HM\Gs (%)= Y (Sq(r)+S5(s)) 27)
rs€E(%)

HM,Gs(%,) = 162(28307 — 68242t + 40800¢").
By using edge partitions in Table 1, we obtain

HM,G5 (%)) = (12 x 12)*|E, (%, ()] + (12 x 24)*|E, (€, ()] + (15 x 15)*|E; (&, (1))] + (15 x 24)*|
E (%, ()] + (15 x 27)*|Es (€, ()] + (18 x 24)°|E4 (%, (1)] + (18 x 27)*|E, (%, (1))
+ (18 x 30)°|Eg (€, ()] + (24 x 27)*|Ey (&, (1))| + (27 x 27)*|E}o (€, ()] + (27 x 30)°
|E\; (%1 ()] + (30 x 30)°|Ey, (% (1), (28)
= (12 x 12)%(6) + (12 x 24)* (6) + (15 x 15)* (4t — 4) + (15 x 24)*(8) + (15 x 24)* (16 — 24)

+ (18 x 24)* (2) + (18 x 27) (8t — 12) + (18 x 30)*(6> — 20t + 16) + (24 x 27)
(8) + (27 x 27)* (8t — 14) + (27 x 30)° (8t — 16) + (30 x 30)° (6t — 24t + 24).

By doing some calculations, we have HMGS(£)= Y (Sg(r) +So(9) 0)

HM,G5(%,) = 36(221 - 976t + 984t°). (29) rsE(9)

From [14], we have By using edge partitions in Table 1, we obtain
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HM,G5(%,) = (12 x 12)*|E, (€, ()] + (12 x 24)*|E, (€, (t))| + (15 x 15)*|E5 (€, (1))]
+(15 % 24)°|E, (€, ()] + (15 x 27)*|E5 (€, (1))] + (18 x 24)*|E (%, (1))
+ (18 x 27)°|E, (%, ()] + (18 x 30)*|Eg (€, (1))| + (24 x 27)*|Ey (%, (1))
+(27 X 27)*|Eo (€, ()] + (27 x 30)*|E,, (€, ()] + (30 x 30)*|E,, (%, (1)), (31)
= (12 x 12)*(6) + (12 x 24)* (6) + (15 x 15)* (4t — 4) + (15 x 24)*(8)

+ (15 x 24)% (16 — 24) + (18 x 24)* (2) + (18 x 27)* (8¢ — 12) + (18 x 30)2(6t2 — 20t + 16)

+ (24 x 27)%(8) + (27 x 27)* (8t — 14) + (27 x 30)* (8t — 16) + (30 x 30)2(6t2 — 24t + 24).

By doing some calculations, we have

HM$G;(%,) = 162(28307 — 68242t + 40800t*).  (32)

Theorem 2.1.4. Consider the rhombus-type silicate network
&, = RHSL(t) for t € N. Then, the third M-Zagreb index is
equal to

M,Gs (%)) =(-232 + 248t + 12t7). (33)

Proof. Let &, be the rhombus silicate network. Table 1
shows such an edge partition of RHSL(t). Thus, from [15], it
follows that

MyGs(9) = ) [S6(r) +S5(s)] (34)
rs€E(%)

By using edge partitions in Table 1, we obtain

M;G5(%,) = 12 - 12||E; (&, (1))] + 112 = 24||E, (&, (1))| + 115 = 15||E5 (&, (1))| + 115 — 24| E, (%, (1))
+[15 = 27||E5 (&, (1))] + 18 — 24||E¢ (€, (1))| + 118 = 27||E; (&, (1)) + 118 — 30| E5 (&, (1))
+124 = 27|Eg (8, (1))| + 127 = 27||Eyo (&1 (1))] + 127 = 30||Ey; (%, (1))] + 130 = 30||Ey, (8 (1)),
=12 = 12](6) + |12 — 24| (6) + |15 — 15| (4t — 4) + |15 — 24| (8) + |15 — 27| (16t — 24) + |18

(35)

- 24](2) + 18 - 27| (8t — 12) + |18 = 30](6t” — 20t + 16) + [24 — 27| (8) + [27 — 27| (8t - 14)

+127 = 30| (8¢ — 16) + |30 — 30| (6t — 24t + 24).

By doing some calculations, we have

M,Gs (%)) =(-232+ 248t + 12t7). (36)

Corresponding to the above indices, we are going to
compute general fifth M-Zagreb polynomials for rhombus-
type silicate network RHSL (t).

MiGs (%), x) = 65 + (4t - 4)x™" + 6x° + 8x

+(67 =20t +16)x™" +8x°" + (8t - 14)x°" + (8t - 16)x”" +(6t7 - 24t + 24)x™",

M3Gs (%, x) = 65 + (4t — 4)x™" + 6x™ + 8x

540¢ 648

+2(t-2)(3t —4)x +8x

Proof. 'We obtain the outcome with the edge partition in
Table 1. It follows from [1] that

3 (16t - 22)x

360

+2(4t - 7)x

Theorem 2.1.5. Let &, = RHSL(t) be the first type of
rhombus-type silicate network; then, general fifth M-Zagreb
polynomials of first and second type are equal to

24 (8t - 12)x™

4057 (37)

+8(2t — 3)x™ + 2x™% 1+ 4 (2t - 3)x™

28t -2)xM" v 6(t - 2%
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MIG,(Gyx)= Y xS0
rsEE(?l)
M|Gs(%,,x) = <272 g (€, (1)) + x(12+24)a|E2(?1 )] + K155 (@, O+ 5929 (%, 0)
+ x(15+27)u|E5 (?1 (t))| n x(18+24)u|E6 (?1 (t))| n x(18+z7)ﬂ|E7 (?1 (t))| N x(18+30)a|E8 (fl (t))|
a ' ’ ‘ 38
+ X OB (9, (0)] 4 x T |E (8, 0)] + 2T B, (8, @) 4 xOV B (8, 0) O
]\/[‘1”(;5 (?px) _ x(12+12)u (6) + x(12+24)a (6) + x(15+15)ﬂ (4 — 4) + x(15+24)a ®)

+x (16t - 24) + x 1 (2) 4 118 (81 - 12) + x5V (68 - 201 + 16)

+x P (8) + x 77 (8t — 14) + x TP (8 - 16) + x07 (687 - 24t +24).

By doing some calculations, we obtain

MIG5 (%), x) = 6x°" + (4t - 4)x™" + 6x° +8x™ + (16t — 22)x™" + (8 — 12)x™ 9)
a a a a a 39
+(6t2 — 20t + 16)x48 + 81 4 (8t — 14)x™" + (8t — 16)x” +(6t2 — 24t + 24)x60 .

Also, from [3],

M5Gs(%,x)= ) x (86485 9)"
rseE(?l)

M2G, (%), x) = x 2 E, (2, ()] + xVIE, (2, ()] + x B, (2, () + x Y E (2, ()]
+xNE (%, () + x ¥ E, (2, (0)] + x7IE, (2, ()] + x PV By (2, (1))
+ x P NE (&, () + xZHE (2, ()] + x TPV E (2, (0))] + xCPYEL (8, (), (40)
M3Gs (%1, x) = x2777(6) + x 122V (6) + x 119" (41 — 4) + x5V (8)

+ x5 (16t - 24) + x5 (2) + U (8t - 12) + x 18V (68 - 20t + 16)

+x P (8) 4 x T (88 - 14) + x 77RO (8¢ - 16) + x O (687 - 24t + 24).

By making some calculations, we obtain

M3Gs (%, x) = 65" + (4t — 4)x™" +6x™ + 8% +8(2t - 3)x™ + 24" +4(2t - 3) (an
41
£ 12t -2) (3t — ) +8x5 1 2(4t — )X +8(r - 2)xMY +6(t - 2)2x7.

Corresponding to the above indices, we are going to ~ Theorem 2.1.6. Let &, = RHSL(t) be the rhombus type of
compute fifth M-Zagreb polynomials for rhombus-type  silicate network; then, fifth M-Zagreb polynomials of first and
silicate network RHSL (t). second type are equal to



8 Journal of Mathematics

M,Gs (%), x) = 65 + (4t — 4)x™ + 6x° + 8x + (16t — 22)x™? + (8t = 12)x
+(6t7 = 20t +16)x™ + 8x" + (8t — 14)x™" + (8t — 16)x”" +(6t° — 24t +24)x,

(42)
M,G5 (%, x) = 65 + (4t — 4)x7 + 6x™ + 8x°% + 8(2t - 3)x™” + 25 + 4 (2t — 3)x™°
+2(t-2)3t —)x"" + 8x 4 2(4t - 7)x"® +8(t - 2)x* + 6(¢ — 2)°x°.
Proof. We obtain the outcome with the edge partition in
Table 1. It follows from [16] that
MGs(%.x)= Y x (Sa(+5(9)
rseE(?l)
M,Gs (%, x) = x"E (&, (1)) + x"E, (2, ()] + x TV |E, (£, (1)) + xPPVE (€, ()
+ x(15+27)|E5 (gl (t))l + x(18+24)|E6 (gl (t))l + x(18+27)|E7 (gl (t))l + x(18+30)|E8 (gl (t))l
43
+ P NE (9, 0] + xTE (%, (0)) + xZOUE, (9, (0)] + xPPOE,, (%, (1)) (43)
_ x(12+12) (6) + x(12+24) (6) + x(15+15) (4t — 4) + x(15+24) (8)
+ x5 (16t - 24) + x5 (2) + x5 (8 - 12) + x 10 (61 - 20t + 16)
+x ) (8) + x 77 (8t — 14) + x 7T (8t - 16) + x P70 (617 - 241 + 24).
By doing some calculations, we obtain
M,Gs (%, x) = 65 + (4t — 4)x™ + 6x% + 8x™ + (16t — 22)x™ + (8t — 12)x "

+(6t2 — 20t + 16)x48 +8x 4+ (8t — 14)x™* + (8t — 16)x”’ +(6t2 — 24t + 24)x60.

Also, from [4],

M2G5(?1,x) = Z x(SG(”)JrSG(s))’
rsGE(?l)

M,G5(%),x) = x VLB, (&, (0)] +x "V (£, ()] + x|y (&, ()] + x VI, (%, ()]
+ xPNE (%, (1)) + xPIE (2, ()] + x TN, (2, ()] + x P D|E (2, (1))
+xTONEy (€, ()) + x T NE L, (9, 0) + x " VIEL (9, 0) + xMTEL (%, ()]
+x(“X13)IE13(?1 (t))l +x(““4)|E14(?1 (t))l +x(11x16)|E15(g1 (t))l
+ x(12x14)|E16 (?1 (t))| + x(13x14)|E17 (gl (t))| + x(13x16)|E18 (gl (t))| (45)
£ xR (2 ()] + xOE, (7, (0)),
= (6 () 4 x 1D (45) 4 xO12) (4) 4 O gy _ gy 4 OO (4 _ gy 1 x 71D (4 _ g)
F I (126 8y 1 I3 (4r —a) 4 xOD (2¢ — 2) 4 x 1) (41 _ 4)
N x(uxn)(gtz 7ty 3) D) (g) 4 O3 4y gy x(11x14)(36t2 68t + 32)
4 (11X16) (4t — 4) + 5 (12619) (4 — 4) + 5 (13%19) (4t — 4) + 5 (13%16) (4t — 4)
+ x4 (a1 — 4) + x99 (3617 - 76t + 40).
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By making some calculations, we obtain

M,G5 (%), x) = 6x"** + (4t — 4)x™ + 6x

288 360 405 432 486

+8x7 +8(2t—-3)x " +2x " +4(2t -3)x

810 2900

+2(t=2) Bt =) +8x 1 24t - X" +8(t - 2)x* 0 + 6(t - 2)*x

Theorem 2.1.7. Let &, = RHSL(t) be the rhombus-type
silicate network; then, hyper-fifth M-Zagreb polynomials of
first and second type are equal to

HM, G5 (%, x) = 6x7° + (4t — 4)x°% + 6x'*° + 8x"" + (16t — 22)x"7** + (8t — 12)x™

+(6t2 — 20t + 16)x2304 + 8x%%" 4 (8t — 14)x¥" + (8t - 16)x°2¥ +(6t2 — 24t + 24)x3600,

HM,G5 (%), x) = 6x°7°° + (4t - 9)x°% + 6x"7 4 8x7%% 1 (161 — 24)x"*

+ 2x186624 + (Sf _ 12)x236196 +(6t2 — 20t + 16)x291600 + 8x419904

+ (8t — 14)x” 1 1 (8t — 16)x™% + (617 - 248 + 24) x>0,

Proof. We obtain the outcome with the edge partition in
Table 1. It follows from [2] that

HMGy(%x) = Y a0

HM,G5(%,,x) =

rsEE(?l)
(12+12)? (12+24)? (15+15)? (15+24)°
x |E; (%1 ()] +x |E, (%1 ()] +x |E5 (1 ()] +x |E, (%, (1)l
+ x(15+27)2|E5 (?1 (t))l + x(18+24)2|E6 (?1 (t))l + x(18+27)2 |E7 (?1 (t))l + x(18+30)2|E8 (gl (t))l
n x(24+27)2|E9 (?1 (f))| n x(27+27)2|E10 (gl (t))| " x(27+30)2|E11 (Z1 (t))| " x(30+3o)2 |E12 (gl (t))|>
x(12+12)2 (6) + x(12+24)2 (6) + x(15+15)2 (4t — 4) + x(15+24)2 (8)
+ x5 (161 — 24) + 2 (2) 4 x5 (81 - 12) + x"# (617 — 20t + 16)

+x 7 (8) 1 x W (81— 14) 4 x PV (81 - 16) + x OO (61 - 241 + 24).

By doing some calculations, we obtain

HM,Gs(%,,x) = 6x°7° + (4t — 4)x* + 6x'7° + 8x"*" + (16t — 22)x"7%* + (8¢ — 12)x°*%

Also, from [10],

+(6t2 — 20t + 16)x2304 + 8x%%" 4 (8t — 14)x®"® + (8t — 16)x2¥ +(6t2 — 24t + 24)x36°°.

(46)

(47)

(48)

(49)
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2
HM;Gs (91, %)= ), x(0Sel),
rsEE(?l)

HMSG5 (%, x) = x"NE (2, ()] + x "V |E, (2, ()] + x "V |E; (2, (1))
N x(15><24)2 |E, (‘31 (t))| N x(15x27)2|E5 (?1 (t))| " x(18><24)2|E6 (?1 (t))|

+x(18><27) |E7 (?1 (t))l +x(18><30) |E8 (?1 (t))| +x(24><27) |E9(?1 (t))| (50)

2 2 2
4 x(27><27) |E10 (?1 (t))l 4 x(27><30) |E11 (Cgl (t))l 4 x(30><30) |E12 (561 (f))|,
2 2 2 2 2
= (12112) (6) + (12229 (6) + 5 (15%15) (4 —4) + 5 (15%29) (8) + 5 (15%27) (16t — 24)
2 2 2 2
+xUO (2) 4 U (81 - 12) + £ 1Y (687 - 20t +16) + x PP (8)

2 2 2
4 @727 (8t — 14) + 5 27330) (8t — 16) + 5 (30x30) (6t2 —24f + 24).

By making some calculations, we obtain

HM2G5 (?1, x) — 6x20736 + (4t _ 4)x50625 + 6x82944 + 8X129600 + (16t _ 24)x164025 + 2x186624

+ (8t = 12)x7 4 (617 - 20t + 16) 5™ + 821 + (8¢ — 14)x71H! (51)

656100

+ (8t — 16)x +(6t7 — 24t +24)x*1".

M,G;(%,) = 16(1 - 8t + 12¢%),
2.2. Results for the Rhombus Type of Oxide Networks.

Now, we are calculating fifth M-Zagreb topological indices M,G5(%,) = 16(2t - 1) (48t - 35).
of the rhombus-type oxide network &, = RHOX (t), where
teN.

(52)

Proof. 'The outcome can be obtained by using the edge
Theorem 2.2.1. Let &, = RHOX(t) be the rhombus-type partition in Table 2.

silicate network; then, the first and second fifth M-Zagreb By using equation [5],
indices are equal to

M,G5(%,) = Z (86 (r) +S5(5)),
rsEE(fé)z)

M,G5(%,) = (6 + 6)|E, (%, ()] + (6 + 12)|E, (%, (1)) + (8 + 12)|E5 (%, (1)) + (8 + 14)|E, (%, (1))
+ (124 14)E; (%, (0)] + (14 + 14)|Eg (%, ()] + (14 + 16)|E, (Z, ()] + (16 + 16)E; (%, ()], (53)
=(6+6)(2)+(6+12)(4) +(8+12)(4) +(8+14)(8t —12) + (12 +14)(8) + (14 + 14)

(8t — 14) + (14 + 16) (8¢ — 16) + (16 + 16)(6(t - 2)2).
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TaBLE 2: Edge partition of rhombus-type oxide network (RHOX (t)) based on sum of degrees of end vertices of each edge.

(S, S;) Number of edges
Where rs € E(Z,)
(6,6) 2
(6,12) 4
(8,12) 4
(8, 14) 4(2t - 3)
Where rs € E(Z,)
(12, 14) 8
(14, 14) 2(4t - 7)
(14, 16) 8(t-2)
(16,16) 6(t—2)?

By doing some calculations, we obtain Thus, from [6],

M,Gs(%,) = 16(1 - 8t +12¢%). (54)

M,G5(%) = ) (Sg(r)+S5(s)),

rseE(%)
M,G5(%,) = (6 +6)IE; (G5 ()] + (6 + 12)|Ey (F, (1)] + (8 + 12)|E5 (Z, (1))] + (8 + 1)|E4 (Z, (1))]
+(12 + 14)[E5 (5 ()] + (14 + 14)[Eg (£, ()] + (14 + 16)|E, (%, ()] + (16 + 16)|Eg (%, (£))], (55)
=(6+6)(2)+(6+12)(4) +(8+12)(4) +(8+14)(8t —12) + (12 + 14)(8) + (14 + 14)
(8t — 14) + (14 + 16) (8t — 16) + (16 + 16)(6 (¢ - 2)*),

By doing some calculations, we obtain Theorem 2.2.2. Consider the rhombus-type oxide network
a g, = RHOX (t) for t € N. Then, the first and second general
M,Gs (%) = 16(2¢ - 1) (48t - 35). (56) fifth M-Zagreb indices are equal to

6. (%) 2“(3 x 23740 4 pltaza | H24a5a L 4 9% 12 x 11% + 8 x 13% — 1477 — 16 x 15“)+
M1G5 gz = >

2“t(—3 x 23744 4 93478 4 8% 117 + 8 x 15“) +3 x 219
(57)

. ( ) (3 % 23+8u + 22+5a3u _ 24+5a7a —3x 41+2a7a + 21+2a9u + 22+3a9u _ 141+2a + 81+a21u
MSGs(%,) =

+ t(—3 ™ 23+8u + 23+4a7a + 23+5u7u + 23+2a49a) +3x 21+8ut2

MG (%) = Sg (1) + S5 (s))".
Proof. Let &, be the rhombus-type oxide network. Table 2 e m;g) (S 6() (58)

shows such an edge partition of RHOX (¢). Thus, from [9], it
follows that By using edge partitions in Table 2, we obtain

MAG4(%,) = (6 + 6)°|E, (€, ()] + (6 + 12)°|E, (€, ()] + (8 + 12)*|E5 (€, ()] + (8 + 14)7|E, (€, (1))
+ (12 + 14)|E5 (%, (1)) + (14 + 14)*|Eg (€, ()| + (14 + 16)°|E, (€, (1))] + (16 + 16)*|Eg (E5 (1)),
=(6+6)"(2)+(6+12)"(4) + (8 +12)"(4) + (8 + 14)" (8t — 12) + (12 + 14)*(8) + (14 + 14)"
(8t — 14) + (14 + 16)" (8t — 16) + (16 + 16)*(6 (t - 2)°).

(59)

By doing some calculations, we have
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. 2°(3 % p¥tda  olvaza 4 925 | 4% 97 _12x 11° + 8 x 137 — 141 — 16 x 15“)+
Mle(?Z) = a 3+4a 3+a~a a a 1+5a,2 : (60)
2t(—3><2 +2 7+8x11+8x15)+3x2 t

From [12], we have By using edge partitions in Table 2, we obtain

M5Gs(8)= Y (Sg(r)+S5(s)". (61)
rs€E(%)

M3G5(G,) = (6 +6)|E (E,(1) + (6 + 12)"|E, (&, (1)) + (8 + 12)*|E5 (&, (1))| + (8 + 14)*|E, (&, (1))
+ (124 14)|Es (&, ()] + (14 + 14)*|Eg (Z5 ()| + (14 + 16)°|E, (&, (1)) + (16 + 16)*|Eg (Z5 (D)),

62
=(6+6)(2)+(6+12)"(4) +(8+12)"(4) + (8 + 14)" (8t — 12) + (12 + 14)*(8) + (14 + 14)" (62)
(8t — 14) + (14 + 16)" (8t — 16) + (16 + 16)*(6 (t - 2)°).
By doing some calculations, we have
3 x 23+8a + 22+5a3a _ 24+5a7a —3x 41+2a7a + 21+2a9a + 22+3a9a _ 141+2a + 81+a21a
M5G:(%,) = (63)
2 5( 2) [< +t(—3 % 23+8a " 23+4a7a " 23+5u7u n 23+2u49u 13% 21+8at2)

Theorem 2.2.3. Consider the rhombus-type oxide network  Proof. Let &, be the rhombus-type oxide network. Table 2
g, = RHOX (t) for t € N. Then, the first and second hyper ~ shows such an edge partition of RHOX (t). Thus, from [13],
fifth M-Zagreb indices are equal to it follows that

HM{G;(%,) = 64(31 - 113t + 96t°), HM\G5(9)= Y (So(r)+S(s) (65)

(64) CE(%)
HMSG;(%,) = 192(1915 - 3978 + 20481%). "

By using edge partitions in Table 2, we obtain

HM,G5(%,) = (6 + 6)°|E, (€, ()] + (6 + 12)°|E, (€, ()] + (8 + 12)°|E5 (€, (1))] + (8 + 14)*|E, (%, (1))l
+ (12 + 14)°|E5 (€, ()] + (14 + 14)*|E¢ (€, ()] + (14 + 16)*|E, (€, ()] + (16 + 16)°|E4 (€, (1)),

2 2 2 2 2 2 (66)
=(6+6)"(2)+(6+12)"(4)+(8+12)"(4) +(8+14) (8t —12) + (12 +14)°(8) + (14 + 14)
(8t — 14) + (14 + 16)* (8t — 16) + (16 + 16)*(6 (£ - 2)*).
_ 2
By doing some calculations, we have HM,Gs (%) = rse;g) (S (1) + S ()" (68)
HM,G5(9,) = 64(31 - 113t + 96t2)' (67) By using edge partitions in Table 2, we obtain
From [14], we have
HM,G5(%,) = (6 + 6)°|E, (€, (1)] + (6 + 12)°|E, (€, ()] + (8 + 12)°|E5 (€, (1))] + (8 + 14)*|E, (%, (1))
+ (12 + 14)°|E5 (€, ()] + (14 + 14)*|E¢ (€, ()] + (14 + 16)*|E, (€, (1))] + (16 + 16)°|E4 (%, (1)), ()

=(6+6)7(2) +(6+12)%(4) + (8 + 12)* (4) + (8 + 14)* (8t — 12) + (12 + 14)*(8) + (14 + 14)*
(8t — 14) + (14 + 16)* (8¢ - 16) + (16 + 16)*(6(t — 2)°).
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By doing some calculations, we have

HM,G5(%,) = 192(1915 — 3978t + 2048t°). (70)

Theorem 2.2.4. Consider the rhombus-type silicate network
&, = RHOX (t) for t € N. Then, the third M-Zagreb index is
equal to

MG (%,) = (—48 + 64t). (71)

13

Proof. Let &, be the rhombus-type oxide network. Table 2
shows such an edge partition of RHOX (t). Thus, from [15],
it follows that

MG5 ()= ) [S5(r) =S (s)]. (72)
rs€E(%)

By using edge partitions in Table 2, we obtain

M;G5(%,) =16 - 6|E, (&, (1)| + 16 — 12||E, (&, (1))] + 18 — 12||E5 (&, (1))| + 18 — 14| E, (%, (1)|+

112 - 14|E5 (%, (1))| + 14 — 14| E¢ (&, (1))| + 114 - 16||E; (&, (1))| + 116 — 16| E (2, (1)),
=16 - 6](2) +16 — 12/ (4) + |8 — 12](4) + |8 — 14| (8 — 12) + [12 — 14[(8) + |14 — 14]

(73)

(8t — 14) + |14 — 16| (8t - 16) + [16 — 16|(6 (¢ — 2)°).

By doing some calculations, we have

M,Gs(%,) = (—48 + 64t). (74)

Corresponding to the above indices, we are going to
compute general fifth M-Zagreb polynomials for rhombus
type of oxide network RHOX (t).

Theorem 2.2.5. Let &, = RHOX(t) be the rhombus-type
oxide network; then, general fifth M-Zagreb polynomials of
first and second type are equal to

MIGs(Gyx) = 26" +4x™ + 45 + 42t - 3)x™ + 87 +2(4t - 7)™ +8(t - 2)x°" +6(t - 2)°x°7,

MiGs(%,,x) = 2% + 4x7 + 4x° + 421 - 3)x"*

+6(t —2)2x>,

Proof. We obtain the outcome with the edge partition in
Table 1. It follows from [1] that

M?GS (gza x) = Z x (86 (N+Sg (s))a,
rsEE(?2)

+ 8x

108 L 2 (4t — 7)x™ + 8(¢ - 2)x** (75)

MG, (%, x) = x“NE, (2, ()] + x 2 |E, (%, ()] + x "2 |E, (2, (0)] + x*|E, (2, (D)

a a a a 76
+x(12+14) |E5(?2 (t))l +x(14+14) |E6(?2 (t))l +x(14+16) |E7(?2 (f))| +x(16+16) |E8(f—§2 (t))|, ( )
= x (640" () 4 OH1D7 gy 4 L BHD" (g) 4 (" (g gy (2010 (g (11d)”
(8t — 14) + x 1" (8¢~ 16) + x 11" (6.(£ - 2)%).
By doing some calculations, we obtain
MG (%,,x) = 25" + 4x™ + 4x® 1426 - 3)x™ +8x™ +2(4t - 7)x™ +8(1 - 2)x°" +6(t - 2)°x*. (77)

Also, from [3],
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MG (Epx) = Y x(ese),
rsEE(?Z)

M2G, (5, x) = x“NE, (2, (1)) + x 2 |E, (2, ()] + x 2 |E, (2, ()] + x ¥ |E, (2, (1)

. ) . . (78)

+ x(12+14) |E5 (?2 (t))l + x(14+14) |E6 (?2 (t))l + x(14+16) |E7 (?2 (t))| + x(16+16) |E8 (?2 (t))|,

_ x(6+6)“ (2) " x(6+12)“ (4) + x(8+12)“ (4) " x(8+14)“ (Sl’ _ 12) " x(12+14)“ (8) " x(14+14)“

(8t — 14) + x 71" (8¢ — 16) + x " (6.(£ - 2)%).

By making some calculations, we obtain
MG (%5, x) = 2% + 457 + 4% + 42t = 3)x"% + 8" + 24t — 7)x" + 8(t — 2)x™*
26509, (79)
79

+6(t—2)%x>

Corresponding to the above indices, we are going to ~ Theorem 2.2.6. Let &, = RHOX(t) be the rhombus-type
compute fifth M-Zagreb polynomials for rhombus-type  oxide network; then, fifth M-Zagreb polynomials of first and
oxide network RHOX (t). second type are equal to

MIGs (% x) = 26" + 4x™ + 45 + 42t - 3)x™ +8x7° +2(4t — 7)x™ + 8(t - 2)x™° + 6(t - 2)°x%,
M,Gs (€5, x) = 267 + 4x7 + 4x™ + 42t - 3)x"? + 8x"® + 2(4t - 7)x"° +8(t - 2)x** + 6 (80)
(t _ 2)2x256.

Proof. We obtain the outcome with the edge partition in
Table 2. It follows from [16] that

M,G5 (%5, x) = Z x (o 0156(9),
rs€E (?2)

M,Gs(%,,x) = x"IE, (€, ()] + x*"?|E, (&, (1)) + x*"?|E, (&, (1)) + x* T |E, (2, ()]

81
+ B (% (1) +x(14+14)|E6(32(t))| +x(14+16)|E7(gz(t))| +x(16+16)|E8(<§2(t))|) (81)
= (9 () 4 (O (4) 4 811D (g) 4 L BHD gy 19y 4 (2410 gy (14410
(8t — 14) + x "9 (8t - 16) + x "1V (6 (¢ - 2)°).
By doing some calculations, we obtain
MG (€, x) = 2x2 +4x™ + 45 + 421 - 3)x™ + 8x™° + 2(4t — 7)x™ + 8(+ — 2)x™" + 6 (f — 2)*x7°. (82)
1-5 2

Also, from [4],
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MGy (Gpx) = Y x(5o560),
rseE(?z)

M,Gs(%,,x) = x“VIE, (€, ()] + x“|E, (€, ()] + x¥?|E, (€, (1)) + x M E (&, (1) |+

83
1299 (%,(0)] + K (g )]+ O (g )] + LUOE (2 (1) (83)
= x 60 () 4 x(6¥12) (g) | xBID) gy 4 OXUD (g oy (12419) gy (14314) gy g
+ x99 (8t —16) + x "1 (6 (¢ - 2)°).
By making some calculations, we obtain
M,Gs (€5, x) = 27 + 4x7 + 4x°° + 42t = 3)x""? + 8x"% + 2(4t - 7)x"° + 8(t - 2)x*** (50
84
+6(t —2)° x>
Theorem 2.2.7. Let &, = RHOX(t) be the rhombus-type
oxide network; then, hyper-fifth M-Zagreb polynomials of first
and second type are equal to
HM G5 (%5, x) = 26" + 4x™* + 4x™ + 421 - 3)x™* + 857
+2(4t = 7)x" 4+ 8(t - 2)x”" + 6(t - 2)°x' ", HM,G4 (%, x) 55
85
= 2x1296 4 4y 518 4 4y 926 g (gp _ 3)x 1250 gy 28224
+2(4t - 7)x7 M0+ 8(t - 2)x°"7C + 6 (¢ - 2)* x5,
Proof. We obtain the outcome with the edge partition in
Table 2. It follows from [2] that
2
HM\Gy(%,,x) = ) x50,
rseE (?2)
HM,Gs (%5, x) = x Y 1E, (%, ()] + x|, (2, (1) + xS |E, (%, (0)] + xS |E, (2, (1))
86
n x(12+14)2|E5(?2 (t))| n x(14+14)2|E6(?2(t))| +x(14+16)2|E7(g2(t))| +x(16+16)2|E8 (?2(t))| (86)
_ x(6+6)2 )+ x(6+12)2 (4) + x(8+12)2 (4) + x(8+14)2 (8t —12) + x(12+14)2 (8)
0 (81— 14) + 97 (81— 16) + x "1 (6.1 - 2)2),
By doing some calculations, we obtain
HM G5 (%5, x) = 26" + 457 + 4x™ + 421 - 3)x™* + 8577 )
87
+2(4t - 7)x" +8(t - 2)x”" + 6(¢ - 2)°x"

Also, from [10],
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2
HM;GS (?2’ x) — Z x (86 (N+55(5)) ,
rsEE(?Z)

Journal of Mathematics

HM,Gs (9, x) = x TV |E, (%, (1)) + x|, (9, ()] + x D |E, (2, ()] + x ¥ [E, (%, (1)) 1+

x(12><14) |E5(?2 (t))l +x(14><14) |E6(?2 (t))l +X(14X16) |E7(?2 (t))l +x(16x16) |E8(g2 (t))ly

(88)

2 2 2 2 2 2
=x(6><6) (2)+x(6x12) (4)+x(8><12) (4)+x(8><14) (St— 12)+x(12><14) (4)+x(14><14) (8t— 14)

+ x99 (81— 16) + x 11 (6(¢ - 2)?).

By making some calculations, we obtain

HM,Gs (%5, x) = 2x"° + 4™

+2(4t — 7)x%M6

3. Conclusion

In this study, we computed sum of degree-based indices for
RHSL(t) and RHOX(t) graphs of rhombus oxide and
silicate structures. We also computed certain sum of degree-
based polynomials such as fifth M-Zagreb, fifth hyper
M-Zagreb, and generalized fifth M-Zagreb indices for
RHSL(t) and RHOX(t) graphs of rhombus oxide and
silicate structures. These facts may be useful for people
working in computer science and chemistry fields who
encounter chemical networks. These results can also play a
vital role in the determination of the significance of silicate
and oxide networks. Like certain other topological indices,
determining the representations of derived graphs like these
is an open question.
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