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Abstract
Norm-attainable polynomials play a crucial role in various mathematical contexts. This research paper
investigates the characterizations and properties of norm-attainable polynomials in different orthogonal
polynomial families. We explore their behavior, convexity, and positive definiteness. Additionally, we
establish their norm-attainability in specific intervals for various weight functions. The findings contribute to
a deeper understanding of norm-attainable polynomials and their applications in approximation theory and
mathematical modeling.
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1 Introduction
In this paper, we explore norm-attainable polynomials, also known as NAP polynomials, and their properties
in different orthogonal polynomial families. Our focus is on characterizing norm-attainable polynomials and
analyzing their behavior within specific intervals. By understanding these properties, we can gain insights into
their applications in approximation theory, mathematical modeling, and other areas of mathematics. Previous
research by Chatzikonstantinou and Nestoridis [1], Chihara [2], George [3], Gorkin and Laine [4], Mourad [5],
Yuan Xu [6], and Zhu and Zhu [7] has made significant contributions in studying norm attainment for orthogonal
polynomials, providing insights into the connections between norm-attaining operators and the behavior of these
polynomials in various contexts.

2 Preliminaries
Before delving into the results, it is important to provide the necessary background information and definitions.
We introduce the concept of norm-attainable polynomials, explain the key properties associated with them, and
discuss the fundamental concepts of orthogonal polynomial families. Furthermore, we present the notation and
terminology used throughout the paper to ensure clarity and consistency in our discussions. Norm-attainable
polynomials are a class of polynomials that achieve their maximum norm within a given function space. In other
words, for a norm-attainable polynomial, there exists at least one point or set of points in its domain where
the polynomial attains its maximum norm. This property makes norm-attainable polynomials particularly
interesting and useful in various mathematical contexts. The key Properties of Norm-Attainable Polynomials
include:

(i). Convexity: Norm-attainable polynomials exhibit convexity, which means that the line segment between
any two points on the polynomial curve lies entirely above the curve itself. This property ensures that
the polynomial’s graph forms a convex shape.

(ii). Positive Definiteness: Norm-attainable polynomials are positive definite, meaning that they are non-
negative over their entire domain. This property implies that the polynomial remains positive or zero for
all values within its range.

(iii). Equivalence of Conditions: There are several equivalent conditions that characterize norm-attainable
polynomials. For example, if a polynomial’s root multiplicities are all even, it is norm-attainable.
Similarly, if the polynomial can be expressed as a sum of squares of other polynomials, it is also
norm-attainable. These equivalent conditions allow for different approaches to identify and study norm-
attainability.

Orthogonal polynomial families are a special class of polynomials that have orthogonality properties with respect
to specific weight functions. These families play a fundamental role in many areas of mathematics, including
approximation theory, numerical analysis, and mathematical physics. Orthogonal polynomials are typically
defined on a specific interval or domain and possess unique properties that make them advantageous for various
applications. Fundamental Concepts of Orthogonal Polynomial Families include:

(i). Orthogonality: Orthogonal polynomials satisfy an orthogonality condition, which means that their inner
product with respect to a certain weight function is zero. This orthogonality property allows for efficient
representation and approximation of functions using these polynomials.

(ii). Recurrence Relations: Orthogonal polynomial families often have well-defined recurrence relations, which
express the polynomials of higher degree in terms of lower-degree polynomials. These recurrence relations
facilitate the computation and evaluation of orthogonal polynomials.

(iii). Weight Functions: Each orthogonal polynomial family is associated with a specific weight function that
determines the inner product used for orthogonality. The weight function depends on the problem at
hand and affects the properties and behavior of the polynomials in the family.
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(iv). Generating Functions: Generating functions provide a convenient way to express and manipulate orthogonal
polynomials. These functions allow for the derivation of various properties, such as recurrence relations,
generating orthogonal polynomials from other known ones, and obtaining polynomial expansions.

3 Methodology
The methodology employed in proving the results varies, but several common approaches are used. These include
exploiting the orthogonality and recurrence relations of the polynomials, working with weighted inner products
and analyzing the properties of associated weight functions, utilizing extremal problems and optimization
techniques, employing analytic and asymptotic methods, and establishing connections with other areas of
mathematics such as operator theory.

4 Results
In this section, we present our research findings regarding the characterizations and properties of norm-attainable
polynomials in various orthogonal polynomial families. We discuss the norm-attainability of Chebyshev polynomials,
Hermite polynomials, Laguerre polynomials, Legendre polynomials, and Jacobi polynomials. For each polynomial
family, we establish the necessary conditions for norm-attainability, analyze their behavior in specific intervals,
and provide proofs for the propositions and theorems mentioned earlier. The results highlight the significance
and effectiveness of norm-attainable polynomials in approximation theory and mathematical modeling.

Proposition 4.1. For any non-negative integer n , the Chebyshev orthogonal polynomial φn(xC) defined on
the interval [−1, 1] with respect to the weight function w(xC) = (1−x2)−1/2 is norm-attainable in H . In other
words, |φn(xC)|H = K , where K represents a constant value.

Proof. Let H be a Hilbert space with the inner product 〈·, ·〉 . We aim to show that for any non-negative integer
n , there exists a constant K > 0 such that ‖φn(xC)‖H = K , where φn(xC) denotes the Chebyshev orthogonal
polynomial defined on the interval [−1, 1] with respect to the weight function w(xC) = (1− x2)−1/2 . First, we
observe that φn(xC) is orthogonal to all lower-degree Chebyshev polynomials, i.e., 〈φn(xC), φm(xC)〉 = 0 for
all m < n , by definition of the orthogonal property. Next, we consider the norm of φn(xC) in H . We have:

‖φn(xC)‖2H = 〈φn(xC), φn(xC)〉.

Since φn(xC) is a non-zero polynomial, the inner product 〈φn(xC), φn(xC)〉 must be greater than zero. Let
K =

√
〈φn(xC), φn(xC)〉 , and we can write:

‖φn(xC)‖2H = 〈φn(xC), φn(xC)〉 = K2.

Hence, we have established that ‖φn(xC)‖H = K , where K > 0 . This confirms that the Chebyshev orthogonal
polynomial φn(xC) is norm-attainable in the Hilbert space H .

Proposition 4.2. For a normal distribution with weight function w(x) = e−x
2

and Hermite polynomials Hn(x)
defined on the interval (−∞,∞) , there exists a positive integer n ∈ N+ such that Hn(x) is a norm-attainable
polynomial (NAP) with respect to w(x) .

Proof. Let L2(X,µ) be a space with the support X and the measure µ . Within this space, we have the
Hermite polynomials Hn(x) defined, and Rodriguez’s formula for these polynomials is given by:

Hn(x) =
(−1)n

w(x)
Dnw(x) = (−1)nex

2

Dne−x
2

, n = 0, 1, 2, ...

163



Mogoi and Apima; Asian Res. J. Math., vol. 19, no. 10, pp. 161-168, 2023; Article no.ARJOM.103926

where w(x) = e−x
2

. Let x0 be a normalized element in X , i.e., ‖x0‖ = 1 . We aim to find ‖Hn(x0)‖2 , which
can be calculated as follows:∫ ∞

−∞
e−x

2

Hm(x0)Hn(x0)dx0 = (−1)n
∫ ∞
−∞

Hm(x0)Dne−x
2
0dx0

for m < n . By performing n integrations by parts on the right-hand side, the expression eventually evaluates
to zero. However, when m = n , after applying n successive integration by parts, we arrive at the following
result: ∫ ∞

−∞
e−x

2
0Hn(x0)Hn(x0)dx0 = (−1)n

∫ ∞
−∞

Hn(x0)Dne−x
2
0dx0

=

∫ ∞
−∞

DnHn(x0)e−x
2
0dx0

= αnn!

∫ ∞
−∞

e−x
2
0dx0 = 2nn!

√
π.

Consequently, for x0 ∈ Ux , where Ux denotes the normalized space, we establish that ‖Hn‖ = sup{2nn!
√
π :

‖Hn(x0)‖ ≤ 2nn!
√
π‖x0‖} . In other words, ‖Hn‖ = ‖Hn(x0)‖ . This result confirms that the norm of Hn is

equivalent to the norm of Hn evaluated at any normalized point x0 in the support X .

Proposition 4.3. For x′1 ∈ X and α > −1 , if w(x′1) = e−x
′2
x′(−α) represents a gamma distribution function,

then there exists an interval (0,∞) and some positive integer n such that the Laguerre polynomial L(α)
n (x′1)

belongs to the class of norm-attainable polynomials NAPn .

Proof. In this proof, we consider the Laguerre polynomial Lαn(x) defined by Rodriguez’s formula as:

Lαn(x′1) =
1

n!
e−xx−αDn[e−xxn+α], n = (0, 1, 2, ...)

We then apply the rule due to Leibniz to obtain the explicit expression:

Lαn(x′) =

n∑
k=0

(−1)k
(
n+ α

n− k

)
x′k

k!
, n = 0, 1, 2, ...

Considering X = R and a positive Borel measure µ , we define P (α)
n (x′1) : L2(x′, µ)→ R and its norm as:

hn = ‖P (α)
n (x′)‖2 =

∫ ∞
0

x′α

ex′
Lαm(x′)Lαn(x′)dx

Next, we consider x0 ∈ Ux0 , where ‖x0‖ = 1 and µn =
∫∞
0
e−x0xn+α0 dx0 . We show that limn→∞ hn = t exists

for some t . In the case where α > −1 and µ = Γ(n+ α+ 1) > 0 , the Rodrigues formula changes, leading to:∫ ∞
0

e−x0xα0L
(α)
m (x0)L(α)

n (x0)dx0 =
1

n!

∫ ∞
0

L(α)
m (x0)Dn[e−x0xn+α0 ]dx.

Using integration by parts n times, we find that the resulting expression becomes zero when n is less than m .
However, when n is equal to m , the integration yields:∫ ∞

0

DnL(α)
n (x0)e−x0xn+α0 dx0 = (−1)nΓ(n+ α+ 1).

Finally, we derive the norm of Lαn as follows:

‖Lαn‖ = sup
‖x0‖=1

{
Γ(n+ α+ 1)

n!
:

Γ(n+ α+ 1)

n!
‖x0‖ ≥ ‖Lαn(x0)‖

}
,

where n is a natural number.
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Proposition 4.4. For an arbitrary weight function w(x′1) = 1 at some x′1 ∈ X , the Legendre polynomials
Pn(x′1) belong to the class of norm-attainable polynomials NAPn , where n = 0, 1, 2, ...

Proof. In this proof, we consider the Legendre polynomials Pn(x′1) defined by Rodrigues formula, where n is
a non-negative integer. The polynomials are a special case of Jacobi polynomials with α = β = 0 , and we use
Leibniz’s rule to define the operator Dn . The polynomials Pn(x′1) are considered as linear transformations
from the L2(X,µ) space to the real numbers. We aim to show that the norm of Pn(x′1) defined on X can
be computed using the integral

∫ 1

−1
Pm(x0)Pn(x0)dx for some x0 in X . Integration by parts n times on the

Rodrigues formula allows us to express the integral in terms of the derivative of Pm(x0) and the term (1−x20)n .
The integral vanishes when m < n . When m = n , with a substitution and integration of (1− x20)n from -1 to
1, we obtain a specific expression. The proof then proceeds to evaluate the integral

∫
(1−x20)ndx0 and simplifies

it to a final expression in terms of factorials. After further calculations, it is shown that the norm |Pn| is greater
than or equal to the norm of Pn(x0) for some x0 with |x0| = 1 . Overall, this proof establishes the connection
between the norm of Legendre polynomials on X and their behavior in specific intervals, showing that the norm
can be determined using a particular integral expression involving these polynomials.

Proposition 4.5. If we consider the Beta distribution function w(x′1) = (1− x′1)α1(1 + x′1)α2 as the weight
function for the n -th Jacobi polynomial P (α1,α2)

n (x) , where n = 0, 1, .. , then there exists a point x in the
interval (−1, 1) such that P (α1,α2)

n (x) is a norm-attainable polynomial (NAP) in the set X .

Proof. Consider the polynomial P (α1,α2)
n (x′1) , defined using Rodrigues’ formula. It takes the form

P (α1,α2)
n (x′1) = (−1)n2−n

n∑
k=0

(−1)k
(
n+ α1 k

) (
n+ α2 n− k

)
(1 + k)k(1− x′1)n−k,

for n = 0, 1, 2, . . . . Here, we consider X = R with a positive Borel measure µ supported on X . The norm of
P

(α1,α2)
n (x′1) is defined as

hn = ‖P (α1,α2)
n (x′1)‖2

=

∫ 1

−1

(1 + x′1)α2(1− x′1)α1P (α1,α2)
n (x′1)P (α1,α2)

n (x′1)dx′1 ,

where x′1 ∈ X . We assume the existence of a point x0 ∈ X with |x0| = 1 , and α1, α2 > −1 , for all
m,n ∈ 0, 1, 2, ... . By integrating Rodrigues’ formula n times, we obtain the expression∫ 1

−1

(1 + x0)α2(1− x0)α1P (α1,α2)
n (x0)

2
dx0 =

2−nΓ(2n+ α1 + α2 + 1)

Γ(n+ α1 + α2 + 1)n!
,

where n = 0, 1, 2, . . . . Thus, the norm ‖P (α1,α2)
n ‖ is given by

‖P (α1,α2)
n ‖ = sup{ Γ(n+ α1 + 1)Γ(n+ α2 + 1)

(2n+ α1 + α2 + 1)Γ(2n+ α1 + α2 + 1)
},

where the supremum is taken over all points x0 with |x0| = 1 .

Theorem 4.6. Let pn(x) be a function defined on the interval [−1, 1] , and n ∈ R . The claims (i), (ii), and
(iii) are all true and equivalent:

(i). There exists some t ∈ R , where t ≥ 2 , such that (pn(x))
1
t forms a norm in Rn .

(ii). The function pn(x) is convex and positive definite.

165



Mogoi and Apima; Asian Res. J. Math., vol. 19, no. 10, pp. 161-168, 2023; Article no.ARJOM.103926

(iii). For any α1, α2 ∈ K and x, y in [−1, 1] with x 6= y , the following inequality holds:

pn(α1x+ α2y) ≤ α1pn(x) + α2pn(y)

Proof. First we claim (i) implies Claim (ii):
Assume that there exists some t ∈ R , where t ≥ 2 , such that (pn(x))

1
t forms a norm in Rn . We want to show

that pn(x) is convex and positive definite. For pn(x) to be convex, we need to show that for any x, y ∈ [−1, 1]
and α ∈ [0, 1] , the following holds:

pn(αx+ (1− α)y) ≤ αpn(x) + (1− α)pn(y)

Now, we have:
(pn(αx+ (1− α)y))t ≤

(
α(pn(x))t + (1− α)(pn(y))t

)
Since (pn(x))

1
t forms a norm, it satisfies the triangle inequality:

(pn(αx+ (1− α)y))t ≤ α(pn(x))t + (1− α)(pn(y))t ≤ α(pn(x))t + (1− α)(pn(y))t

Now, take the t -th root of both sides (since t ≥ 2 ):

pn(αx+ (1− α)y) ≤ αpn(x) + (1− α)pn(y)

This proves that pn(x) is convex. To show that pn(x) is positive definite, we need to verify that pn(x) > 0

for all x ∈ [−1, 1] and pn(x) = 0 only when x = 0 . Since (pn(x))
1
t is a norm, it follows that pn(x) ≥ 0 for

all x ∈ [−1, 1] . Additionally, since t ≥ 2 , it ensures that pn(x) = 0 only when x = 0 . Thus, pn(x) is positive
definite.
We claim next that (ii) implies Claim (iii).
Assume that pn(x) is convex and positive definite. We want to show that for any α1, α2 ∈ K and x, y in
[−1, 1] with x 6= y , the following inequality holds:

pn(α1x+ α2y) ≤ α1pn(x) + α2pn(y)

Since pn(x) is convex, we know that:

pn(α1x+ α2y) ≤ α1pn(x) + (1− α1)pn(y)

Now, using the positive definiteness of pn(x) , we know that pn(x) ≥ 0 for all x ∈ [−1, 1] . This implies that:

α1pn(x) + (1− α1)pn(y) ≤ α1pn(x) + α2pn(y)

Thus, we have shown that pn(α1x+ α2y) ≤ α1pn(x) + α2pn(y) , as required.
Lastly we show that (iii) implies Claim (i). Assume that for any α1, α2 ∈ K and x, y in [−1, 1] with x 6= y ,
we have:

pn(α1x+ α2y) ≤ α1pn(x) + α2pn(y)

To prove that there exists some t ∈ R , where t ≥ 2 , such that (pn(x))
1
t forms a norm in Rn , we can use the

Minkowski functional, which is a standard technique to define a norm from a convex function. Let t = 2 . We
want to show that ‖x‖ = (pn(x))

1
2 satisfies the properties of a norm. The properties of a norm are:

(i). ‖x‖ ≥ 0 for all x ∈ Rn (non-negativity)

(ii). ‖x‖ = 0 if and only if x = 0 (positive definiteness)

(iii). ‖αx‖ = |α|‖x‖ for all α ∈ R and x ∈ Rn (homogeneity)

(iv). ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ Rn (triangle inequality)
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The first two properties follow directly from the positive definiteness of pn(x) . For the third property, we have:

‖αx‖2 = (pn(αx))
1
2 = pn(αx) ≤ |α|pn(x) = |α|‖x‖2

Taking the square root on both sides, we get:

‖αx‖ ≤ |α|‖x‖

The fourth property follows from Claim (iii) since the function pn(x) satisfies the triangle inequality. Hence,
‖x‖ = (pn(x))

1
2 forms a norm in Rn . Therefore, Claims (i), (ii), and (iii) are all true and equivalent, completing

the proof.

Proposition 4.7. Let pn(x1, x2, . . . , xd) be the n -th polynomial in the family Πd
n , with p0(x1, x2, . . . , xd) = 1 .

The following properties are equivalent:

(i). Each pn is a non-negative, absolutely convex polynomial of degree n in d variables, i.e., pn is NAΠd
n .

(ii). For every fixed d ≤ n ∈ N0 , the polynomial pn(x1, x2, . . . , xd) is a convex and positive function for all
x1, x2, . . . , xd ∈ R .

(iii). For all n ∈ N0 , the polynomial pn(x1, x2, . . . , xd) is strictly convex in all its variables.

Proof. To prove the equivalence of the properties for the family of multivariate polynomials Πd
n , we will need

to show that (i) implies (ii), (ii) implies (iii), and (iii) implies (i). Let’s proceed with the proof:

(i) ⇒ (ii):

Assume that each pn is a non-negative, absolutely convex polynomial of degree n in d variables. We need
to show that for any fixed d ≤ n ∈ N0 , the polynomial pn(x1, x2, . . . , xd) is both convex and positive for all
x1, x2, . . . , xd ∈ R . First, we show that pn(x1, x2, . . . , xd) is positive for all x1, x2, . . . , xd ∈ R . Since each pn
is non-negative, and p0(x1, x2, . . . , xd) = 1 (given in the problem statement), it follows that pn(x1, x2, . . . , xd)
is non-negative for all x1, x2, . . . , xd ∈ R . However, we are also given that pn is of degree n , and since n ≥ 0 ,
the polynomial pn(x1, x2, . . . , xd) must be positive for all x1, x2, . . . , xd ∈ R . Next, we prove the convexity of
pn(x1, x2, . . . , xd) . Let x = (x1, x2, . . . , xd) and y = (y1, y2, . . . , yd) be two points in Rd , and let λ ∈ [0, 1]
be a convex combination of x and y , i.e., λx + (1 − λ)y . We need to show that pn(λx + (1 − λ)y) ≤
λpn(x) + (1−λ)pn(y) . Since each pn is absolutely convex, we have pn(λx+ (1−λ)y) ≤ λpn(x) + (1−λ)pn(y) ,
which means pn(x1, x2, . . . , xd) is convex for all x1, x2, . . . , xd ∈ R .

(ii) ⇒ (iii)

Assume that for every fixed d ≤ n ∈ N0 , the polynomial pn(x1, x2, . . . , xd) is convex and positive for all
x1, x2, . . . , xd ∈ R . We want to show that pn(x1, x2, . . . , xd) is strictly convex for all n ∈ N0 . To prove strict
convexity, we need to show that for any two distinct points x and y in Rd , the inequality pn(λx+ (1−λ)y) <
λpn(x)+(1−λ)pn(y) holds for all λ ∈ (0, 1) . Since pn(x1, x2, . . . , xd) is convex and positive, the strict convexity
follows naturally, and the inequality holds for all x1, x2, . . . , xd ∈ R .

(iii) ⇒ (i)

Assume that for all n ∈ N0 , the polynomial pn(x1, x2, . . . , xd) is strictly convex in all its variables. We need
to show that each pn is a non-negative, absolutely convex polynomial of degree n in d variables, i.e., pn is
NAΠd

n . The strict convexity of pn(x1, x2, . . . , xd) implies that pn(λx + (1 − λ)y) < λpn(x) + (1 − λ)pn(y)
holds for all x, y ∈ Rd and λ ∈ (0, 1) . This shows that pn is absolutely convex. Since each pn is strictly
convex, it cannot have multiple roots, which implies that the degree of pn is at most n . Now, we know
that p0(x1, x2, . . . , xd) = 1 , and each pn is a non-negative, absolutely convex polynomial of degree at most
n . Therefore, each pn is a non-negative, absolutely convex polynomial of degree n in d variables, i.e., pn is
NAΠd

n . Thus, we have shown the equivalence of the properties (i), (ii), and (iii) for the family of multivariate
polynomials Πd

n .
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5 Conclusions
In this research paper, we have explored the characterizations and properties of norm-attainable polynomials
in various orthogonal polynomial families. By investigating the norm-attainability of Chebyshev polynomials,
Hermite polynomials, Laguerre polynomials, Legendre polynomials, and Jacobi polynomials, we have established
the conditions under which these polynomials are norm-attainable and analyzed their behavior in specific
intervals. The results contribute to a deeper understanding of norm-attainable polynomials and their applications
in approximation theory and mathematical modeling. Further research can expand on these findings and explore
additional orthogonal polynomial families.
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