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ABSTRACT 
 

Basic thermodynamics is able to treat an actual (non-equilibrium) process as well as the 
corresponding equilibrium process. An example of such a pair of processes is familiar to every 
chemical engineer; namely, (Joule) free expansion of a gas and the corresponding equilibrium 
expansion [1]. Formerly, we thought that an ideal gas does no work in expansion into vacuum. It is 
shown that such a gas does work. This result is confirmed by experiments. 
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1. INTRODUCTION 
 
Formerly, it was supposed that                                         
an ideal gas does no work in expansion into 
vacuum [2]. Almost all authors, assumed                      
that an expanding gas does the following                  
work: 

dextA P V =  ,                        (1) 

 

where Pext is the external pressure opposing the 
expansion. If the gas expands into vacuum, then 
Pext = 0 and the work of expansion is zero. Some 
authors assumed that the work of expansion is   
the following: 
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gasdA P V =                                            (2) 
 

where Pgas is the pressure of the gas in the 
vessel [3,4], and Pgas > Pext. In [4], it was shown 
using experimental data that Eq. (2) is correct 
and Eq. (1) is incorrect. Equation (2) is valid only 
when a gas expands in a quasistatic process. 
But Clement-Desormes experiment allows to 
model such quasistatic expansion, 
 

In the theory of an ideal gas there is a paradox 
[1]: an ideal gas that expands into vacuum 
should produce no work, and therefore, it must 
exhibit no temperature change. However, 
experiments show that an ideal gas cools or 
warms in expansion [3,6]. The experiments were 
performed with real gases, but real gases 
behave with high accuracy like an ideal gas [4,7]. 
 

2. THEORY 
 

There is a modified Clément-Desormes method 
for determining the heat capacities of gases [4]: 
 

“A gas is maintained in a closed bottle, fitted with 
a stopcock and a manometer, at room 
temperature T1 and at a pressure P2 above 
atmospheric pressure P1. When the stopcock is 
opened, the gas expands almost adiabatically to 
atmospheric pressure. During this expansion the 
gas cools from T1 to T2. Then the stopcock is 
closed again and the gas is allowed to return to 
thermal equilibrium with surroundings. To 
determine the heat capacity one can measure 
P1, P2, and T1, and T2.” 
 

In adiabatic expansion the gas does the following 
work: 
 

( ) ( )1 2 1 A 2 1P V V C T T− = − −                      (3) 

 

(where CA is the heat capacity in the adiabatic 
process). Or the following one: 
 

( ) ( )2 2 1 A 2 1P V V C T T− = − − .          (4) 

 

Equations (3) and (4) are very non strict but 
these equations are the equations of the 
Clement-Desormes experiment, and all 
equations which describe Clement-Desormes 
experiment. are very not strict. 
 

In [8] it was shown that CA = CV. Introducing the 
expressions for the volumes of an ideal gas into 
Eqs(3) and (4), one obtains: 

( ) ( )2 2 1 1 2 A 2 1 ,
P RT P RT P C T T− = − −    (5) 

 

( ) ( )1 2 1 1 2 A 2 1P RT P RT P C T T− = − −      (6) 

 
There is another paradox in the Joule expansion 
(TYPICALLY a doubling of volume with no 
addition of heat OR work [1,5,9,10]: for such an 

expansion, the change in the internal energy U 
=0, and consequently, the change in the 

entropyS = 0. However, from the fundamental 
thermodynamic relation: 
 

d d dT S U P V= +             (7) 

 
It follows that: 
 

d dT S P V= + ,                                    (8) 

 

and S =R(ln2). 
 
So, the explanation of the paradox is the 
following: In the fundamental 
thermodynamic relation, P in PdV is the pressure 
in the gas but not the external pressure, which is 
zero. It was proven in my paper [4]. 
 
First of all, it is necessary to note that there is the 
fourth Maxwell relation, and according to it, the 
entropy of a substance changes during its 
deformation, even in an adiabatic process. 
According to [11], the first law of thermodynamics 
for gas expansion in the Clément Desormes 
method can be written as: 
 

V P P V U = −  −                                 (9) 

 

and according to [12]: −U = Q. 
 

Here, Q is the quantity of heat that appears in 
the system due to the adiabatic process. In 

Section 2 (Theory), it was shown, that PV is not 

equal to zero. Consequently, in Eq. (9), VP = 

V(P2− P1) is not equal to zero, and then U is 
also not equal to zero even for an ideal gas. 
Using experimental results given in (Table 4 in 
[4]) and the references therein, and introducing 

the adiabatic heat capacity ( )
( )

1 2 1

2 1
AC

V P P

T T

−
=

−

one can calculate with Eq. (9) that CA =3.6R, 

( )
( )

2 2 1

2 1

2.6P

P V V
RC

T T

− −
= =

−
, and

2 1

;
U

R
T T


− =

−

;therefore, 

A

U
R

T

 
= 

 

,where subindex A denotes 
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adiabatic and subindex P denotes isobaric. This 
agrees with [8], where it was also found that 

A

U
R

T

 
= 

 
. 

 

The calculations which produced CA=3.6R and 
CP=2.6R are very approximate and one may not 
expect  that they will produce the results which 
strictly agree with [8]. 
 

3. CONCLUSION  
 

Some paradoxes of Joule expansion are 
explained. It is shown that in such an expansion, 
the changes in the internal energy and in the 
entropy of an ideal gas are not zero, as it was 
formerly supposed. Some results obtained agree 
with the previous results of the author. Other 
authors also obtained that the work of isothermal 
expansion of an ideal gas is not zero [13]. 
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