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Abstract 
We introduce and investigate the properties of a generalization of the deriva-
tion of dendriform algebras. We specify all possible parameter values for the 
generalized derivations, which depend on parameters. We provide all genera-
lized derivations for complex low-dimensional dendriform algebras. 
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1. Introduction 

Generalized derivations of dendriform algebras addresses generalized deriva-
tions within the setting of dendriform algebras [1]. Dendriform algebras, as giv-
en by Loday [2] are algebraic structures that extend the notion of associative op-
erations by decomposing them into two distinct binary operations. In addition, 
he proposed dendriform algebras, which are algebraic structures that extend the 
concept of associative operations by separating them into two different compo-
nents [3]. 

Dendriform algebras play a crucial role in the study of extended σ -operators, 
associative Yang-Baxter equations, infinitesimal bialgebras, and modified Ro-
ta-Baxter algebras [3], quantum field theory and renormalization. These applica-
tions highlight the relevance and significance of dendriform algebras in theoret-
ical physics. 

The purpose of this research is to investigate the connections between den-
driform algebras and other mathematical structures, such as Rota-Baxter alge-
bras and post-Lie algebra structures [4] [5]. This study also investigates the em-
bedding of dendriform algebras within Rota-Baxter algebras, offering light on 
the relationship between these two types of algebras [4]. In addition, they inves-
tigate the categorization of post-Lie algebra structures caused by extended deri-
vations and shed light on the connection between these structures and dendri-
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form algebras. 
Researchers have already discovered connections between generalized con-

formal derivations and conformal ( ), ,ρ τ σ -derivations. In addition, they give a 
characterization of all conformal ( ), ,ρ τ σ -derivations of finite simple Lie con-
formal algebras [6]. This characterization is crucial to comprehending the cha-
racteristics and behavior of these derivations. In addition, this demonstrates that 
there exist no post-Lie algebra structures for semisimple and solvable unimodu-
lar Lie algebras [7]. Moreover, they develop the generalized ( ), ,ρ τ σ -derivations 
of semisimple Lie algebras [8] [9] [10] [11] [12]. 

The properties of generalized derivations in dendriform algebras have under-
gone thorough investigation, offering valuable insights into the algebraic struc-
tures, deformations, and cohomology associated with these algebras. This research 
on generalized derivations further enhances our comprehension of the proper-
ties and interconnections within dendriform algebras and their applications across 
various mathematical contexts. 

This study is concerned with describing ( ), ,ρ τ σ -derivations of dendriform 
algebras. In this circumstance, generalized derivation can be easily inferred from 
the definition of derivations of dendriform algebras. In the scenario where 

1ρ τ σ= = = , the dendriform algebra derivations explored in [13] are obtained. 
We provide a technique for computing derivations in the paper. We utilize the 
technique in low-dimensional scenarios. Every application’s result is displayed 
in tabular format. We apply the classification result of two-dimensional complex 
dendriform algebras derived from [14]. 

2. Preliminaries 

This section will start with essential definitions and information needed for fur-
ther discussions. 

Definition 2.1. Let   be an algebra over F.   is said to be dendriform al-
gebra, if it satisfies  

( ) ( ) ( ) ,u v w u v w u v w= +       

( ) ( ) ,u v w u v w=     

( ) ( ) ( ).u v w u v w u v w+ =       

The process   and   related terms are left product, right product. 
Definition 2.2. If ( )1 1 1, ,  , ( )2 2, ,   are dendriform algebra. Then, a 

function from 1 2→   is a homomorphism: if  

( ) ( ) ( )1 2a b a bπ π π=   

and 

( ) ( ) ( )1 2a b a bπ π π=   

1,a b∀ ∈ .  

Definition 2.3. Let   be a dendriform algebra over a field F and linear 
transformation :d →   satisfying  
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( ) ( ) ( )d a b d a b a d b∗ = ∗ + ∗  

,a b∀ ∈ , 

where : ,∗ =   . 
The collection of all derived dendriform algebras   is a subspace of ( )FEnd  . 

This subspace equipped with the bracket [ ]1 2 1 2 2 1,d d d d d d= −   is a Lie alge-
bra denoted by ( )Der  . 

3. ( ), ,ρ τ σ -Derivations 

The spaces of ( ),ρ τ σ, -derivations of dendriform algebras would be employed 
in special cases to define some invariant functions, which are very important 
tools for geometrical representations of dendriform algebras. The definition of deri-
vations can be generalized in several non-equivalent ways. We bring forward 
another type of generalization of the derivations. The notion of the derivation of 
dendriform algebras is generalized; ( ),ρ τ σ, -derivations of   are introduced 
and their relevant properties are shown. All possible intersections of spaces con-
taining these derivations are investigated. Examples of spaces of ( ),ρ τ σ,
-derivations of low dimensional dendriform algebras are presented. In special 
cases, the spaces of ( ),ρ τ σ, -derivation are from operator dendriform algebras. 

[13] provides various different generalization strategies regarding the defini-
tion (2.3) of derivations. We present another form of generalization regarding 
the derivations. 

A mapping ( )d End∈   is said to be ( ),ρ τ σ, -derivation of   ( ),ρ τ σ,  
are fixed elements of F) if for all ,a b∈ ,  

( ) ( ) ( )d a b d a b a d bρ τ σ∗ = ∗ + ∗ , 

where : ,∗ =   . The set that ( ),ρ τ σ, -derivations we denote by ( ) ( ), ,Der ρ τ σ  . 
It is clear that ( ) ( ), ,Der ρ τ σ   is a linear subspace of ( )End  . 

Lemma 3.1. Let   be a dendriform algebra. Then, , ,ρ τ σ  in ( ) ( ), ,Der ρ τ σ   
in the following manner: 

( ) ( ) ( ) ( ) ( ) ( ){ }1,1,1Der | ;d End E d a b d a b a d b= ∈ = +     

( ) ( ) ( ) ( ) ( ){ }1,1,0Der | ;d End d a b d a b= ∈ =     

( ) ( ) ( ) ( ) ( ){ }1,0,1Der | ;d End d a b a d b= ∈ =     

( ) ( ) ( ) ( ){ }1,0,0Der | 0 ;d End d x y= ∈ =    

( ) ( ) ( ) ( ) ( ){ }0,1,1Der | ;d End d a b a d b= ∈ =     

( ) ( ) ( ) ( ){ }0,0,1Der | 0 ;d End a d b= ∈ =    

( ) ( ) ( ) ( ){ }0,1,0Der | 0 ;d End d a b= ∈ =    

where ,=   .  
Proof. Suppose 0ρ ≠ . By applying the operator d to the dendriform algebra 
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identities, we obtain the system of equations. 

( ) ( )0 and 0.β β α γ γ α− = − =  

Using one by one approach, there are determined the various values of 

( ) ( ) ( ) ( ) ( ), , : , , , , ,0 , ,0, and ,0,0 .ρ τ σ ρ ρ ρ ρ ρ ρ ρ ρ  

Considering the circumstance that  

( ) ( ) ( ) ( ), , 1, ,Der Der .ρ τ σ τ ρ σ=   

In 1 - 4, we obtain the necessary inequality. 
Let equal 0ρ =  now. Then, we possess  

( ) ( )0, , , 0, ,0 if 0τ τ τ τ ≠ , 

and 

( )0,0, if 0.σ τ =  

Thus, we obtain 

( ) ( ) ( ) ( )0, , 0,1,Der Der if 0τ σ σ τ τ= ≠  , 

and  

( ) ( ) ( ) ( )0,0, 0,0,1Der Der if 0 and 0.σ τ τ= = ≠   

If σ  equals zero. Then, ( ) ( )0,0,0Der End=  .                        
Lemma 3.2. Let   be dendriform algebra and 1 2,d d  be ( ), ,ρ τ σ -derivation 

on  . Then, [ ]1 2 1 2 2 1,d d d d d d= −   is a ( )2 2 2, ,ρ τ σ -derivation of  . 
Proof. Consider the two equations shown below:  

( ) ( ) ( )1 1 1d a b d a b a d bα τ γ= +                    (1) 

and  

( ) ( ) ( )2 1 2 .d a b d a b a d bρ τ σ= +                    (2) 

First occurrence 0ρ ≠ .  

[ ]( ) ( )( ) ( )( )
( )( ) ( )( )
( ) ( )( )
( ) ( )( )
( )( )( ) ( )( )( )
( )( ) ( )( )( )

2 2 2
1 2 1 2 2 1

1 2 2 1

1 2 2

2 1 1

1 2 1 2

2 1 2 1

,

.

d d a b d d a b d d x y

d d a b d d a b

d d a b a d b

d d a b a d b

d d a b d ad b

d d a b d x d b

ρ ρ ρ

ρ ρ ρ ρ

ρ τ σ

ρ β σ

τ ρ σ ρ

τ ρ σρ

= −

= −

= +

− +

= +

− +

   

 

 

 



 

 

Eventually we get; 

[ ]( ) [ ]( ) [ ]( )2 2 2
1 2 1 2 1 2, , , .d d a b d d a b a d d bρ τ σ= +            (3) 

Case two for 0ρ = . Then, from the Equations (1) and (2) we get;  

( )1 1 ,d a b a d bτ σ= −                       (4) 

( )2 2 .d a b a d bτ σ= −                       (5) 
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Table 1. The description of ( ), ,ρ τ σ -derivations of two-dimensional dendriform algebras. 

IC ( ), ,ρ τ σ  ( ), ,Der ρ τ σ  Dim IC ( ), ,ρ τ σ  ( ), ,Der ρ τ σ  Dim 

 (1, 1, 1) 11

21 11

0
2

d
d d
 
 
 

 2  (1, 1, 1) 
22

0 0
0 d
 
 
 

 1 

 (1, 1, 0) 11

22

0
0

d
d

 
 
 

 2  (1, 1, 0) 11

11

0
0

d
d

 
 
 

 1 

1
2Dend  (1, 0, 1) 11

11

0
0

d
d

 
 
 

 1 2
2Dend  (1, 0, 1) 11

11

0
0

d
d

 
 
 

 1 

 (1, 0, 0) trivial 0  (1, 0, 0) trivial 0 

 (0, 1, 1) trivial 0  (0, 1, 1) trivial 0 

 (0, 0, 1) 
22

0 0
0 d
 
 
 

 1  (0, 0, 1) trivial 0 

 (0, 1, 0) trivial 0  (0, 1, 0) 
22

0 0
0 d
 
 
 

 1 

 (1, 1, 1) 
21 22

0 0
d d
 
 
 

 2  (1, 1, 1) 
22

0 0
0 d
 
 
 

 1 

 (1, 1, 0) 11

11

0
0

d
d

 
 
 

 1  (1, 1, 0) 11 0
0 0

d 
 
 

 1 

3
2Dend  (1, 0, 1) 11

21 11

0d
d d
 
 
 

 2 4
2Dend  (1, 0, 1) 11

11

0
0

d
d

 
 
 

 1 

 (1, 0, 0) 11

21

0
0

d
d
 
 
 

 2  (1, 0, 0) trivial 0 

 (0, 1, 1) 
21 22

0 0
d d
 
 
 

 2  (0, 1, 1) trivial 0 

 (0, 0, 1) 
21 22

0 0
d d
 
 
 

 2  (0, 0, 1) trivial 0 

 (0, 1, 0) 
21 22

0 0
d d
 
 
 

 2  (0, 1, 0) trivial 0 

 (1, 1, 1) 
21 22

0 0
d d
 
 
 

 2  (1, 1, 1) 
0 0
0 0
 
 
 

 0 

 (1, 1, 0) 11

11

0
0

d
d

 
 
 

 1  (1, 1, 0) 11

22

0
0

d
d

 
 
 

 2 

5
2Dend  (1, 0, 1) 11

11

0
0

d
d

 
 
 

 1 6
2Dend  (1, 0, 1) 11

22

0
0

d
d

 
 
 

 2 

 (1, 0, 0) trivial 0  (1, 0, 0) trivial 0 
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Continued 

 (0, 1, 1) trivial 0  (0, 1, 1) trivial 0 

 (0, 0, 1) 
21 22

0 0
d d
 
 
 

 2  (0, 0, 1) trivial 0 

 (0, 1, 0) trivial 0  (0, 1, 0) 
22

0 0
0 d
 
 
 

 1 

 (1, 1, 1) 
22

0 0
0 d
 
 
 

 1  (1, 1, 1) 
0 0
0 0
 
 
 

 0 

 (1, 1, 0) 11

21 11

0d
d d
 
 
 

 2  (1, 1, 0) 11

11

0
0

d
d

 
 
 

 1 

7
2Dend  (1, 0, 1) 11

21 11

0d
d d
 
 
 

 2 8
2Dend  (1, 0, 1) 11

11

0
0

d
d

 
 
 

 1 

 (1, 0, 0) 11

21

0
0

d
d
 
 
 

 2  (1, 0, 0) trivial 0 

 (0, 1, 1) 
21 22

0 0
d d
 
 
 

 2  (0, 1, 1) trivial 0 

 (0, 0, 1) 
21 22

0 0
d d
 
 
 

 2  (0, 0, 1) trivial 0 

 (0, 1, 0) 
21 22

0 0
d d
 
 
 

 2  (0, 1, 0) trivial 0 

 (1, 1, 1) 
0 0
0 0
 
 
 

 0  (1, 1, 1) 
0 0
0 0
 
 
 

 0 

 (1, 1, 0) 11

21 11

0d
d d
 
 
 

 2  (1, 1, 0) 11

11

0
0

d
d

 
 
 

 1 

9
2Dend  (1, 0, 1) 11

11

0
0

d
d

 
 
 

 1 10
2Dend  (1, 0, 1) 

22

0 0
0 d
 
 
 

 1 

 (1, 0, 0) 11

21

0
0

d
d
 
 
 

 2  (1, 0, 0) trivial 0 

 (0, 1, 1) 
21 22

0 0
d d
 
 
 

 2  (0, 1, 1) trivial 0 

 (0, 0, 1) 
21 22

0 0
d d
 
 
 

 2  (0, 0, 1) trivial 0 

 (0, 1, 0) 
21 22

0 0
d d
 
 
 

 2  (0, 1, 0) trivial 0 
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Hence, 
2 2 2

1 2 1 2 2 1
2 2

1 2 2 1

1 2 2 1

[ , ]( ) ( )( ) ( )( )

( )( ) ( )( )
( ( ( ) ( ( ( ) .

d d x y d d a b d d a b

d d a b d d a b
d d a b d d a b

τ τ ρ

τ τ
τ τ τ τ

= −

= −
= −

   

 
 

 

The result of replacing the equations from (4) and (5) is  
2

1 2 2 1 1 2

2 1 1 2

[ , ]( ) ( )( ) ( ) ( )( )
( ( ) ( ) ( ( ) ( ).

d d a b d a d b d a d b
d x d b d a d b

τ τ σ τ σ
σ τ σ τ

= − +
= − +


 

Again, we obtain because of (4) and (5):  

( )( ) ( )( ) ( )( ) ( )( )
[ ]( )

2 2 2
2 1 1 2 2 1 1 2

2
1 2, .

a d d b x d d y a d d b d d b

a d d b

σ σ σ

σ

 − = − 
=

 


 

 
Remark 3.1. In any , , Fρ τ σ ∈  the dimension of the vector space ( ), ,Der ρ τ σ   

is an isomorphism invariant of dendriform algebras.  

( ), ,ρ τ σ -Derivations of Low-Dimensional Dendriform Algebras 

This section provides a discussion of the generalized derivation of two-dimensional 
complex dendriform algebras. A matrix representation of the element ijd  of 
the generalized derivation it transforms the vector space linearly   i.e  
( ) 1

n
i ji jjd e d e

=
= ∑ , 1,2, ,i n=  . The entries in the generalized derivation ac-

cording to its definition, ijη , , 1,2, ,i j n=  , of the matrix 
, 1,2, ,ij i j n

d
=

  


 must 
satisfy the following systems of equations: 

( )
1

0
n

t s s
ij st ti tj tj it

t
d d dρσ τ σ σ σ

=

− − =∑  

, , 1,2, ,i j s n∀ =   

( )
1

0
n

l m m
st ml ls lt lt sl

l
d d dρδ τ δ σ δ

=

− − =∑  

, , 1,2,3, ,s t m n∀ =  . 

Let’s use this strategy to determine the generalized derivations of complex 
dendriform algebras of dimension two [14] (Table 1). 

4. Conclusion 

This study enabled us to calculate the generalized derivation of two-dimensional 
dendriform algebras and determine the dimension of the generalized derivation 
for each representative class, ranging from 0 to 2. 
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