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Simple Summary: This study compared two brain imaging methods, 7T magnetic resonance spec-

troscopic imaging (MRSI), which can image metabolic processes, and 3T magnetic resonance fin-

gerprinting (MRF), which can image magnetic relaxation times, in 12 people with brain tumors 

called gliomas. Our goal was to understand how well these two approaches corresponded to each 

other, and which metabolite or relaxation time map was closest to the clinical standard, a neuro-

radiologist’s tumor segmentation. In order to do this, we defined hotspots for each method and 

compared their overlaps. Additionally, we investigated the region around the tumor to look for 

evidence of possible tumor infiltration. The results of this study could improve how we use mag-

netic resonance imaging to monitor gliomas in patients. 

Abstract: This paper investigated the correlation between magnetic resonance spectroscopic imag-

ing (MRSI) and magnetic resonance fingerprinting (MRF) in glioma patients by comparing neuro-

oncological markers obtained from MRSI to T1/T2 maps from MRF. Data from 12 consenting pa-

tients with gliomas were analyzed by defining hotspots for T1, T2, and various metabolic ratios, 

and comparing them using Sørensen–Dice similarity coefficients (DSCs) and the distances between 

their centers of intensity (COIDs). The median DSCs between MRF and the tumor segmentation 

were 0.73 (T1) and 0.79 (T2). The DSCs between MRSI and MRF were the highest for Gln/tNAA (T1: 

0.75, T2: 0.80, tumor: 0.78), followed by Gly/tNAA (T1: 0.57, T2: 0.62, tumor: 0.54) and tCho/tNAA 

(T1: 0.61, T2: 0.58, tumor: 0.45). The median values in the tumor hotspot were T1 = 1724 ms, T2 = 86 

ms, Gln/tNAA = 0.61, Gly/tNAA = 0.28, Ins/tNAA = 1.15, and tCho/tNAA = 0.48, and, in the peritu-

moral region, were T1 = 1756 ms, T2 = 102 ms, Gln/tNAA = 0.38, Gly/tNAA = 0.20, Ins/tNAA = 1.06, 

and tCho/tNAA = 0.38, and, in the NAWM, were T1 = 950 ms, T2 = 43 ms, Gln/tNAA = 0.16, 

Gly/tNAA = 0.07, Ins/tNAA = 0.54, and tCho/tNAA = 0.20. The results of this study constitute the 

first comparison of 7T MRSI and 3T MRF, showing a good correspondence between these methods.  
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1. Introduction 

Over the last few decades, different approaches to magnetic resonance imaging 

(MRI), a non-invasive diagnostic technique that uses a strong magnetic field, dynamic 

gradient fields, and radio frequency pulses to create detailed images of the body’s internal 

structures with different types of contrasts, have been developed. Amongst other appli-

cations, MRI is a vital tool in the diagnosis, grading, and treatment monitoring of glioma, 

a type of brain tumor [1–4]. Modern MRI approaches include 3T MR fingerprinting (MRF) 

and 7T high-resolution MR spectroscopic imaging (MRSI), which aim to accumulate more 

specific information about gliomas than conventional T1/T2-weighted MR imaging, en-

hancing our understanding of these conditions [5,6].  

1.1. Magnetic Resonance Spectroscopic Imaging 

MRSI provides metabolic information beyond contrast-enhanced T1/T2 MRI. The 

methodology visualizes different neurochemical concentrations without the need for con-

trast agents, and is thus a powerful tool in the investigation of diseases that influence me-

tabolite and neurotransmitter distributions in the brain, such as gliomas. Notably, certain 

metabolites, such as N-acetylaspartate (NAA), creatine (Cr), choline (Cho), glutamine 

(Gln), glycine (Gly), and myo-inositol (Ins), are well suited as neuro-oncological markers 

due to the differences in their concentrations between tumor and healthy brain tissue and 

because of their stability in spectroscopic imaging, based on the accumulated experience 

of 7T MRSI in gliomas [6,7]. 

Glutamine and glycine are amino acids that are involved in many metabolic pro-

cesses in cells, including protein synthesis, energy production, and cell growth and re-

pair [8,9]. For cancer cells, both glutamine and glycine can be their primary source of en-

ergy, and these compounds also play a role in the proliferation of cancer cells [10]. Cho-

line, on the other hand, is a polyatomic ion that plays an important role as a precursor of 

the phospholipid phosphatidylcholine, a major component of cell membranes, which is 

vital for their structural integrity and fluidity. Cancer cells tend to have a high demand 

for choline to sustain their proliferation [11]. Ins is an abundant metabolite in the brain 

and has various biochemical functions including signal transduction, protein phosphory-

lation, gene expression, chromatin remodeling, and mRNA transport. It is found mostly 

in astrocytes and increased levels have been related to reactive gliosis and brain tumors, 

as well as neurodegenerative diseases and multiple sclerosis [12,13]. N-acetylaspartate 

(NAA) is used in magnetic resonance spectroscopy as a biomarker of neuronal health, 

integrity, and viability [14]. Using ratios between these metabolites instead of their abso-

lute concentrations is more common in routine clinical practice due to their simpler acqui-

sition and processing [15]. 

The MRSI approach we used acquires free induction decay (FID) signals, following 

concentric ring trajectories (CRTs) in k-space [16]. Apart from the method’s high sensitiv-

ity, one of its main advantages is its time efficiency. CRT-FID-MRSI can achieve high-

resolution metabolic maps with a 64 × 64 × 39 matrix that covers the whole brain using an 

isotropic voxel size of 3.4 mm in 15 min, which presents a significant improvement com-

pared to clinically available MRSI approaches. Due to the increased signal-to-noise ratio 

(SNR) and spectral resolution at higher field strengths, MRSI benefits from the use of 

modern ultra-high-field 7T systems. For example, it is possible to separate glutamate (Glu) 

and Gln at 7T, which is difficult at 3T due to the spectral overlap of the resonances of these 

metabolites [17]. 
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1.2. Magnetic Resonance Fingerprinting 

MRF, on the other hand, is a modern approach to mapping magnetic tissue proper-

ties, such as the T1 and T2 relaxation times [5]. Unlike conventional T1 and T2 mapping 

sequences, MRF derives the parameters of interest from a single acquisition wherein the 

flip angle, the repetition time (TR), and the echo time (TE) are varied pseudo-randomly 

during the acquisition of heavily undersampled data. The resulting data “fingerprint” can 

then be compared to a database, yielding T1 and T2 values. Since the result of this proce-

dure is an actual T1 or T2 map and not just a T1- or T2-weighted image, MRF is considered 

a quantitative methodology, as it quantitatively estimates real physical quantities rather 

than providing arbitrary intensity parameters. These quantitative estimates are more use-

ful as a basis for machine-learning models. Similar to CRT-MRSI, MRF uses non-Cartesian 

k-space sampling to improve upon conventional T1 and T2 mapping sequences by mini-

mizing the total acquisition duration.  

Morphologically, the T1 and T2 relaxation times can change as a result of a change in 

the microenvironment of the tumor. For example, an accumulation of water in the cancer 

increases both the T1 and T2 times, as relaxation times in free water are longer than in 

bound water [18,19]. 

1.3. Motivation and Purpose 

Previously, the results obtained from MRSI acquisitions were compared to those of 

clinical positron emission tomography (PET) scans [7,20]. Now, we aimed to investigate 

the correlation between MRSI and MRF in glioma patients in this study, focusing on the 

correspondence between the hotspots identified in both methods. This constitutes an ini-

tial comparison of 7T MRSI and 3T MRF to determine whether these methods complement 

each other or whether they correlate. 

The purpose of this work was to investigate, for the first time, whether metabolic 

changes detected by 7T MRSI correspond to structural changes found by 3T MRF in gli-

oma patients by correlating the metabolic ratios of MRSI to T1 and T2 maps of MRF. 

2. Materials and Methods 

2.1. Study Population 

We acquired the approval of the institutional review board of the Medical University 

of Vienna (protocol 1991/2018), as well as written, informed consent from all participants 

of this prospective study. Participants were selected consecutively between February and 

December 2019. The inclusion criteria were a suspected glioma diagnosis, as well as in-

formed consent, and the absence of MRI contraindications. Subjects were excluded if they 

were not eligible for a 7T MRI, if the MRSI data quality was too poor to allow a reasonable 

data analysis based on the rejection criteria explained in Section 2.2, or if the subject’s 

tumor could not be histologically confirmed as a glioma. 

The patient recruitment is illustrated in Figure 1. Of the 38 subjects who underwent 

a 7T MRSI protocol, three were excluded based on our quality criteria described in Section 

2.2 and 23 were unavailable for the additional MRF session. The remaining 12 subjects 

(five females, seven males), 48 ± 15 years of age, participated in a 3T and a 7T session 

within 50 h (median: same day) to guarantee consistency and comparability across the 

data sets. In the cohort, there were two IDH-mutant grade 2 astrocytomas, three IDH-

mutant grade 3 astrocytomas, two IDH-mutant grade 2 oligodendrogliomas, one IDH-

mutant grade 3 oligodendroglioma, and four IDH-wildtype grade 4 glioblastomas, ac-

cording to the 2021 WHO classification of gliomas [21]. The patient cohort is listed in Table 

1, and it overlapped with a cohort in previous papers (see Table S1) [6,7].  
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Figure 1. Flowchart of the recruitment for this study. 

Table 1. An overview of the cohort containing 12 patients, including the histological diagnosis ac-

cording to the WHO 2021 classification, the tumor grade, the IDH1 mutation status (IDH1 mutant, 

Mut; or wild type, WT), the age at the time of the 7T MRSI measurement in years (average: 48 ± 15), 

and the patient’s sex (5 females, F; and 7 males, M). 

Cohort Overview 

Patient ID Classification Grade IDH Age Sex 

1 Glioblastoma 4 WT 47 F 

2 Anaplastic astrocytoma 3 Mut 46 F 

3 Anaplastic astrocytoma 3 Mut 29 M 

4 Glioblastoma 4 WT 52 M 

5 Diffuse astrocytoma 2 Mut 33 M 

6 Glioblastoma 4 WT 58 M 

7 Diffuse astrocytoma 2 Mut 77 F 

8 Oligodendroglioma 3 Mut 51 M 

9 Glioblastoma 4 WT 61 M 

10 Anaplastic astrocytoma 3 Mut 28 F 

11 Oligodendroglioma 2 Mut 38 F 

12 Oligodendroglioma 2 Mut 61 M 

2.2. MRSI Protocol and Data Processing  

The MRSI protocol was performed on a 7T Magnetom scanner (Siemens Healthi-

neers, Erlangen, Germany) using a 1 Tx/32 Rx head coil (Nova Medical, Wilmington, MA, 

USA) and consisted of a T1-weighted MP2RAGE as the morphological reference, a B0 field 

map, a B1 field map for flip-angle optimization, and a CRT-FID-MRSI scan (TR = 450 ms, 

acquisition delay AD = 1.3 ms; FOV = 220 × 220 × 133 mm3, resolution = 3.4 × 3.4 × 3.4 mm3, 

TA = 15 min) [6,16].  

MRSI post-processing used the previously introduced in-house pipeline and in-

volved quantification in the spectral range of 1.8–4.1 ppm using LC Model [22]. A metab-

olite basis set consisting of 17 metabolites and a measured macromolecular baseline was 

used for fitting [23,24]. The metabolites included the previously mentioned neuro-
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oncological markers Cho (glycerol–phosphocholine and phosphocholine, summarized as 

total choline, tCho), Cr (creatine and phosphocreatine, summarized as total creatine, tCr), 

Gln, Gly, Ins, and NAA (NAA together with NAA–glutamate, summarized as total NAA, 

tNAA), as well as γ-aminobutyric acid, glutathione, scyllo-inositol, serine, taurine, 2-hy-

droxyglutarate, and glutamate. An overview of the processing parameters is given in Ta-

ble S2 [25].  

The spectral range selected for quantification is situated between the resonance fre-

quencies of water and lipids. An expansion of this spectral window upfield to encompass 

the lactate resonance at 1.3 ppm would be problematic due to the introduction of artifacts 

attributable to lipid signals and necessitate the implementation of advanced signal pro-

cessing techniques, such as L2 regularization. Conversely, extending the spectral range 

downfield would increase the risk of signal contamination from the residual water peak. 

For each metabolite map, voxels were discarded if their tCr FWHM was <0.15 ppm, their 

tCr SNR was <5, the metabolite CRLBs were above 80%, or the metabolite fit coefficient 

was >13 median absolute standard deviations [6]. Lastly, the metabolic maps were quali-

tatively assessed, and the patient’s dataset was discarded if the proportion of excluded 

voxels prevented a reasonable analysis, which may happen due to motion, lipid contam-

ination, or B0 inhomogeneities.  

Data analysis included the ratios of tCho/tNAA, Gln/tNAA, Gly/tNAA, Ins/tNAA, 

tCho/tCr, Gln/tCr, Gly/tCr, and Ins/tCr, as they are commonly used [2,11,12]. We specifi-

cally focused on the metabolite ratios to NAA because a drop in NAA, which corresponds 

to neuronal loss and is commonly seen in tumors, synergizes well with increases in tCho, 

Gln, Gly, and Ins, often producing well-defined hotspots in the ratio maps. 

2.3. MRF and Clinical Protocol 

The MRF scan was performed on a 3T Magnetom PrismaFit MR scanner using a 1 

Tx/64 Rx head coil (Siemens Healthineers, Erlangen, Germany), and was based on a 2D 

Fast Imaging with Steady-state Precession (FISP) spiral readout (FOV = 256 × 256 mm, in-

plane resolution = 1 × 1 mm, TA = 20 s per slice). To reduce the MRF’s long acquisition 

duration to an acceptable time, the number of acquired slices was kept as low as possible 

while still covering the entire tumor. 

In addition to the MRF and MRSI protocol, a routine clinical 3T MRI was performed, 

consisting of a native T1-weighted image, a contrast-enhanced T1-weighted image, and a 

fluid-suppressed T2-weighted image. The clinical images were segmented by a neuroradi-

ologist. Co-registered clinical morphological scans and segmentations were used to define 

the following regions of interest (ROIs): tumor segmentation (“TU”), which included con-

trast-enhancing and non-contrast-enhancing tissue within the tumor, as well as necrosis 

and edema; dilated tumor segmentation (“TU + PT”), which added the peritumoral region 

by first dilating TU by six voxels (effectively adding an approximately 2 cm thick layer 

surrounding the tumor); and peritumoral segmentation alone (“PT”), which we created 

by removing the original from the dilated tumor segmentation.  

2.4. Data Analysis 

We compared these segmentations to a normal-appearing white matter (NAWM) ref-

erence region, which was created by subtracting TU + PT from a white matter mask and 

eroding the resulting region once. Additionally, we investigated the metabolic abnormal-

ities given by the median metabolite ratios and relaxation times in the different ROIs. 

Within each segmentation, we defined hotspots by including all voxels with a value 

greater than 150% of the respective median value of the NAWM reference region. For 

analysis, we compared the resulting T1 and T2 hotspots with the metabolite hotspots and 

with the tumor segmentation using Sørensen–Dice similarity coefficients (DSC), analo-

gous to a previously established approach [7,26,27]. 
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DSC =
2 × |N���� ∩ N���|

|N����| + |N���|
 

Since DSCs measure only the overlap of two regions, we also calculated the centers 

of intensity (i.e., the average position of all points of the ROI) of each region, according to 

r⃗��� =
∑ v�⃗ �� ∈ ��� × I(v�⃗ �)

∑ I� ∈ ��� (v�⃗ �)
, 

with the voxel vectors v�⃗ �  and the intensities I(v�⃗ �), and then evaluated their distances from 

each other (“center of intensity distances”, COIDs): 

COID = |r⃗���� − r⃗���|  

Due to the possible tumor infiltrations of the surrounding regions, we extended our 

analysis to the peritumoral regions, again looking at DSCs between the MRF’s T1 and T2 

hotspots and the MRSI’s metabolic hotspots. In addition to the similarity measures, we 

evaluated the median relaxation times and metabolic ratios in the hotspots within the dif-

ferent regions of interest (TU, TU + PT, PT) and the NAWM reference region. Last, we 

compared TU and PT using a two-sided paired Student’s t-test. Since our approach of 

using a threshold to define the hotspots in TU and PT naturally increased the median 

values in these regions compared to the un-thresholded regions, the comparison to 

NAWM would have been meaningless and was thus omitted.  

3. Results 

Overall, we found a very high correspondence between the hotspots in the ratio maps 

for both Gln/tNAA and Gly/tNAA and the MRF’s T1 and T2 maps, as well as the tumor 

segmentation, which is reflected in the respective DSCs and COIDs (see Figure 2 and Table 

2).  

Table 2. Sørensen–Dice similarity coefficients (DSCs, median and interquartile range IQR) of relax-

ation time hotspots (T1, T2), metabolite ratio hotspots (tCho/tNAA, Gln/tNAA, Gly/tNAA, 

Ins/tNAA), and different regions of interest (ROI), namely the tumor segmentation TU (containing 

non contrast-enhancing, contrast-enhancing, and necrotic tissue), the peritumoral region PT, and 

the combined region (TU + PT). 

DSCs between Different Hotspots 

Segmentations TU TU + PT PT 

DSC between Median (Q1, Q3) Median (Q1, Q3) Median (Q1, Q3) 

T1 and ROI 0.73 (0.66, 0.83) 0.47 (0.44, 0.52) 0.58 (0.45, 0.65) 

T2 and ROI 0.79 (0.67, 0.86) 0.46 (0.42, 0.54) 0.58 (0.43, 0.62) 

tCho/tNAA and ROI 0.45 (0.35, 0.71) 0.24 (0.16, 0.33) 0.28 (0.13, 0.35) 

Gln/tNAA and ROI 0.78 (0.60, 0.91) 0.55 (0.38, 0.59) 0.65 (0.46, 0.80) 

Gly/tNAA and ROI 0.54 (0.48, 0.69) 0.33 (0.28, 0.38) 0.41 (0.34, 0.44) 

Ins/tNAA and ROI 0.35 (0.26, 0.53) 0.21 (0.12, 0.23) 0.25 (0.10, 0.28) 

tCho/tNAA and T1 0.61 (0.40, 0.73) 0.39 (0.25, 0.47) 0.29 (0.13, 0.36) 

Gln/tNAA and T1 0.75 (0.54, 0.87) 0.60 (0.54, 0.64) 0.51 (0.41, 0.56) 

Gly/tNAA and T1 0.57 (0.46, 0.70) 0.45 (0.38, 0.49) 0.35 (0.31, 0.39) 

Ins/tNAA and T1 0.43 (0.33, 0.52) 0.32 (0.15, 0.37) 0.25 (0.10, 0.30) 

tCho/tNAA and T2 0.58 (0.47, 0.72) 0.39 (0.26, 0.47) 0.28 (0.14, 0.33) 

Gln/tNAA and T2 0.80 (0.68, 0.87) 0.61 (0.46, 0.64) 0.47 (0.34, 0.56) 

Gly/tNAA and T2 0.62 (0.51, 0.73) 0.45 (0.39, 0.51) 0.34 (0.29, 0.39) 

Ins/tNAA and T2 0.41 (0.36, 0.53) 0.33 (0.17, 0.38) 0.25 (0.12, 0.29) 
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Figure 2. Overview of Sørensen–Dice similarity coefficients (DSCs) between the MRSI’s metabolite 

ratio hotspots, MRF’s T1 and T2 hotspots, and the tumor segmentation (TU) (A) and the distances 

of the centers of intensity (COIDs) between the MRSI and MRF hotspots (B). 

3.1. Median Relaxation Times and Metabolic Ratios 

Regarding the metabolic ratio values, the cohort’s median in the tumor hotspot was 

the highest for Ins/tNAA (median = 1.15, [Q1, Q3] = [1.04, 1.21]), followed by Gln/tNAA 

(0.61, [0.56, 0.70]), tCho/tNAA (0.48, [0.42, 0.55]), and Gly/tNAA (0.28, [0.20, 0.36]), and the 

respective relaxation times were T1 = 1724 ms (Q1 = 1690 ms, Q3 = 1804 ms) and T2 = 85 

ms (Q1 = 80 ms, Q3 = 106 ms). The corresponding values in NAWM were 0.54, [0.51, 0.59] 

for Ins/tNAA; 0.16, [0.13, 0.20] for Gln/tNAA; 0.20, [0.18, 0.21] for tCho/tNAA; and 0.07, 

[0.06, 0.10] for Gly/tNAA; and the relaxation times were T1 = 950 ms (Q1 = 941 ms, Q3 = 

972 ms) and T2 = 42.9 ms (Q1 = 42.6 ms, Q3 = 43.3 ms). For an overview of these numbers, 

see Table 3.  
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Table 3. Median values and first and third quartile (Q1, Q3) for the cohort’s median T1 and T2 

relaxation times and metabolic ratios in the hotspots within the tumor (TU), the peritumoral region 

(PT), and the p-values when comparing TU and PT using a two-sided paired Student’s t-test, as well 

as the median values in the hotspots in the combined TU + PT region and in the normal appearing 

white matter control region (NAWM). p-values below 0.01 are in bold type. Notably, some metabolic 

ratios, such as Gln/tNAA, showed a statistically significant difference between TU and PT (e.g., p < 

0.001 for Gln/tNAA), but the respective T1 and T2 values for MRF were not statistically significant. 

For a visualization of these data, see also Figures 3 and 4. 

Median Values in Different Regions of Interest 

Segmentations TU PT TU vs. PT TU + PT NAWM 

Quantity Median (Q1, Q3) Median (Q1, Q3) p-Values Median (Q1, Q3) Median (Q1, Q3) 

T1 1724 (1690, 1804) 1756 (1661, 1810) 0.773 1770 (1712, 1792) 950 (941, 972) 

T2 85.5 (80.1, 105.8) 102.0 (90.0, 117.3) 0.272 101.6 (94.0, 106.0) 42.9 (42.6, 43.3) 

tCho/tNAA 0.48 (0.42, 0.55) 0.38 (0.34, 0.44) 0.004 0.40 (0.39, 0.49) 0.20 (0.18, 0.21) 

Gln/tNAA 0.61 (0.56, 0.70) 0.38 (0.35, 0.52) 0.001 0.43 (0.40, 0.50) 0.16 (0.13, 0.20) 

Gly/tNAA 0.28 (0.20, 0.36) 0.20 (0.16, 0.24) 0.003 0.22 (0.18, 0.26) 0.07 (0.06, 0.10) 

Ins/tNAA 1.15 (1.04, 1.21) 1.06 (0.90, 1.13) 0.030 1.09 (0.94, 1.14) 0.54 (0.51, 0.59) 

tCho/tCr 0.69 (0.63, 0.80) 0.76 (0.66, 0.83) 0.867 0.72 (0.65, 0.81) 0.37 (0.35, 0.40) 

Gln/tCr 0.90 (0.75, 1.31) 0.67 (0.58, 1.12) 0.042 0.70 (0.61, 1.31) 0.32 (0.26, 0.45) 

Gly/tCr 0.51 (0.33, 0.64) 0.42 (0.28, 0.52) 0.024 0.42 (0.30, 0.55) 0.15 (0.10, 0.22) 

Ins/tCr 1.98 (1.88, 2.53) 1.97 (1.85, 2.34) 0.471 1.95 (1.85, 2.21) 1.05 (0.96, 1.16) 

Figure 3 shows an overview of the medians of the metabolite ratios in the tumor 

hotspot while illustrating the different tumor grades by color-coding. The cohort’s median 

metabolite ratios and median relaxation times for the hotspots in the TU, the PT, and the 

NAWM are noted in Table 3 and shown in more detail in Figures 4 and 5. Notably, we 

found statistically significant differences between TU and PT in the metabolite ratios (with 

the values in TU higher than in PT), but no such effect was found for the relaxation times. 

 

Figure 3. Boxplots of median metabolite ratios for tCho/tNAA, Gln/tNAA, Gly/tNAA, and 

Ins/tNAA, as well as tCho/tCr, Gln/tCr, Gly/tCr, and Ins/tCr, within the hotspot in the tumor 
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segmentation TU. The colors indicate the tumor grade (yellow: low grade, grade 2 or below; violet: 

high grade, grade 3 or above). 

 

Figure 4. Median T1 (left) and T2 (right) relaxation times within the tumor (TU, violet) and peritu-

moral (PT, yellow) segmentations’ hotspots, compared to the normal-appearing white matter 

(NAWM) control region (black). Each dot corresponds to one patient. TU and PT were compared 

using a two-sided paired t-test, which showed no significant difference (“ns”). Our approach of 

using a threshold to define the hotspots in TU and PT naturally increased the median values in these 

regions compared to the un-thresholded regions, which would have rendered a comparison to 

NAWM meaningless. 

 

Figure 5. Median values for the metabolite ratios tCho/tNAA (A), Gln/tNAA (B), Gly/tNAA (C), 

and Ins/tNAA (D) within the defined hotspots in the tumor (TU, violet) and peritumoral regions 

(PT, yellow), as well as the normal-appearing white matter control region (NAWM, black). The me-

dians in the regions TU and PT were compared using a two-sided paired t-test and the resulting 

significance levels were noted in the plot (*: p < 0.05, **: p < 0.01, ***: p < 0.001). 

3.2. Similarity Measures 

When comparing the hotspots of MRSI within the tumor to the entire segmentation 

TU, we found the highest DSC for Gln/tNAA (median = 0.78, [Q1, Q3] = [0.60, 0.91]), fol-

lowed by Gly/tNAA (0.54, [0.48, 0.69]), tCho/tNAA (0.45, [0.35, 0.71]), and Ins/tNAA (0.35, 
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[0.26, 0.53]). The DSCs for MRF were similar for both T1 (0.73, [0.66, 0.83]) and T2 (0.79, 

[0.67, 0.86]).  

Comparing MRSI to the MRF’s T1 hotspots in the tumor yielded the highest DSCs 

for Gln/tNAA (0.75, [0.54, 0.87]) and tCho/tNAA (0.61, [0.40, 0.73]), followed by Gly/tNAA 

(0.57, [0.46, 0.70]) and Ins/tNAA (0.43, [0.33, 0.52]). For T2, the DSCs were highest for 

Gln/tNAA (0.80, [0.68, 0.87]) and Gly/tNAA (0.62, [0.51, 0.73]), followed by tCho/tNAA 

(0.58, [0.47, 0.72]) and Ins/tNAA (0.41, [0.36, 0.53]). These results, together with the analo-

gous results for the PT region, are noted in Table 2, and barplots of the entire cohort’s 

tumor DSCs are displayed in Figure S1.  

The centers of intensity compared to the T1 hotspot were closest for Gln/tNAA 

(COIDS: median = 0.43 cm, [Q1, Q2] = [0.16 cm, 0.47 cm]) and Gly/tNAA (0.43, [0.29, 0.57]), 

and a bit higher for tCho/tNAA (0.48, [0.37, 0.59]) and Ins/tNAA (0.50, [0.44, 0.81]). For the 

T2 hotspot, the lowest COIDs were found for Gln/tNAA (0.21, [0.13, 0.33]) and Gly/tNAA 

(0.36, [0.19, 0.47]), and the values were again higher for tCho/tNAA (0.58, [0.34, 0.67]) and 

Ins/tNAA (0.58, [0.42, 0.73]). These values are illustrated in Figure 2.  

3.3. Complementary Information 

An example case is shown in Figure 6 in the form of the dataset of one selected patient 

with an IDH-mutant grade 3 astrocytoma, including the metabolic ratio maps of 

tCho/tNAA, Gln/tNAA, and Gly/tNAA, T1 and T2 maps from MRF, a T1w MP2RAGE, a 

T2w FLAIR (both acquired at 7T), and the radiologist’s segmentation.  

Last, Figure S2 shows the median metabolic ratios for different ROIs for the threshold 

of 1.50 and illustrates the influence of the hotspot threshold on the median hotspot values. 

Part A of this figure notably shows the metabolites that exhibit the largest differences be-

tween TU and PT, and part B illustrates the case of a threshold value of 0.00, which gives 

an indication of what the median values in the entire TU and PT regions (rather than the 

hotspot) would be. 

 

Figure 6. MRSI and MRF maps in a 28-year-old female patient with a histologically confirmed grade 

3 astrocytoma. For comparison, 7T T1w MP2RAGE and FLAIR images are shown, as well as the 

radiologist’s segmentation. Transversal, sagittal, and coronal views are shown, and Sørensen–Dice 

similarity coefficients comparing the hotspots to the segmentation are listed below the respective 

maps. 
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4. Discussion 

We successfully conducted the first comparison of 7T MRSI and 3T MRF in 12 glioma 

patients and found a high correspondence between the metabolic hotspots of Gln/tNAA 

and Gly/tNAA, the T1 and T2 relaxation time hotspots, and the radiologist’s tumor segmen-

tation, resulting in high DSCs and low COIDs for those two metabolite ratios, as shown in 

Table 2 and Figure 2. This finding complements previous work [7], which showed a better 

correspondence of Gln/tNAA and Gly/tNAA to amino acid PET than the clinically used 

tumor marker tCho/tNAA. In Figure 3, we provide an overview of the median hotspot me-

tabolite ratios in low and high-grade gliomas, and we also reported median values for T1 

and T2 (Table 3 and Figure 4) and for metabolite ratios (Table 3 and Figure 5).  

Glutamine and glycine are amino acids that are involved in many metabolic processes 

in cells, including protein synthesis, energy production, and cell growth and repair [8,9]. For 

cancer cells, both glutamine and glycine can be the primary source of energy, and they also 

play a role in the proliferation of cancer cells [10]. Choline, on the other hand, is a polyatomic 

ion that plays an important role as a precursor of the phospholipid phosphatidylcholine, a 

major component of cell membranes, which is vital for their structural integrity and fluidity. 

Cancer cells tend to have a high demand for choline to sustain their proliferation [11]. 

Our analysis of both MRF and MRSI data in the TU and PT segmentations showed 

similar T1 and T2 values but significantly different metabolic ratios in the hotspots of both 

regions (Figures 3 and 4). The median values for the metabolic ratios and relaxation times 

were much higher in these hotspots than in the NAWM control region due to the use of 

thresholding for hotspot definition.  

Unfortunately, the existing literature on MRF in gliomas is still very limited [28]. De 

Blank et al. conducted MRF scans in a cohort of children and young adults with mostly low-

grade gliomas and found that T1 and T2 values tended to increase in tumors compared to a 

white matter control region. While there were some differences between their median val-

ues and ours in the tumor (T1: 1444 ± 254 ms, T2: 61 ± 22 ms), the values in NAWM are 

comparable to those found in this study [29]. Springer et al. also found that T1 and T2 values 

from MRF increased in tumors compared to NAWM [30], and Marik et al. showed that MRF 

is feasible in differentiating between low and high-grade gliomas with an accuracy of 82% 

[31]. Regarding MRSI, the median values we found in this study are in accordance with 

previous findings that Gln/tNAA and Gly/tNAA hotspots correspond well to PET in glio-

mas [7]. Due to the significant overlap of the cohorts of these studies, this primarily indicates 

the consistency of our data evaluation and processing when compared to our 2020 paper, 

but to further support our hypothesis that these metabolites may be useful biomarkers, fur-

ther studies including larger cohorts are required [6]. In addition, increases in tCho/tNAA 

have been commonly reported in the literature [32,33]. 

Both modalities, MRSI and MRF, are quantitative methods in contrast to the qualitative 

assessment of gliomas by conventional MR imaging protocols. The good correspondence 

between MRSI and MRF allows the application of MRF with T1 and T2 mapping at a clini-

cally widespread available field strength of 3T, whereas high-resolution MRSI is still re-

stricted to 7T. Another benefit of MRF for clinical use is the relatively short examination 

time, which requires only one sequence and provides T1 and T2 relaxation time values with 

superior spatial resolution. Thus, this technique can be easily incorporated into a routine 

brain tumor protocol, providing additional ultrastructural information in gliomas. Addi-

tionally, new advances in radiomics using texture analysis methods such as the Grey Level 

Co-occurrence Matrix can further improve the sensitivity and specificity of MRF in the 

work-up of gliomas, not only for primary differential diagnosis but also in providing addi-

tional information for monitoring over time [34]. 

Limitations and Outlook 

Due to the various types and grades of gliomas in this study, as well as the small 

cohort size, it was not possible to separately analyze each tumor’s diagnosis or grade. Our 
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findings will need to be validated by a larger cohort to enable us to draw generalized 

conclusions, but we view this exploratory study as a first step toward such validation. 

Due to the thresholding approach for hotspot definition, p-values could be calculated only 

to compare TU and PT, but not for the control region. Additionally, we relied on data from 

NAWM for the hotspot definition, which has high CRLBs in the case of metabolites that 

are generally not detectable in the healthy brain, like Gln and Gly. We investigated the 

robustness of their fits in the supplementary material of [6], and expect an underestima-

tion of 10–20% for Gln and Gly considering the SNR and CRLB we encounter in NAWM. 

We expect this to affect both the tumor and NAWM similarly, causing this effect to mostly 

cancel out with regard to the hotspots’ sizes and positions.  

Furthermore, MRSI is still an experimental modality and the quality of the results 

can vary between subjects from very good to unacceptably bad, necessitating the exclu-

sion of some data sets. In addition, the availability of (clinical) 7T MRI systems is still 

limited, which, together with the rather long measurement times for MRF and MRSI, re-

duces the clinical applicability of this research for the time being. Last, the commonly used 

metabolic ratios present a weakness insofar as the overall ratio significantly depends on 

its denominator. In the case of the NAA ratios used in this study, all hotspots significantly 

depend on the coldspots in the NAA maps, introducing a correlation between them. Ad-

ditionally, in voxels without an NAA fit (e.g., in the presence of lipid artifacts), no ratio 

can be calculated. Compared to ratios, concentration estimates (CEs) offer more reliability 

and should be explored in future work [35]. Unfortunately, they come with their own 

challenges; in the case of internal water referencing, one needs to derive a water concen-

tration in tumor tissue, which can be difficult in practice [36–38]. 

5. Conclusions  

This preliminary study will provide a starting point for further studies, aiding in the 

development of more specific hypotheses that may be tested in larger cohort studies in 

the future, which should hopefully lead to better MRI-based delineation and classification 

of brain tumors. Ultimately, this work reinforces previous findings that glutamine and 

glycine show great promise as potential biomarkers in glioma imaging via the use of ultra-

high-field MR spectroscopy. 

Supplementary Materials: The following supporting information can be downloaded at: 

https://www.mdpi.com/article/10.3390/cancers16050943/s1, Figure SF1: Sørensen-Dice Similarity 

Coefficients (DSCs) in the tumor segmentation between the segmentation (TU), the MRF’s relaxa-

tion time hotspots (T1, T2), and MRSI’s metabolite ratios (tCho/tNAA, Gln/tNAA, Gly/tNAA, 

Ins/tNAA). Gln/tNAA had the highest correspondence with the tumor segmentation and T1 and T2 

hotspots; Figure SF2: A: Metabolite ratios tCho/tNAA, Gln/tNAA, Gly/tNAA, and Ins/tNAA, as well 

as tCho/tCr, Gln/tCr, Gly/tCr, and Ins/tCr, for a hotspot threshold of 1.5, plotted separately for the 

tumor segmentation (TU), the tumor region and the peritumoral region (TU+PT), the peritumoral 

region alone (PT), and the normal-appearing white matter control region (NAWM). B: The same 

metabolite ratios for different hotspot thresholds, with one line each for TU, TU+PT, and PT; Figure 

SF3: Overview of the volumes of the region of interest (ROI), the MRF hotspots (T1, T2), and the MRSI 

hotspots (tCho/tNAA, Gln/tNAA, Gly/tNAA, Ins/tNAA), in the tumor (A) and the peritumoral region 

(B); Figure SF4: Example spectra of patient 10 (anaplastic astrocytoma, grade 3, female, 28 years of age). 

Normal appearing white matter spectrum (left) and tumor spectrum (right). Below, glutamine (Gln) 

maps overlaid with a T1w reference image are shown, and the voxel position is indicated; Table ST1: 

Cohort overlap with previous publications [6,7]; Table ST2: An overview according to the minimum 

reporting standards in MR spectroscopy [25]; Table ST3: MRF sequence parameters. 
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FLAIR  Fluid-attenuated inversion recovery 
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MRF Magnetic resonance fingerprinting 
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MRSI Magnetic resonance spectroscopic imaging 
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PT Peritumoral segmentation 
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tCho Total choline 

tCr Total creatine 

TE Echo time 

tNAA Total N-acetylaspartate 

TR Repetition time 

TU Tumor segmentation 

  



Cancers 2024, 16, 943 14 of 15 
 

 

References 

1. Petr, J.; Hogeboom, L.; Nikulin, P.; Wiegers, E.; Schroyen, G.; Kallehauge, J.; Chmelík, M.; Clement, P.; Nechifor, R.E.; Fodor, 

L.-A.; et al. A systematic review on the use of quantitative imaging to detect cancer therapy adverse effects in normal-appearing 

brain tissue. Magn. Reson. Mater. Phys. 2022, 35, 163–186. https://doi.org/10.1007/s10334-021-00985-2. 

2. Henriksen, O.M.; Del Mar Álvarez-Torres, M.; Figueiredo, P.; Hangel, G.; Keil, V.C.; Nechifor, R.E.; Riemer, F.; Schmainda, K.M.; 

Warnert, E.A.H.; Wiegers, E.C.; et al. High-Grade Glioma Treatment Response Monitoring Biomarkers: A Position Statement 

on the Evidence Supporting the Use of Advanced MRI Techniques in the Clinic, and the Latest Bench-to-Bedside Developments. 

Part 1: Perfusion and Diffusion Techniques. Front. Oncol. 2022, 12, 810263. https://doi.org/10.3389/fonc.2022.810263. 

3. Booth, T.C.; Wiegers, E.C.; Warnert, E.A.H.; Schmainda, K.M.; Riemer, F.; Nechifor, R.E.; Keil, V.C.; Hangel, G.; Figueiredo, P.; 

Álvarez-Torres, M.D.M.; et al. High-Grade Glioma Treatment Response Monitoring Biomarkers: A Position Statement on the 

Evidence Supporting the Use of Advanced MRI Techniques in the Clinic, and the Latest Bench-to-Bedside Developments. Part 

2: Spectroscopy, Chemical Exchange Saturation, Multiparametric Imaging, and Radiomics. Front. Oncol. 2022, 11, 811425. 

https://doi.org/10.3389/fonc.2021.811425. 

4. Mert, A.; Kiesel, B.; Wöhrer, A.; Martínez-Moreno, M.; Minchev, G.; Furtner, J.; Knosp, E.; Wolfsberger, S.; Widhalm, G. Intro-

duction of a standardized multimodality image protocol for navigation-guided surgery of suspected low-grade gliomas. Neu-

rosurg. Focus. 2015, 38, E4. https://doi.org/10.3171/2014.10.FOCUS14597. 

5. Ma, D.; Gulani, V.; Seiberlich, N.; Liu, K.; Sunshine, J.L.; Duerk, J.L.; Griswold, M.A. Magnetic resonance fingerprinting. Nature 

2013, 495, 187–192. https://doi.org/10.1038/nature11971. 

6. Hangel, G.; Cadrien, C.; Lazen, P.; Furtner, J.; Lipka, A.; Hečková, E.; Hingerl, L.; Motyka, S.; Gruber, S.; Strasser, B.; et al. High-

resolution metabolic imaging of high-grade gliomas using 7T-CRT-FID-MRSI. Neuroimage Clin. 2020, 28, 102433. 

https://doi.org/10.1016/j.nicl.2020.102433. 

7. Hangel, G.; Lazen, P.; Sharma, S.; Hristoska, B.; Cadrien, C.; Furtner, J.; Rausch, I.; Lipka, A.; Niess, E.; Hingerl, L.; et al. 7T HR 

FID-MRSI Compared to Amino Acid PET: Glutamine and Glycine as Promising Biomarkers in Brain Tumors. Cancers 2022, 14, 

2163. https://doi.org/10.3390/cancers14092163. 

8. Amelio, I.; Cutruzzolá, F.; Antonov, A.; Agostini, M.; Melino, G. Serine and glycine metabolism in cancer. Trends Biochem. Sci. 

2014, 39, 191–198. https://doi.org/10.1016/j.tibs.2014.02.004. 

9. DeBerardinis, R.J.; Cheng, T. Q’s next: The diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 2010, 

29, 313–324. https://doi.org/10.1038/onc.2009.358. 

10. Wise, D.R.; Thompson, C.B. Glutamine addiction: A new therapeutic target in cancer. Trends Biochem. Sci. 2010, 35, 427–433. 

https://doi.org/10.1016/j.tibs.2010.05.003. 

11. Sonkar, K.; Ayyappan, V.; Tressler, C.M.; Adelaja, O.; Cai, R.; Cheng, M.; Glunde, K. Focus on the glycerophosphocholine path-

way in choline phospholipid metabolism of cancer. NMR Biomed. 2019, 32, e4112. https://doi.org/10.1002/nbm.4112. 

12. Nagashima, H.; Sasayama, T.; Tanaka, K.; Kyotani, K.; Sato, N.; Maeyama, M.; Kohta, M.; Sakata, J.; Yamamoto, Y.; Hosoda, K.; 

et al. Myo-inositol concentration in MR spectroscopy for differentiating high grade glioma from primary central nervous system 

lymphoma. J. Neurooncol 2018, 136, 317–326. https://doi.org/10.1007/s11060-017-2655-x. 

13. Best, J.G.; Stagg, C.J.; Dennis, A. Chapter 2.5—Other Significant Metabolites: Myo-Inositol, GABA, Glutamine, and Lactate. In 

Magnetic Resonance Spectroscopy; Stagg, C., Rothman, D., Eds.; Academic Press: San Diego, CA, USA, 2014; pp. 122–138; ISBN 

978-0-12-401688-0. 

14. Moffett, J.R.; Ross, B.; Arun, P.; Madhavarao, C.N.; Namboodiri, A.M.A. N-Acetylaspartate in the CNS: From neurodiagnostics 

to neurobiology. Prog. Neurobiol. 2007, 81, 89–131. https://doi.org/10.1016/j.pneurobio.2006.12.003. 

15. Li, X.; Abiko, K.; Sheriff, S.; Maudsley, A.A.; Urushibata, Y.; Ahn, S.; Tha, K.K. The Distribution of Major Brain Metabolites in 

Normal Adults: Short Echo Time Whole-Brain MR Spectroscopic Imaging Findings. Metabolites 2022, 12, 543. 

https://doi.org/10.3390/metabo12060543. 

16. Hingerl, L.; Strasser, B.; Moser, P.; Hangel, G.; Motyka, S.; Heckova, E.; Gruber, S.; Trattnig, S.; Bogner, W. Clinical High-Reso-

lution 3D-MR Spectroscopic Imaging of the Human Brain at 7 T. Investig. Radiol. 2020, 55, 239–248. 

https://doi.org/10.1097/RLI.0000000000000626. 

17. Tomiyasu, M.; Harada, M. In vivo Human MR Spectroscopy Using a Clinical Scanner: Development, Applications, and Future 

Prospects. Magn. Reson. Med. Sci. 2022, 21, 235–252. https://doi.org/10.2463/mrms.rev.2021-0085. 

18. Hattingen, E.; Müller, A.; Jurcoane, A.; Mädler, B.; Ditter, P.; Schild, H.; Herrlinger, U.; Glas, M.; Kebir, S. Value of quantitative 

magnetic resonance imaging T1-relaxometry in predicting contrast-enhancement in glioblastoma patients. Oncotarget 2017, 8, 

53542–53551. https://doi.org/10.18632/oncotarget.18612. 

19. Liu, L.; Yin, B.; Geng, D.Y.; Lu, Y.P.; Peng, W.J. Changes of T2 Relaxation Time From Neoadjuvant Chemotherapy in Breast 

Cancer Lesions. Iran. J. Radiol. 2016, 13, e24014. https://doi.org/10.5812/iranjradiol.24014. 

20. Mauler, J.; Maudsley, A.A.; Langen, K.-J.; Nikoubashman, O.; Stoffels, G.; Sheriff, S.; Lohmann, P.; Filss, C.; Galldiks, N.; Kops, 

E.R.; et al. Spatial Relationship of Glioma Volume Derived from 18F-FET PET and Volumetric MR Spectroscopy Imaging: A 

Hybrid PET/MRI Study. J. Nucl. Med. 2018, 59, 603–609. https://doi.org/10.2967/jnumed.117.196709. 

21. Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifen-

berger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro-Oncology 2021, 23, 

1231–1251. https://doi.org/10.1093/neuonc/noab106. 



Cancers 2024, 16, 943 15 of 15 
 

 

22. Provencher, S.W. Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed. 2001, 14, 260–264. 

https://doi.org/10.1002/nbm.698. 

23. Považan, M.; Strasser, B.; Hangel, G.; Heckova, E.; Gruber, S.; Trattnig, S.; Bogner, W. Simultaneous mapping of metabolites 

and individual macromolecular components via ultra-short acquisition delay 1H MRSI in the brain at 7T. Magn. Reson. Med. 

2018, 79, 1231–1240. https://doi.org/10.1002/mrm.26778. 

24. Považan, M.; Hangel, G.; Strasser, B.; Gruber, S.; Chmelik, M.; Trattnig, S.; Bogner, W. Mapping of brain macromolecules and 

their use for spectral processing of 1H-MRSI data with an ultra-short acquisition delay at 7T. NeuroImage 2015, 121, 126–135. 

https://doi.org/10.1016/j.neuroimage.2015.07.042. 

25. Lin, A.; Andronesi, O.; Bogner, W.; Choi, I.-Y.; Coello, E.; Cudalbu, C.; Juchem, C.; Kemp, G.J.; Kreis, R.; Krššák, M.; et al. 

Minimum Reporting Standards for in vivo Magnetic Resonance Spectroscopy (MRSinMRS): Experts’ consensus recommenda-

tions. NMR Biomed. 2021, 34, e4484. https://doi.org/10.1002/nbm.4484. 

26. Dice, L.R. Measures of the Amount of Ecologic Association Between Species. Ecology 1945, 26, 297–302. 

https://doi.org/10.2307/1932409. 

27. Carass, A.; Roy, S.; Gherman, A.; Reinhold, J.C.; Jesson, A.; Arbel, T.; Maier, O.; Handels, H.; Ghafoorian, M.; Platel, B.; et al. 

Evaluating White Matter Lesion Segmentations with Refined Sørensen-Dice Analysis. Sci. Rep. 2020, 10, 8242. 

https://doi.org/10.1038/s41598-020-64803-w. 

28. Hirschler, L.; Sollmann, N.; Schmitz-Abecassis, B.; Pinto, J.; Arzanforoosh, F.; Barkhof, F.; Booth, T.; Calvo-Imirizaldu, M.; Cassia, 

G.; Chmelik, M.; et al. Advanced MR Techniques for Preoperative Glioma Characterization: Part 1. J. Magn. Reson. Imaging 2023, 

57, 1655–1675. https://doi.org/10.1002/jmri.28662. 

29. de Blank, P.; Badve, C.; Gold, D.R.; Stearns, D.; Sunshine, J.; Dastmalchian, S.; Tomei, K.; Sloan, A.E.; Barnholtz-Sloan, J.S.; Lane, 

A.; et al. Magnetic Resonance Fingerprinting to Characterize Childhood and Young Adult Brain Tumors. Pediatr. Neurosurg. 

2019, 54, 310–318. https://doi.org/10.1159/000501696. 

30. Springer, E.; Cardoso, P.L.; Strasser, B.; Bogner, W.; Preusser, M.; Widhalm, G.; Nittka, M.; Koerzdoerfer, G.; Szomolanyi, P.; 

Hangel, G.; et al. MR Fingerprinting-A Radiogenomic Marker for Diffuse Gliomas. Cancers 2022, 14, 723. 

https://doi.org/10.3390/cancers14030723. 

31. Marik, W.; Cardoso, P.L.; Springer, E.; Bogner, W.; Preusser, M.; Widhalm, G.; Hangel, G.; Hainfellner, J.A.; Rausch, I.; Weber, 

M.; et al. Evaluation of Gliomas with Magnetic Resonance Fingerprinting with PET Correlation—A Comparative Study. Cancers 

2023, 15, 2740. https://doi.org/10.3390/cancers15102740. 

32. Hangel, G.; Niess, E.; Lazen, P.; Bednarik, P.; Bogner, W.; Strasser, B. Emerging methods and applications of ultra-high field 

MR spectroscopic imaging in the human brain. Anal. Biochem. 2022, 638, 114479. https://doi.org/10.1016/j.ab.2021.114479. 

33. Hangel, G.; Schmitz-Abecassis, B.; Sollmann, N.; Pinto, J.; Arzanforoosh, F.; Barkhof, F.; Booth, T.; Calvo-Imirizaldu, M.; Cassia, 

G.; Chmelik, M.; et al. Advanced MR Techniques for Preoperative Glioma Characterization: Part 2. J. Magn. Reson. Imaging 2023, 

57, 1676–1695. https://doi.org/10.1002/jmri.28663. 

34. Chekouo, T.; Mohammed, S.; Rao, A. A Bayesian 2D functional linear model for gray-level co-occurrence matrices in texture 

analysis of lower grade gliomas. Neuroimage Clin. 2020, 28, 102437. https://doi.org/10.1016/j.nicl.2020.102437. 

35. Hangel, G.; Spurny-Dworak, B.; Lazen, P.; Cadrien, C.; Sharma, S.; Hingerl, L.; Hečková, E.; Strasser, B.; Motyka, S.; Lipka, A.; 

et al. Inter-subject stability and regional concentration estimates of 3D-FID-MRSI in the human brain at 7 T. NMR Biomed. 2021, 

34, e4596. https://doi.org/10.1002/nbm.4596. 

36. Gottschalk, M.; Troprès, I.; Lamalle, L.; Grand, S.; Le Bas, J.-F.; Segebarth, C. Refined modelling of the short-T2 signal component 

and ensuing detection of glutamate and glutamine in short-TE, localised, (1) H MR spectra of human glioma measured at 3 T. 

NMR Biomed. 2016, 29, 943–951. https://doi.org/10.1002/nbm.3548. 

37. Schneider, J. f.; Confort-Gouny, S.; Viola, A.; Le Fur, Y.; Viout, P.; Bennathan, M.; Chapon, F.; Figarella-Branger, D.; Cozzone, 

P.; Girard, N. Multiparametric differentiation of posterior fossa tumors in children using diffusion-weighted imaging and short 

echo-time 1H-MR spectroscopy. J. Magn. Reson. Imaging 2007, 26, 1390–1398. https://doi.org/10.1002/jmri.21185. 

38. Lecocq, A.; Le Fur, Y.; Amadon, A.; Vignaud, A.; Cozzone, P.J.; Guye, M.; Ranjeva, J.-P. Fast water concentration mapping to 

normalize (1)H MR spectroscopic imaging. MAGMA 2015, 28, 87–100. https://doi.org/10.1007/s10334-014-0451-6. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-

thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 

people or property resulting from any ideas, methods, instructions or products referred to in the content. 

 


