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Abstract: Instance segmentation is a computer vision task that aims to give each pixel in an image
an instance-specific label. Recently, researchers have shown growing interest in real-time instance
segmentation. In this paper, we propose a novel center-based real-time instance segmentation method
(CenterInst), which follows the FastInst meta-architecture. Key design aspects include a center-
guided query selector, a center-guided sampling-based query decoder, and a lightweight dual-path
decoder. The center-guided query selector selects queries via the per-pixel prediction of center point
probabilities, avoiding excessive query proposals for single instances. The center-guided sampling-
based query decoder adaptively generates local sampling points based on center positions, employing
adaptive mixing to update queries without irrelevant sampling disturbances. The lightweight dual-
path decoder enhances inference speed and maintains accuracy via pixel decoding on every layer
during training but only utilizing the final layer’s decoder during inference. The experimental results
show CenterInst achieves superior accuracy and speed compared to state-of-the-art real-time instance
segmentation methods.

Keywords: instance segmentation; real time; center-based

1. Introduction

Image segmentation addresses the problem of labeling pixels. There are different types
of segmentation tasks, such as semantic, instance, and panoptic segmentation. Instance
segmentation can be described as a combination of image segmentation and object detection.
It aims to detect all objects and label all pixels that belong to the same object.

Instance segmentation is often time-consuming. For SOLO [1,2], researchers have
started to pay attention to real-time instance segmentation. However, SOLO is based on
dense detection. Therefore, nonmaximum suppression (NMS) is utilized for postprocessing,
which limits the scale of the model. SparseInst [3] uses sparse detection to improve SOLO
by eliminating NMS and completing the prediction of instance segmentation by generating
an instance activation map. Instead of a convolution-based decoder, FastInst [4] uses Trans-
former to construct a double-channel decoder to complete real-time instance segmentation.

Although FastInst achieves better performance, there are still some problems in real-
time instance segmentation: (1) The many-to-one problem in sparse detection occurs easily.
FastInst takes advantage of a semantic segmentation network to extract proposal queries.
However, semantic segmentation-based methods cannot easily extract a small number of
effective proposal queries for one instance. (2) Feature sampling is not efficient. FastInst
uses the cross-attention of Transformer to complete feature sampling from an E3 feature
map. It relies on single-scale sampling in the E3 layer, which results in limited performance.
To improve accuracy, the segmentation results of the previous stage are regarded as a mask
to help the decoder focus less on irrelevant areas. However, it is not efficient enough,
because a calculation of the similarity of all pixel features is still needed. Therefore, the
multiscale feature cannot be used due to the low speed resulting from sampling the whole
image. Additionally, the irrelevant features from the whole image lower the performance.
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(3) The pixel features are updated too many times. FastInst uses the matching results of
the first iteration as a limitation, and the training method introduced by GT mask-guided
training is not effective enough. The pixel features need to update at every stage.

In this study, we solved the above problems by developing CenterInst, a novel center-
based real-time instance segmentation model following the meta-architecture of FastInst.
CenterInst boasts lower computational complexity, faster computation speed, and higher
inference accuracy than FastInst. Our contributions are summarized below:

We developed an innovative center-based instance segmentation architecture that
leverages the central information contained within instances. In this architecture, we gener-
ate initial queries guided by the center and perform local sampling based on center informa-
tion. We then update query vectors using the sampled features. Finally, we generate mask
kernels based on the updated query vectors to predict the instance segmentation results.

Inspired by CenterNet [5], we propose a center-guided query selector, which achieves
more accurate initialization query selection by predicting the center point probability of
each pixel on the feature map. Compared to segmentation-based methods, this approach
alleviates the issue of generating too many queries for the same object.

We propose a center-guided sampling-based query decoder, which achieves local
sampling based on instance centers. Compared to global sampling, it significantly reduces
the number of sampled features and improves the correlation between sampled features
and queries, thereby enhancing accuracy while maintaining inference speed.

To further improve the model’s inference speed and optimize its real-time performance,
we developed a lightweight inference structure and a corresponding training method. This
structure enhances the inference speed by reducing the frequency of pixel feature updates.
Additionally, during training, it retains the pixel feature update branches at each stage to
assist in query update learning. This ensures both the enhancement in inference speed and
the preservation of model accuracy.

We evaluated the performance of CenterInst on the MS COCO 2017 dataset [6] and
compared it with that of state-of-the-art methods. The results demonstrate that our ap-
proach outperforms the current state-of-the-art method, FastInst, in terms of both speed
and accuracy.

2. Related Work

The existing instance segmentation methods can be grouped into three categories, i.e.,
region-, center-pixel-, and sparse-based methods.

Region-based methods are traditional methods that first detect objects to determine
the bounding box and then utilize fully convolutional networks [7] on candidate regions to
perform segmentation. Mask R-CNN [8] is a classic region-based method that builds upon
faster R-CNN [9] by adding a fully convolutional network for predicting segmentation
results, enabling it to make predictions for classification, detection, and segmentation. Some
methods [10,11] improve upon mask R-CNN to obtain a more precise bounding box and
segmentation mask. As the computational burden is heavy, it is difficult to establish them
as real-time methods.

Center-pixel-based methods assume that each pixel in the feature map can serve as
the center of an instance and predict instance masks based on these centers. After mask
prediction, NMS is applied for filtering. Typically, these methods are modifications of
networks based on single-stage detectors like CenterNet, FCOS [12], etc. Among them,
CondInst [13] decouples the task into mask kernel prediction and mask feature learning to
generate object masks; YOLACT [14,15] improves mask quality by cropping segmentation
regions based on single-stage detection results; and SOLO eliminates the detection head,
directly predicting the segmentation results from the centers, and uses segmentation NMS
to filter duplicate results. Since these methods are primarily single-stage approaches, they
are fast.

These methods rely on many-to-one prediction and use NMS to eliminate redundancy.
NMS has received much attention in real-time instance segmentation tasks. Based on
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the bipartite matching sample assignment strategy, initially widely applied to end-to-
end object detection and subsequently to instance segmentation, sparse-based detection
methods using bipartite matching do not require postprocessing with NMS to eliminate
redundant predictions. K-Net [16] is based on sparse instance convolution kernels, and
segmentation is achieved using the kernel update head. QueryInst [17] was designed based
on a sparse detector (sparse R-CNN [18]). The results are generated by a convolution
kernel produced by the query and the proposal extracted by sparse R-CNN. SparseInst
predicts sparse instance activation maps to represent objects. SOLQ [19] learns mask
embeddings for instance segmentation. In methods based on Transformer [18,20] decoders,
Mask2Former leverages the Transformer structure to enhance its instance segmentation
performance through masked attention. Mask DINO [21] and MP-Former [22] enhance the
decoding capability of the decoder by using noisy labeled inputs, improving their overall
performance. While these methods significantly reduce the number of predicted objects, it
is difficult to improve the inference speed due to the complex decoder structures of some
of these methods.

The state-of-the-art real-time instance segmentation method, FastInst [4], is based on
the Mask2Former structure. It introduces instance activation to guide query generation and
employs a dual-path decoding structure for query decoding, achieving improved speed
and accuracy. Our CenterInst model builds upon FastInst, further enhancing its inference
efficiency and improving accuracy.

3. Methods
3.1. Overall Architecture

As illustrated in Figure 1, CenterInst consists of three modules: the backbone, neck,
and dual-path decoder. We began by inputting the image Img ∈ RH×W×3 into the backbone
network, which yielded features at three distinct scales: B3, B4, and B5. These multiscale
features were further processed using the PPM-FPN [3] module for extraction and enhance-
ment, resulting in feature maps E3, E4, and E5. These feature maps had resolutions of 1/8,
1/16, and 1/32 relative to the input image, respectively.

Next, the center-guided query selector estimated the likelihood of each pixel in feature
map E4 being an instance center and selected the top N probabilities to propose instance
center positions as follows: C0 ∈ RN×4. Using these central position proposals, we
performed bilinear interpolation sampling on the high-resolution feature map E3 to generate
N instance query proposals, represented as Q0 ∈ RN×256.

Following this, we fed these query proposals Q0, central position proposals C0, and
multiscale feature maps into the dual-path decoder, which consists of two branches: the
query decoder and pixel feature decoder. The center-guided sampling module of the
query decoder branch calculates multiscale offsets for each instance query centered on its
respective center point, enabling the determination of sampling point positions. Bilinear in-
terpolation was used to sample the multiscale features, followed by a query update through
adaptive mixing and self-attention. Subsequently, cross-attention was applied between the
updated queries and the high-resolution pixel features E3 from the neck, thereby updating
the pixel features used for assembling the segmentation results. The updated pixel features
are denoted as Fmask ∈ R( H

8 ×W
8 )×256. The dual-path decoder iteratively updated I times,

recursively utilizing the updated queries and center point positions from the previous
stage. After each iteration, the updated queries QI and updated pixel features Fmask were
employed for tasks related to detection, classification, and segmentation.
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Figure 1. Model overview. CenterInst extracts and refines multiscale features through the backbone
and neck. The center-guided query selector (Section 3.2) selects N instance center position proposals
from feature E4 and obtains instance query proposals from feature E3 based on these center positions.
Subsequently, these queries and center positions are updated in a dual-path decoder (Section 3.3),
which iteratively updates through L stages, predicting classification, detection, and segmentation
after each stage. Pruning the pixel feature decoding branch during inference further accelerates the
processing speed (Section 3.3).

3.2. Center-Guided Query Selector

Research [4,23] indicates that the method of initializing object queries can significantly
impact the convergence speed and accuracy of a model. Sparse and precise query proposals
can effectively enhance model performance. Inspired by Deformable DETR [23], FastInst
adopts a semantic segmentation approach, filtering query proposals through the per-pixel
prediction of class probabilities. However, in semantic segmentation tasks, it is necessary
to perceive the entirety of an instance, which leads to high-probability classification pre-
dictions at multiple different locations of the same instance, resulting in redundant query
proposals for the same instance. To ensure the sparsity and precision of queries, we were
inspired by instance segmentation methods based on center point prediction models like
SOLO and CondInst. Drawing on the CenterNet approach, we developed a center-guided
query selector, which selects queries through the per-pixel prediction of center point prob-
abilities. Since an instance has only one center point, using center points can effectively
avoid generating too many query proposals for a single instance, and the introduction of
center points also allows for more precise query proposals during sampling. The specific
implementation is as follows:

In the center-guided query selector, we fed the input features E4 from the neck into
the detection head to predict the center probabilities. The detection head consists of 3 × 3
convolution followed by 1 × 1 convolution:

[Pc, Po, Pwh] = HEADdet(E4) (1)

where Pc ∈ R H
16×

W
16×cls is the per-pixel center point probability, Po ∈ R H

16×
W
16×2 is the relative

center offset, and Pwh ∈ R H
16×

W
16×2 is the target dimensions of E4.
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Subsequently, we selected the top N pixel positions based on center probabilities Pc as
preliminary candidates for the instance locations:[

PtopN
c , ItopN

]
= TopN(Pc) (2)

where PtopN
c represents the top N center point probabilities, and ItopN represents the indices

of PtopN
c .
Subsequently, based on the selected pixel positions and the center point offset results

Po, we calculated the actual position of the center point [X, Y], denoted as C0.

C0 = [X, Y] = Coord
(

ItopN
)
+ Po

[
ItopN

]
(3)

Based on the center position proposals C0, we obtained N instance query proposals
Q0 from the high-resolution features E3 using the bilinear interpolation method:

Q0 = Bilinear(E3, C0) (4)

where Bilinear(A, B) denotes the sampling of A from location B. Extracting instance queries
from high-resolution features provides higher initial query precision than when using low-
resolution features, and utilizing bilinear interpolation for precise coordinate sampling can
further enhance initial query precision.

3.3. Dual-Path Decoder

In CenterInst, the dual-path decoder plays a crucial role in decoding query vectors
and pixel features. It consists of two primary components: the query decoder branch and
the pixel feature decoder branch. The task of the query decoder branch is sampling pixel
features and utilizing these samples to update the query vector. Meanwhile, the pixel
feature decoder branch, guided by the query vector, further refines and optimizes the pixel
features. The dual-path decoder iteratively updates the query vector and pixel features and,
after each iteration, predicts the results for detection, classification, and segmentation tasks.

3.3.1. Center-Guided Sampling-Based Query Decoder

Numerous studies [21,24,25] have demonstrated that the introduction of multiscale
features can significantly enhance the segmentation performance of instance segmentation
models. However, in real-time instance segmentation tasks, for many methods, such as
SparseInst and FastInst, to meet the requirements of real-time processing, the utilization
of multiscale features in the decoder is often discarded due to constraints on inference
time and computational costs. These methods employ a full-pixel attention mechanism
in the decoding process. Their computational costs are heavy, as they require attention
to all pixel features on the feature map for each instance query. Nevertheless, the use of
full-pixel attention not only leads to an increase in computational complexity but may
also compromise accuracy. For FastInst, this issue was identified, but, despite attempting
to improve performance by reducing irrelevant receptive fields through the addition of
masked attention [4], computational costs were not successfully reduced.

To further enhance model performance and alleviate computational burdens, we
propose a center-guided sampling-based query decoder. By generating sampling points
near the instance center, the number of sampling points is significantly reduced, which
effectively reduces computational costs. This approach not only enables the generation of
specific sparse sampling distributions for different queries, but also avoids the introduction
of excessive irrelevant sampling points, thereby improving model accuracy.

The center-guided sampling-based query decoder is primarily composed of three
parts: center-guided adaptive sampling, adaptive mixing, and self-attention. In the initial
stage S0, the input consists of the query proposal Q0 and the center position proposal C0
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output by the query selector. In the subsequent iterative process, the content queries Ql−1
and center positions Cl−1 updated in the previous stage are utilized.

Center-guided adaptive sampling: We employed a linear layer to adaptively generate
a set of sampling offsets

{(
∆xij, ∆yij

)}
∈ R3×Npoint×Nhead×2 for each layer’s feature map.

Similar to multihead attention, Npoint and Nhead represent the number of sampling points
per decoding head and the number of decoding heads, respectively. The sampling point co-
ordinates were obtained by summing the offsets with the instance center position, denoted
as Pij ∈ R3×Npoint×Nhead×2, where i and j, respectively, denote the indices of the sampling
point and the sampling head, with i ∈

[
0, Npoint

)
, j ∈ [0, Nhead):{(

∆xij, ∆yij
)}

= Linear(Qi−1) (5)

Pij = Cl−1 +
{(

∆xij, ∆yij
)}

(6)

Subsequently, through bilinear interpolation sampling, we sequentially completed the
sampling of multiscale features layer by layer to obtain the sampled feature f ∈ RNP×NC :

f = Bilinear
(

F, Pij
)

(7)

where F represents the multiscale features, NP = 3 × Npoint × Nhead is the number of
sampling points, and NC = 256

Nhead
is the channel size.

AdaMixer [26] is an efficient method for the adaptive decoding of sampled features,
termed adaptive mixing. This approach focuses solely on the sampled features, not requir-
ing computation for all features. Following center-guided adaptive sampling, we utilized
adaptive mixing to generate a query update based on the sampled features.

Furthermore, our decoder adopts a structure with cross-attention followed by self-
attention. Specifically, the decoder first utilizes adaptive mixing to update queries through
sampled features and then further integrates the relationships between queries through
self-attention.

3.3.2. Pixel Feature Decoder

The pixel feature decoder is the same as in FastInst, where we implemented cross-
attention through multihead attention. In the pixel feature decoder, we generated queries
using only the feature map E3 from the neck output, without utilizing multiscale features.
Simultaneously, we generated keys and values using the updated query vectors. The goal
was to further refine the instance information in pixel features using the updated queries,
thereby enhancing the segmentation accuracy.

q = Linear(E3) (8)

k, v = Linear(Ql) (9)

For the updated queries Ql and pixel features E∗
3 , we used regression and segmentation

heads to predict the segmentation results and center point positions. Specifically, our
regression head predicts center point offsets and instance scales from the queries through a
feedforward network. The segmentation head generates segmentation mask weights from
the queries and predicts instance categories. Finally, the instance segmentation result was
computed by applying the segmentation mask weights to the pixel features.

Cl = Cl−1 + Headreg(Ql) (10)

Cls, Wmask = Headmask(Ql) (11)

Maskl = Wmask ∗ E∗
3 (12)
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3.3.3. Lightweight Inference Architecture

To further improve the inference speed of the model, we introduce an innovative
lightweight inference structure.

During training, we used the updated content queries and center positions from the
previous stage as inputs. However, unlike FastInst, the pixel feature input only comes
from the neck, not the previous stage. Subsequently, we updated the content queries and
pixel features through a dual-path decoder. The detection, classification, and segmentation
tasks were then completed through the regression and detection heads, with the detection
head utilizing a structure comprising a 3-layer MLP. Predictions from each stage were
supervised through respective losses. Regression loss employed GIOU loss and L1 loss;
classification loss employed cross-entropy loss; and segmentation loss combined dice loss
and cross-entropy loss calculations.

During inference, owing to the design of the dual-path decoder, only content queries
and center positions are updated and used for the next stage at each step. Additionally,
predictions for center points and updates to content queries do not depend on updates to
pixel features. In other words, we only need to update pixel features in the final stage and
utilize the updated pixel features to calculate the segmentation and classification results in
inference. For the other stages, only updates to content queries and center point coordinates
are necessary, without the need for computing segmentation and classification results.

Through this lightweight inference structure, we significantly reduced the computa-
tional load associated with decoding pixel features in multistage scenarios, thereby further
shortening the inference time. Our experimental results demonstrated that this operation
not only reduces inference time but also preserves model accuracy.

3.4. Contrastive Denoising Training

Inspired by DINO [21,27], during the training process, we utilized real labels from
the detection task and introduced artificially set noise with a magnitude of λ. Specifically,
we designated the [0, λ] interval as positive samples and the [λ, 2λ] interval as negative
samples. Multiple sets of positive and negative samples, generated from real labels, were
input into a dual-path decoder. The goal was to enhance the decoding capability of the
dual-path decoder by introducing noisy samples.

In this process, to prevent the possibility of label leakage, we implemented masks to
shield the query vectors within the self-attention scope. It is crucial to note that due to the
adoption of a dual-path decoder structure, during the feature query decoding process, to
avoid label leakage, queries from the contrastive denoising group cannot be introduced.
This ensures the accuracy and reliability of the model’s training process.

4. Experimental Results

Next, we evaluated the performance of CenterInst on the MS COCO 2017 dataset [6]
and compared it with that of state-of-the-art methods. We provide details of ablation
experiments conducted to validate the effectiveness of each proposed component.

4.1. Implementation Details

Our model was implemented using Detectron2 (v0.6) [28]. We used the AdamW [29]
optimizer with a step learning rate schedule. The initial learning rate was 0.0001, and the
weight decay was 0.05. We applied a learning rate multiplier of 0.1 to the backbone, which
was ImageNet-pretrained, and decayed the learning rate by 10 at fractions 0.9 and 0.95 of
the total number of training iterations. We trained our model for 36 epochs with a batch
size of 16. For data augmentation, we used the same scale jittering and random cropping
as in FastInst. For example, the shorter edge varied from 416 to 640 pixels, and the longer
edge was no more than 864 pixels. We set the loss weights λcls, λce, λdice, λbox, and λgiou
to 2.0, 5.0, 5.0, 2.0, and 1.0, respectively. λhm, λhw, and λloc were set to 1.0, 0.1, and 1.0,
respectively. We set the query selector to generate N = 100 queries by default, and we
predicted the 80 object categories in the COCO dataset. We report the AP performance
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as well as the FLOPs and FPS. The FLOPs were averaged using 100 validation images.
The FPS was measured on an RTX 3090Ti GPU with a batch size of one using the entire
validation set. Unless specified, we used a shorter edge of 640 pixels with a longer edge
not exceeding 864 pixels to test and benchmark the models.

4.2. Experimental Results

In Table 1, we compare the performance of our method (CenterInst) with that of some
state-of-the-art methods on the COCO test-dev dataset, focusing on accuracy and inference
speed, as CenterInst is primarily designed for real-time instance segmentation tasks. To
objectively measure the complexity of the proposed model, floating point operations
(FLOPs) were computed in this study [30–32]. The evaluation was conducted on COCO
test-dev. We provided two variations of CenterInst with different backbones and compared
them with other state-of-the-art methods using the same backbone. The results indicated
that CenterInst achieved higher accuracy while maintaining speed. Specifically, with the
ResNet50 [33] backbone, our proposed CenterInst model achieved a 0.6 AP improvement
over the current leading real-time instance segmentation model, FastInst, with fewer
training epochs and less inference time. Additionally, we presented CenterInst-large,
employing a dual-path inference structure like FastInst. It achieved a 0.9 AP improvement
over FastInst but with a slight increase in inference time. Furthermore, using the ResNet-50-
d-DCN [34,35] as its backbone, our model achieved a 49.2 FPS and a 41.0 AP, demonstrating
higher efficiency and accuracy than FastInst, validating the effectiveness of our model.

Table 1. Performance of instance segmentation on COCO test-dev. We compared CenterInst with
state-of-the-art methods, and it outperformed most previous real-time instance segmentation meth-
ods in both inference speed and accuracy. Notably, CenterInst surpassed the previous leading
method, FastInst.

Method Backbone Epoch Size APtest AP50 AP75 APS APM APL FLOPS FPS

SOLOv2 [2] R50 36 448 34.0 54.0 36.1 12.9 34.7 48.7 − −
SparseInst [3] R50 144 608 34.7 55.3 36.6 14.3 36.2 50.7 − −
YOLACT [14] R50 54 550 28.2 46.4 29.2 9.2 29.3 44.8 − −
CondInst [13] R50 36 800 37.8 59.1 40.5 21.0 40.3 48.7 − −

FastInst [4] R50 50 640 38.6 60.2 40.6 10.8 56.2 75.2 75.5 G 50.3
CenterInst R50 36 640 39.2 60.9 41.6 17.7 41.5 56.7 69.1 G 54.1

CenterInst-large R50 36 640 39.5 61.3 41.8 18.0 41.9 57.3 84.9 G 45.5

SparseInst R50-d-DCN 144 608 37.9 59.2 40.2 15.7 39.4 56.9 − −
FastInst R50-d-DCN 50 640 40.5 62.6 42.9 10.0 54.9 74.5 77.9 G 46.9

CenterInst R50-d-DCN 36 640 40.9 63.1 43.4 18.9 43.4 59.8 71.5 G 48.3

The “Epoch” column indicates the total number of epochs required during training, the “Size” column represents
the dimensions of the input images during inference, and “FLOPs” denotes the floating point operations performed
by the model during inference on input images. Bold data indicates that this method outperforms others in this
metric. The same applies to bold data in subsequent tables.

4.3. Ablation Studies

We analyzed the performance of CenterInst through a series of ablation experiments.
Initially, we validated the effectiveness of the key components of the three proposals: the
center-guided query selector, the center-based query decoder, and the lightweight structure.
Subsequently, we explored the impact of other designs on CenterInst. Unless otherwise
specified, we conducted the experiments using the ResNet-50 backbone for CenterInst with
a lightweight design and without the contrastive denoising training strategy. All ablation
results were evaluated on the COCO val2017 dataset.

Center-guided query selector: As shown in Table 2, we conducted comparative ex-
periments between the segmentation-guided query selector in FastInst and our proposed
center-guided query selector. The results indicated that the center-guided query selector
exhibited superior performance while incurring almost no additional computational cost
or inference time. This suggests that query proposals obtained based on the center position
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are more accurate and representative, emphasizing the effectiveness of relying on the
center position.

Table 2. Query selector. Our center-based query selector demonstrated superior performance with an
almost negligible increase in inference time.

Query Selector APval AP50 AP75 APS APM APL FLOPS FPS

Seg-guided 37.3 59.0 38.9 16.5 40.5 59.1 69.0 G 54.1
Center-guided 37.8 59.5 39.5 16.9 40.9 59.5 69.1 G 54.1

“Seg-guided” denotes the initial query selection achieved through semantic segmentation, while “Center-guided”
refers to our proposed method of selecting initial queries by predicting instance center probabilities. Bold data
indicates that this method outperforms others in this metric. The same applies to bold data in subsequent tables.

Center-guided sampling query decoder: As shown in Table 3, our center-based query
decoder with local sampling outperformed the global sampling query decoder. This
indicates that local sampling based on the instance center position can effectively extract
features from the feature map, reducing the introduction of irrelevant region features,
thereby achieving a similar effect to the masked attention used in FastInst. The introduction
of multiscale features further enhanced the model’s performance.

Table 3. Query decoder. Our center-guided local sampling decoder performed significantly better
than the global sampling decoder in FastInst.

Query Decoder APval AP50 AP75 APS APM APL

Global sampling 36.3 57.5 38.1 14.1 38.9 58.2
Local sampling 37.8 59.5 39.5 16.9 40.9 59.5

“Global sampling” represents decoding queries achieved through global sampling, while “Local sampling” refers
to our proposed method of query decoding achieved through center-guided local sampling. Bold data indicates
that this method outperforms others in this metric. The same applies to bold data in subsequent tables.

Lightweight inference structure: Table 4 demonstrates the performance of CenterInst
and FastInst, each with the same lightweight design. FastInst experienced a performance
decrease of 1.3 AP when employing the lightweight structure, whereas CenterInst showed
a modest decrease of only 0.3 AP. This further emphasizes that CenterInst effectively
leverages information from multiscale feature maps using the center-guided local sampling
query decoder module, without relying too heavily on more refined feature maps. As a
result, CenterInst efficiently reduces model computation and inference time by minimizing
pixel update frequency, thereby accelerating inference speed while maintaining accuracy.

Table 4. Lightweight inference structure. Comparison of the performance of FastInst and CenterInst
when employing lightweight inference structures.

Method LIS APval AP50 AP75 APS APM APL

FastInst ✓ 36.1 (−1.3) 57.0 37.9 14.3 38.7 58.4
FastInst 37.4 58.3 39.2 15.2 40.0 59.2

CenterInst ✓ 37.8 (−0.3) 59.5 39.5 16.9 40.9 59.5
CenterInst-large 38.1 59.8 39.9 16.3 41.2 60.5

A checkmark (✓) in the “LIS” column indicates adoption of a lightweight inference structure and use of our
proposed training method. Entries lacking a checkmark used the same structure without lightweight processing
for both inference and training.

Query proposal: As shown in Table 5, for the center-guided query selector, we first
replaced the high-resolution feature maps E3 with lower-resolution feature maps E4 for
query acquisition, leading to a decrease in the model’s predictive capabilities for small
objects. Subsequently, we stopped obtaining queries using bilinear interpolation on the
coordinates of the center point, resulting in an overall accuracy drop. This indicates that
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high-resolution feature maps and precise coordinates effectively enhance the quality of
query acquisition, thereby improving the model’s accuracy.

Table 5. Query proposal. We ceased the use of high-resolution feature map sampling in the query
selector and the use of center point coordinates for query sampling. After ceasing the use of center
point coordinates for query sampling, we employed query sampling based on the pixel position of
the center point in the feature map.

APval AP50 AP75 APS APM APL

CenterInst 37.8 59.5 39.5 16.9 40.9 59.5
- high resolution 37.6 59.3 39.4 16.1 40.9 59.4
- bilinear
interpolation

37.2 58.8 38.9 16.0 40.7 59.1

Note: “- high resolution” denotes not extracting queries from high-resolution pixel features; “- bilinear interpola-
tion” indicates not using the bilinear interpolation method to extract queries. Bold data indicates that this method
outperforms others in this metric. The same applies to bold data in subsequent tables.

Sampling point number: As shown in Table 6, we evaluated the impact of different
numbers of sampling points and sampling layers on query decoder performance. It can be
observed that, compared to single-scale sampling, multiscale sampling produced significant
improvements, especially for small and large objects. In the case of multiscale sampling,
selecting 12 sampling points per layer struck a balance between high accuracy and faster
inference speed.

Table 6. Sampling point number. Employing multiscale sampling and an appropriate number of
sampling points can lead to better model performance.

L n N APval AP50 AP75 APS APM APL

1 36 36 37.4 58.9 39.1 16.0 41.0 58.9
3 8 24 37.6 59.4 39.3 16.4 40.9 59.4
3 12 36 37.8 59.5 39.5 16.9 40.9 59.5
3 16 48 37.6 59.3 39.4 16.5 40.8 59.6

“L” represents the number of scale feature maps to be sampled, “n” represents the number of sampling points per
scale feature map, and “N” represents the total number of sampling points. Bold data indicates that this method
outperforms others in this metric. The same applies to bold data in subsequent tables.

Shared-parameter pixel feature decoder: As shown in Table 7, during the training
process of the pixel feature decoder, we employed both parameter-sharing and non-
parameter-sharing configurations. The experimental results indicated that using a pixel
feature decoder with a non-parameter-sharing configuration yielded better performance
during training.

Table 7. Shared-parameter pixel feature decoder. Experimenting with pixel feature decoders with
and without parameter sharing.

Shared Parameters APval AP50 AP75 APS APM APL

✓ 37.5 59.3 39.2 16.5 40.8 59.2
- 37.8 59.5 39.5 16.9 40.9 59.5

For shared parameters, “✓” indicates the use of shared parameters, while “-” indicates the absence of shared
parameters. Bold data indicates that this method outperforms others in this metric. The same applies to bold data
in subsequent tables.

Contrastive denoising training strategy: We enhanced the decoding capability of the
decoder during the training of CenterInst using a denoising training strategy. As shown in
Table 8, both the CenterInst and CenterInst-large models exhibit improved performance,
with a significant enhancement in the decoder’s decoding capability.
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Table 8. Contrastive denoising training strategy. We applied the contrastive denoising training
strategy to both CenterInst and CenterInst-large and observed an improvement in performance for
both models.

Method CDT APval AP50 AP75 APS APM APL

CenterInst - 37.8 59.5 39.5 16.9 40.9 59.5
CenterInst ✓ 38.4 60.0 40.4 16.3 42.0 60.8

CenterInst-large - 38.1 59.8 39.9 16.3 41.2 60.5
CenterInst-large ✓ 38.6 60.2 40.8 17.4 42.2 60.5

CDT represents the contrastive denoising training strategy. “✓” indicates the adoption of this strategy, while “-”
indicates its absence. Bold data indicates that this method outperforms others in this metric. The same applies to
bold data in subsequent tables.

4.4. Visualization Results

To further demonstrate the prediction performance of CenterInst, we present some
prediction results produced using CenterInst on the COCO validation set along with their
ground truth, as shown in Figure 2. The proposed CenterInst model can produce accurate
segmentation masks with detailed boundaries. In dense scenes, CenterInst is also capable
of effectively distinguishing between different instances.
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RTX3090Ti GPU. The first row shows the ground truth, while the second row shows the predictions.
We set the confidence threshold to 0.5.

5. Conclusions

To address the challenge of real-time instance segmentation, this paper introduced a
network, CenterInst, that achieves higher accuracy and faster speed than current state-of-
the-art methods. Firstly, we introduced a center-guided query selection module, which
utilizes the predicted probabilities of center points to enhance the quality of the selected
queries. This lightweight module significantly improves query quality without substantially
increasing the inference time. Secondly, we improved the query decoding branch by
proposing a center-guided query decoding batch. This branch utilizes the coordinates of
center points to achieve multiscale local sampling, effectively avoiding redundant sampling
features. We employed the adaptive mixing method to decode queries using sampled
features, which, compared to the multihead attention mechanism in Transformers, avoids
the use of global attention, reducing the introduction of irrelevant features. This makes
the query decoder more efficient and accurate. Simultaneously, we simplified the pixel
feature decoding branch by proposing a lightweight inference structure. During training,
we used a pixel feature decoding branch with the same number of layers as the query
decoder, but, during inference, only the last layer of the pixel feature decoding branch
is utilized. This structure significantly reduces the model’s inference time, with only a
slight impact on model accuracy. Finally, we introduced the contrastive denoising training
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method, which further enhanced the decoding capabilities of the decoder and improved
the model accuracy.

Our experimental results demonstrated that CenterInst achieves a significant improve-
ment in performance and speed on the COCO test-dev dataset, with an AP value of 39.2 AP
and an inference speed of 54.1 FPS on the ResNet50 backbone. Compared to FastInst,
CenterInst achieves a 0.6 AP improvement in accuracy and a 3.8 FPS improvement in
inference speed. This finding indicates that introducing center points effectively assists
instance segmentation networks in sampling and query selection, thereby enhancing model
accuracy and inference speed. This provides a new approach to addressing the challenge
of real-time instance segmentation.
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