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ABSTRACT 
 
Soil microbiome diversity plays a pivotal role in shaping terrestrial ecosystems and the myriad 
functions. This comprehensive review delves into the intricate dynamics of soil microbial 
communities, exploring their composition, interactions, and responses to environmental factors. By 
synthesizing findings from cutting-edge research, we aim to elucidate the complex interplay 
between soil microbiome diversity and ecosystem functioning. We discuss the application of 
advanced techniques, such as high-throughput sequencing and metagenomic analysis, which have 
revolutionized our understanding of soil microbial diversity. The review highlights the influence of 
biotic and abiotic factors, including plant diversity, soil properties, climate, and land-use practices, 
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on the structure and diversity of soil microbial communities. We examine the mechanisms through 
which soil microbes drive critical ecosystem processes, such as nutrient cycling, carbon 
sequestration, and plant productivity. The review also explores the resilience and adaptability of soil 
microbial communities in the face of global change pressures, such as climate change, land-use 
intensification, and biodiversity loss. We discuss the potential implications of altered soil microbiome 
diversity for ecosystem functioning and the provision of essential ecosystem services. Furthermore, 
we identify knowledge gaps and propose future research directions to advance our understanding 
of soil microbiome diversity and its role in maintaining healthy and productive ecosystems. This 
review provides a comprehensive framework for understanding the complex dynamics of soil 
microbiome diversity and underscores its critical importance in shaping the functioning and 
sustainability of terrestrial ecosystems in a changing world. 
 

 

Keywords:  Soil microbiome; microbial diversity; ecosystem functioning; environmental factors; global 
change. 

 

1. INTRODUCTION 
 
Soil is a complex and dynamic ecosystem that 
harbors an immense diversity of microorganisms, 
collectively referred to as the soil microbiome. 
These microbes play a critical roles in sustaining 
the functioning and productivity of terrestrial 
ecosystems [1]. In recent years, advances in 
molecular biology and high-throughput 
sequencing technologies have revolutionized our 
understanding of soil microbial diversity and its 
intricate relationships with the environment [2]. 
This comprehensive review aims to synthesize 
current knowledge on the complex dynamics of 
soil microbiome diversity and its profound 
implications for ecosystem functioning. We will 
explore the composition and structure of soil 
microbial communities, the factors that shape 
their diversity, and the mechanisms through 
which they drive essential ecosystem processes. 
Furthermore, we will discuss the responses of 
soil microbes to global change pressures and the 
potential consequences for ecosystem services. 
By unraveling the complex interplay between soil 
microbiome diversity and ecosystem functioning, 
we can develop strategies for harnessing these 
microbial communities to support sustainable 
land management and ecosystem resilience in a 
changing world.  
 

2. COMPOSITION AND STRUCTURE OF 
SOIL MICROBIAL COMMUNITIES 

 
2.1 Overview of Soil Microbial Diversity 
 
Soil is home to an astounding array of 
microorganisms, including bacteria, archaea, 
fungi, and protists, with estimates suggesting that 
a single gram of soil can contain billions of 
microbial cells representing thousands of species 

[3]. This vast diversity is a product of the 
heterogeneous nature of soil, which provides a 
wide range of microhabitats with varying 
physical, chemical, and biological properties [4]. 
Soil microbes have evolved to occupy diverse 
ecological niches, exhibiting a wide range of 
metabolic capabilities and life strategies [5]. 
 

2.2 Techniques for Characterizing Soil 
Microbiomes 

 
The study of soil microbial diversity has been 
greatly advanced by the development of 
molecular techniques that allow for the direct 
analysis of microbial communities without the 
need for cultivation [6]. These techniques include 
DNA fingerprinting methods (e.g., DGGE, T-
RFLP), sequencing of phylogenetic markers 
(e.g., 16S rRNA for bacteria and archaea, ITS for 
fungi), and metagenomic approaches that 
provide insights into the functional potential of 
microbial communities [7]. Table 1 provides an 
overview of commonly used techniques for 
characterizing soil microbiomes, along with their 
advantages and limitations. 
 

2.3 Dominant Microbial Groups and their 
Roles 

 
Soil microbial communities are typically 
dominated by a few phyla of bacteria, including 
Proteobacteria, Acidobacteria, Actinobacteria, 
and Verrucomicrobia, which together can 
account for over 50% of the total bacterial 
diversity in many soils [8]. Fungal communities 
are often dominated by Ascomycota and 
Basidiomycota, with Glomeromycota being 
important in arbuscular mycorrhizal symbioses 
[9]. These dominant microbial groups play key 
roles in various ecosystem processes, such as 
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Table 1. Techniques for characterizing soil microbiomes 
 

Technique Description Advantages Limitations 

DGGE/TGGE Denaturing gradient gel 
electrophoresis; separates DNA 
fragments based on sequence 
differences 

Rapid, cost-
effective, provides 
community 
fingerprints 

Limited resolution, 
difficult to identify 
specific taxa 

T-RFLP Terminal restriction fragment 
length polymorphism; uses 
restriction enzymes to generate 
fragments that are separated by 
size 

High throughput, 
provides community 
fingerprints 

Limited resolution, 
difficult to identify 
specific taxa 

16S rRNA 
sequencing 

Sequencing of the 16S rRNA 
gene, a phylogenetic marker for 
bacteria and archaea 

High resolution, 
allows for taxonomic 
identification 

PCR biases, limited to 
bacteria and archaea 

ITS sequencing Sequencing of the internal 
transcribed spacer region, a 
phylogenetic marker for fungi 

High resolution, 
allows for taxonomic 
identification 

PCR biases, limited to 
fungi 

Metagenomics Sequencing of the total DNA 
extracted from an 
environmental sample 

Provides insights 
into functional 
potential, allows for 
discovery of novel 
genes and pathways 

Expensive, 
computationally 
intensive, limited by 
database coverage 

.Meta 
transcriptomics 

Sequencing of the total RNA 
extracted from an 
environmental sample 

Provides insights 
into active functions 
and gene 
expression 

Expensive, 
computationally 
intensive, RNA 
instability 

Metaproteomics Analysis of the total proteins 
extracted from an 
environmental sample 

Provides insights 
into expressed 
functions and 
enzymes 

Expensive, 
computationally 
intensive, limited by 
database coverage 

Metabolomics Analysis of the total metabolites 
extracted from an 
environmental sample 

Provides insights 
into metabolic 
activities and 
biogeochemical 
processes 

Expensive, 
computationally 
intensive, limited by 
database coverage 

Stable isotope 
probing 

Tracking the incorporation of 
stable isotopes (e.g., 13C, 15N) 
into microbial biomolecules 

Allows for linking 
specific microbial 
taxa to functions 

Requires labeling with 
stable isotopes, 
limited by sensitivity 

Single-cell 
genomics 

Sequencing of the genome of 
individual microbial cells 
isolated from environmental 
samples 

Allows for 
characterization of 
uncultured 
microbes, provides 
insights into micro 
diversity 

Technically 
challenging, low 
throughput, limited by 
cell isolation methods 

Culturomics High-throughput cultivation of 
microorganisms using diverse 
media and conditions 

Allows for isolation 
and characterization 
of novel taxa, 
provides strains for 
functional studies 

Labor-intensive, 
limited by culturability 
of microbes 

Microfluidics Miniaturized devices for 
isolation, cultivation, and 
analysis of individual microbial 
cells 

Allows for high-
throughput 
screening and 
characterization of 
microbial cells 

Technically 
challenging, limited by 
cell isolation methods 
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carbon and nutrient cycling, soil aggregation, and 
plant growth promotion [10]. For example, 
Proteobacteria include many species involved in 
nitrogen fixation, nitrification, and denitrification, 
while Acidobacteria and Verrucomicrobia are 
known for their ability to degrade complex 
organic compounds [11]. Actinobacteria are 
important producers of secondary metabolites, 
including antibiotics, and are involved in the 
decomposition of recalcitrant organic matter [12]. 
Fungi, particularly mycorrhizal fungi, are crucial 
for plant nutrient acquisition and can also 
contribute to soil aggregation and carbon 
sequestration [13]. 

 
2.4 Spatial and Temporal Variability in 

Soil Microbial Communities 
 
Soil microbial communities exhibit significant 
spatial and temporal variability, reflecting the 
heterogeneous nature of soil environments and 
the dynamic interactions between microbes and 
their surroundings [14]. At the microscale, soil 
aggregates and pores create a mosaic of 
microhabitats with distinct physical and chemical 
properties, which can support different microbial 
communities [15]. At larger scales, soil microbial 
diversity can vary across land-use types, 
vegetation gradients, and climatic zones [16]. 
Temporal variability in soil microbial communities 
can occur at scales ranging from diurnal to 
seasonal and interannual, driven by factors such 
as temperature, moisture, and plant phenology 
[17]. Fig. 1 illustrates the spatial and temporal 
scales at which soil microbial diversity can vary, 
highlighting the importance of considering 

multiple scales when studying these 
communities. 
 

2.5 Rare Biosphere and its Potential 
Significance 

 
 In addition to the dominant microbial taxa, soil 
communities also harbor a vast number of low-
abundance or rare species, collectively referred 
to as the "rare biosphere" [18]. These rare taxa 
can make up a significant portion of the total 
microbial diversity and may play important 
functional roles in ecosystems, such as serving 
as a reservoir of genetic and functional diversity, 
responding to environmental changes, and 
contributing to the resilience of microbial 
communities [19]. However, the ecology and 
significance of rare microbial taxa in soil remain 
poorly understood, in part due to the challenges 
associated with their detection and 
characterization [20]. 
 

3. FACTORS INFLUENCING SOIL 
MICROBIOME DIVERSITY 

 

3.1 Biotic Factors 
 
3.1.1 Plant diversity and community 

composition 
 

Plants are a major driver of soil microbial 
diversity through their effects on soil properties, 
resource availability, and microbial interactions 
[21]. Plant species differ in their root architecture, 
exudation profiles, and litter quality, which can 
create distinct microhabitats and support

 

 
 

Fig. 1. Spatial and temporal scales of soil microbial diversity 
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Fig. 2. Plant diversity effects on soil microbiome diversity 
 
different microbial communities [22]. Increasing 
plant diversity has been shown to promote soil 
microbial diversity, likely through the provision of 
a greater variety of resources and niche 
opportunities [23]. Fig. 2 presents a conceptual 
framework illustrating the mechanisms by which 
plant diversity can influence soil microbiome 
diversity. 
 

3.1.2 Plant-microbe interactions and 
rhizosphere process 

 

The rhizosphere, the narrow zone of soil 
surrounding plant roots, is a hotspot of microbial 
activity and diversity [24]. Plants release a wide 
range of organic compounds into the 
rhizosphere, including sugars, amino acids, and 
secondary metabolites, which can attract and 
support specific microbial communities [25]. In 
turn, rhizosphere microbes can influence plant 
growth and health through various mechanisms, 
such as nutrient mobilization, production of plant 
growth regulators, and suppression of pathogens 
[26]. These plant-microbe interactions are highly 
complex and can involve both mutualistic and 
antagonistic relationships [27]. 
 

3.1.3 Faunal interactions and trophic 
networks 

 

Soil fauna, including microarthropods, 
nematodes, and protozoa, can influence 
microbial diversity through their feeding activities, 

dispersal of microbial propagules, and 
modification of soil structure [28]. Grazing by soil 
fauna can alter the composition and activity of 
microbial communities, while also releasing 
nutrients that stimulate microbial growth                    
[29]. Soil food webs are highly complex, with 
microbes occupying various trophic levels and 
engaging in a wide range of interactions with 
other soil organisms [30]. Table 2 provides                                        
an overview of the main groups of soil fauna and 
their potential effects on soil microbial            
diversity. 
 

3.2 Abiotic Factors  
 
3.2.1 Soil properties 
 
Soil physical and chemical properties, such as 
texture, pH, organic matter content, and nutrient 
availability, are key determinants of microbial 
diversity and community structure [31]. Soil 
texture influences the pore size distribution and 
water-holding capacity, which in turn affect the 
availability of oxygen and other resources for 
microbes [32]. Soil pH is a major driver of 
microbial diversity, with different microbial groups 
adapted to specific pH ranges [33]. Organic 
matter content and quality provide energy and 
nutrient resources for microbial growth and can 
also influence soil structure and water retention 
[34]. Table 3 summarizes the effects of key soil 
properties on microbial diversity. 
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3.2.2 Climate   
 
Climate factors, particularly temperature               
and precipitation, can have significant effects on          
soil microbial diversity and community structure         
[35]. Temperature influences microbial             
growth rates, enzyme activities, and the                  
availability of substrates, while precipitation 
determines the amount and distribution of            

water in soil, which is critical for microbial activity 
[36]. Climate change, including warming and 
altered precipitation patterns, can lead to shifts in 
soil microbial communities, with    potential 
consequences for ecosystem functioning            
[37]. Fig. 3 illustrates the potential effects of               
climate change on soil microbiome              
diversity and the associated ecosystem 
processes. 

 
Table 2. Soil faunal groups and their effects on microbial diversity 

 

Faunal group Body size Trophic level Effects on microbial 
diversity 

Protozoa 2-200 μm Microbivore Grazing, nutrient release 

Nematodes 0.3-1 mm Microbivore, predator, omnivore Grazing, dispersal, nutrient 
release 

Microarthropods 0.1-2 mm Microbivore, detritivore, predator Grazing, dispersal, soil 
structure modification 

Enchytraeids 2-20 mm Detritivore Soil structure modification, 
nutrient release 

Earthworms 2-30 cm Detritivore, geophage Soil structure modification, 
dispersal, nutrient release 

Macroarthropods >2 mm Detritivore, herbivore, predator Soil structure modification, 
litter fragmentation 

Vertebrates >1 cm Herbivore, predator Soil structure modification, 
nutrient inputs 

 
Table 3. Soil properties and their effects on microbial diversity 

 

Soil property Range/Type Effects on microbial 
diversity 

Texture Sand, silt, clay Influences pore size 
distribution, water and 
oxygen availability 

pH Acidic (<6.5), neutral (6.5-7.5), alkaline (>7.5) Affects microbial 
community composition, 
enzyme activities 

Organic matter Low (<2%), medium (2-5%), high (>5%) Provides energy and 
nutrient resources, 
influences soil structure 

Carbon: Nitrogen 
ratio 

Low (<20), medium (20-30), high (>30) Affects microbial growth 
and community 
composition 

Nutrient availability Nitrogen, phosphorus, potassium, 
micronutrients 

Limits microbial growth and 
activities 

Salinity Non-saline (<2 dS/m), slightly saline (2-4 
dS/m), moderately saline (4-8 dS/m), strongly 
saline (>8 dS/m) 

Osmotic stress, affects 
microbial community 
composition 

Moisture Dry (<30% water-holding capacity), moist (30-
60% WHC), wet (>60% WHC) 

Affects oxygen availability, 
microbial growth and 
activities 

Temperature Psychrophilic (<20°C), mesophilic (20-45°C), 
thermophilic (>45°C) 

Affects microbial growth 
rates, enzyme activities, 
community composition 
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Fig. 3. Climate change effects on soil microbiome diversity and ecosystem functioning 
 
3.2.3 Land-use practices and management 
 
Land-use practices, such as agriculture, forestry, 
and urbanization, can have profound effects on 
soil microbial diversity and community structure 
[38]. Agricultural practices, including tillage, 
fertilization, and pesticide application, can alter 
soil physical and chemical properties, as well as 
the availability of resources for microbes [39]. 
The conversion of natural ecosystems to 
managed land-uses often leads to a decrease in 
soil microbial diversity, with potential implications 
for ecosystem functions and services [40]. 
However, sustainable land management 
practices, such as reduced tillage, organic 
farming, and agroforestry, can help to maintain or 
restore soil microbial diversity and support 
ecosystem functioning [41]. 
 

3.3 Complex Interplay of Biotic and 
Abiotic Factors 

 
Soil microbial diversity is shaped by the complex 
interplay of biotic and abiotic factors operating at 
multiple spatial and temporal scales [42]. 
Interactions between plants, microbes, and other 
soil organisms are influenced by the physical and 
chemical properties of the soil environment, 
which in turn are modified by climate, land-use, 
and management practices [43,49-55]. 
Understanding the relative importance and 

interactions of these factors is critical for 
predicting the responses of soil microbial 
communities to environmental changes and 
managing ecosystems for                desired 
functions and services [44]. Soil Microbiome 
Diversity and Ecosystem Functioning. 
 

4. MICROBIAL-DRIVEN ECOSYSTEM 
PROCESSES 

 

4.1 Nutrient Cycling 
 

Soil microbes play a central role in the cycling of 
nutrients, including carbon, nitrogen, and 
phosphorus, which are essential for plant growth 
and ecosystem productivity [45]. Microbial 
decomposition of organic matter releases 
nutrients in forms that can be taken up by plants 
and other organisms, while also contributing to 
the formation and stability of soil organic matter 
[46]. Microbes are involved in key 
transformations of nitrogen, such as nitrogen 
fixation, nitrification, and denitrification, which 
regulate the availability of this often-limiting 
nutrient [47,56-64]. Phosphorus cycling is also 
mediated by microbes through the solubilization 
of inorganic phosphates and the mineralization of 
organic phosphorus compounds [48]. Table 4 
provides an overview of the main microbial 
processes involved in nutrient cycling and their 
functional significance. 
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Table 4. Microbial processes involved in nutrient cycling 
 

Nutrient Process Functional significance Key microbial groups 

Carbon Decomposition Release of nutrients, formation of soil 
organic matter 

Bacteria, fungi 

 
Methane 
oxidation 

Reduction of atmospheric methane Methanotrophic 

 
Table 5. Examples of studies investigating the impacts of temperature on soil microbial 

communities 
 

Study Ecosystem Key Findings 

DeAngelis et al. [87] Temperate 
forest 

Long-term warming altered bacterial community composition 
and increased the abundance of thermophiles 

Feng et al. [88] Grassland Warming increased the relative abundance of Gram-positive 
bacteria and actinobacteria 

Karhu et al. [89] Boreal 
forest 

Warming enhanced microbial respiration and carbon loss from 
soil 

 
5. SOIL MICROBIOME RESPONSE TO 

GLOBAL CHANGE 
 
5.1 Climate Change Impacts on Soil 

Microbial Communities 
 

Climate change, driven by increasing 
atmospheric greenhouse gas concentrations, is a 
major global environmental challenge that can 
significantly impact soil microbiome diversity and 
function [81]. The primary climate change factors 
affecting soil microbial communities include rising 
temperatures, altered precipitation patterns, and 
increased frequency and intensity of                   
extreme events such as droughts and heatwaves 
[65-68,82]. 
 

Rising temperatures can have both direct and 
indirect effects on soil microbial communities. 
Direct effects include changes in microbial 
growth rates, metabolic activities, and community 
composition [83]. In general, higher temperatures 
tend to favor the growth of thermophilic and 
thermotolerant microorganisms, leading to shifts 
in community structure [84]. Indirect effects of 
temperature on soil microbes are mediated 
through changes in plant communities, soil 
properties, and nutrient cycling [85]. For 
example, warming can accelerate the 
decomposition of soil organic matter, altering the 
availability of carbon and nutrients for microbial 
growth [86]. 
 

Altered precipitation patterns, including changes 
in the amount, frequency, and timing of rainfall, 
can also have significant impacts on soil 
microbial communities [90]. Soil moisture is a key 
factor regulating microbial growth and activity, 

and changes in moisture availability can lead to 
shifts in community composition and function 
[91]. Drought events, which are predicted to 
become more frequent and intense in many 
regions due to climate change, can have 
particularly strong effects on soil microbiomes 
[92]. Drought can reduce microbial biomass and 
diversity, alter community structure, and impair 
key ecosystem functions such as carbon and 
nitrogen cycling [73-80,93]. 
 
In addition to the direct effects of changing 
temperature and precipitation, climate change 
can indirectly influence soil microbiomes through 
its impacts on plant communities [95]. Climate-
driven changes in plant species composition, 
productivity, and root exudation can alter the 
quantity and quality of resources available to soil 
microbes, leading to shifts in community 
structure and function [69-72,96]. For example, a 
study by Bardgett et al. [97] found that 
experimental warming in a grassland ecosystem 
led to changes in plant community composition, 
which in turn altered the structure and diversity of 
soil microbial communities. 
 

5.2 Land-use Intensification and Soil 
Biodiversity Loss 

 

Land-use change, particularly the intensification 
of agriculture and urbanization, is a major driver 
of soil biodiversity loss worldwide [100]. Intensive 
land-use practices, such as monoculture 
cropping, heavy tillage, and the excessive use of 
agrochemicals, can have detrimental effects on 
soil microbial communities [101]. These practices 
can reduce microbial biomass and diversity, alter 
community composition, and impair key 
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ecosystem functions such as nutrient cycling and 
disease suppression [102]. 
 

Agricultural intensification often involves the 
conversion of natural ecosystems, such as 
forests and grasslands, into croplands or 
pastures [103]. This process can lead to 
significant changes in soil physical and chemical 
properties, such as reduced organic matter 
content, increased compaction, and altered pH 
[104]. These changes can create stressful 
conditions for soil microbes, leading to shifts in 
community composition and reductions in 
diversity [105]. 
 

The intensive use of agrochemicals, such as 
fertilizers and pesticides, can also have 

significant impacts on soil microbial communities 
[109]. While the application of fertilizers can 
stimulate microbial growth and activity in                        
the short term, long-term and excessive use can 
lead to reductions in microbial biomass and 
diversity [110]. This is particularly true                       
for synthetic fertilizers, which can alter soil pH 
and create imbalances in nutrient availability                             
[111]. Pesticides, including herbicides, 
insecticides, and fungicides, can have direct toxic 
effects on soil microbes, leading to reductions in 
biomass and diversity [112]. Additionally, 
pesticides can indirectly affect soil microbiomes 
by altering plant communities and                
reducing the diversity of organic inputs to the soil 
[113]. 

 
Table 6. Examples of studies investigating the indirect effects of climate change on soil 

microbial communities through plant-mediated mechanisms 
 

Study Ecosystem Key Findings 

Bardgett et al. [97] Grassland Warming-induced changes in plant community 
composition altered soil microbial community structure 
and diversity 

Compant et al. [98] Alpine tundra Warming increased plant productivity and root exudation, 
stimulating microbial growth and activity 

Geisen et al. [99] Temperate forest Drought-induced changes in plant communities altered 
fungal community composition and reduced diversity 

 
Table 7. Examples of studies investigating the impacts of land-use change on soil microbial 

communities 
 

Study Land-use Change Key Findings 

Rodrigues et al. [106] Forest-to-pasture 
conversion 

Conversion reduced bacterial and fungal diversity, 
altered community composition, and impaired 
nutrient cycling 

Trivedi et al. [107] Agricultural 
intensification 

Intensive practices reduced microbial biomass and 
diversity, favoured copiotrophic bacteria over 
oligotrophs 

Kuffner et al. [108] Urbanization Urban soils had lower microbial biomass and 
diversity compared to natural soils, with shifts in 
community composition 

 
Table 8. Examples of microbial adaptations to global change stressors 

 

Stressor Adaptation Mechanism Example 

Temperature Physiological acclimation Adjustment of membrane lipid composition to 
maintain fluidity [125] 

Drought Physiological acclimation Production of compatible solutes to protect against 
osmotic stress [126] 

Pesticides Genetic modification Acquisition of pesticide degradation genes through 
horizontal gene transfer [127] 

Heavy metals Community shifts Increased abundance of metal-tolerant taxa in 
contaminated soils [128] 
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Urbanization, another major form of land-use 
change, can also have significant impacts on soil 
microbial communities [115]. Urban soils are 
often characterized by high levels of disturbance, 
compaction, and contamination, which can 
create stressful conditions for microbes                
[116]. Additionally, the replacement of native 
vegetation with impervious surfaces and 
ornamental plants can alter the quantity and 
quality of organic inputs to the soil, leading to 
shifts in microbial community composition and 
function [117]. However, urban green spaces, 
such as parks and gardens, can serve as 
important refugia for soil biodiversity in cities 
[118]. 
 

5.3 Microbial Adaptations and 
Evolutionary Responses 

 
Soil microbial communities are not static entities 
but can adapt and evolve in response to 
changing environmental conditions [119]. 
Microbial adaptations to global change factors, 
such as climate change and land-use 
intensification, can occur through a variety of 
mechanisms, including physiological acclimation, 
genetic modification, and shifts in community 
composition [120]. 
 
Physiological acclimation involves changes in 
microbial metabolic activities and stress 
responses that allow individuals to maintain 
function under altered environmental conditions 
[121]. For example, microbes can adjust their 
membrane lipid composition to maintain fluidity 
under changing temperatures or produce 
compatible solutes to protect against osmotic 
stress during drought [122]. Genetic 
modifications, such as mutations and horizontal 
gene transfer, can also enable microbial 
adaptation to global change stressors [123]. 
These modifications can lead to the acquisition of 
new functional traits, such as the ability to 
degrade novel substrates or tolerate extreme 
conditions [124]. 
 
In addition to individual-level adaptations, global 
change stressors can drive evolutionary 
responses at the community level [129].                      
This can occur through the selection of                
resistant or resilient taxa, leading to shifts in 
community composition and function [130]. For 
example, long-term exposure to heavy metal 
contamination can lead to the development of 
metal-tolerant microbial communities, with 
increased abundance of taxa possessing metal 
resistance genes [131]. Similarly, chronic              

drought stress can favor the growth of drought-
tolerant taxa, such as certain groups of fungi and 
Gram-positive bacteria [132]. 
 
Understanding microbial adaptations and 
evolutionary responses to global change is 
crucial for predicting the future trajectory of soil 
biodiversity and ecosystem functioning [134]. 
While microbial communities may be able to 
adapt to certain stressors in the short term, the 
long-term consequences of multiple, interacting 
global change factors are less clear [135]. It is 
important to note that microbial adaptations may 
not always be sufficient to maintain ecosystem 
functions under severe or prolonged stress, and 
that the loss of key taxa or functional groups 
could have cascading effects on soil health and 
productivity [136]. 
 

5.4 Implications for Ecosystem 
Functioning and Services 

 
The responses of soil microbial communities to 
global change factors can have significant 
implications for ecosystem functioning and the 
provision of essential ecosystem services [137]. 
Soil microbes play critical roles in a wide range of 
ecosystem processes, including nutrient cycling, 
carbon sequestration, soil formation, and plant 
growth promotion [138]. Disruptions to soil 
microbial communities due to climate change, 
land-use intensification, or other stressors can 
impair these functions and compromise the 
sustainability of ecosystems [139]. 
 
One of the most important ecosystem services 
provided by soil microbes is the cycling of 
nutrients, such as carbon, nitrogen, and 
phosphorus [140]. Microbial decomposition of 
organic matter releases these nutrients in forms 
that can be utilized by plants and other 
organisms, supporting primary productivity and 
food web dynamics [141]. However, global 
change stressors can alter the rates and 
pathways of nutrient cycling, with potentially 
negative consequences for ecosystem 
productivity and stability [142]. For example, 
climate warming can accelerate microbial 
decomposition of soil organic matter, leading to 
increased carbon dioxide emissions and reduced 
soil carbon storage [143]. 
 

Another key ecosystem service provided by soil 
microbes is the regulation of plant growth and 
health [148]. Many soil microbes form beneficial 
associations with plant roots, such as 
mycorrhizal fungi and nitrogen-fixing bacteria, 
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which can enhance plant nutrient uptake, water 
relations, and stress tolerance [149]. Additionally, 
soil microbes can suppress plant pathogens 
through competition, antibiosis, and induced 
systemic resistance [150]. Global change 
stressors that disrupt these beneficial plant-
microbe interactions can lead to reduced plant 
productivity and increased disease susceptibility 
[151]. 
 

The loss of soil microbial diversity due to global 
change pressures can also have broader 
consequences for ecosystem stability and 
resilience [153]. A diverse soil microbiome is 
thought to provide functional redundancy and 
resistance to perturbations, helping to maintain 
ecosystem processes under stress                            
[154]. However, as global change stressors 
continue to erode soil microbial diversity, the 
capacity of ecosystems to withstand and recover 
from disturbances may be compromised                  
[155]. 
 

Ultimately, the impacts of global change on soil 
microbial communities and their associated 
ecosystem services have significant                
implications for human well-being [156]. Soil 
microbes underpin the productivity and 
sustainability of agricultural systems, which are 
critical for food security [157]. They also play key 
roles in regulating greenhouse gas emissions, 
water quality, and soil health, which are     
essential for climate change mitigation and 
adaptation [158]. Safeguarding soil microbial 
diversity and function in the face of global 
change pressures is therefore critical for 

maintaining the ecosystem services that support 
human societies [159]. 
 

6. APPLICATIONS AND FUTURE 
DIRECTIONS 

 
6.1 Harnessing Soil Microbiome Diversity 

for Sustainable Agriculture 
 
The diversity and functional capabilities of soil 
microbial communities offer significant potential 
for developing sustainable agricultural practices 
[160]. Harnessing the power of soil microbiomes 
can help reduce reliance on chemical inputs, 
improve crop yields and resilience, and promote 
soil health [161]. One promising approach is the 
use of microbial inoculants, which involve 
introducing beneficial microbes into the soil to 
enhance plant growth and stress tolerance [162]. 
For example, inoculation with arbuscular 
mycorrhizal fungi has been shown to improve 
nutrient uptake, water relations, and disease 
resistance in various crop species [163]. 
 
Another strategy is to manage agricultural 
practices to promote soil microbial diversity and 
function [164]. This can include practices such as 
crop rotation, cover cropping, and reduced 
tillage, which can enhance soil organic matter, 
improve soil structure, and support diverse 
microbial communities [165]. Additionally, the 
integration of agroforestry systems, which 
combine trees with crops or livestock, can 
promote soil microbial diversity and provide 
multiple ecosystem services [166]. 

 
Table 9. Examples of studies investigating the implications of soil microbial responses to 

global change for ecosystem functioning and services 
 

Study Global 
Change 
Factor 

Ecosystem 
Function/Service 

Key Findings 

Allison et al. [144] Climate 
warming 

Carbon cycling Warming altered microbial community 
composition and increased carbon 
dioxide emissions from soil 

de Vries et al. [145] Drought Nutrient cycling Drought reduced microbial biomass and 
enzyme activities, impairing nitrogen and 
phosphorus cycling 

Wagg et al. [146] Land-use 
intensification 

Plant productivity Intensive land use reduced soil microbial 
diversity, leading to decreased plant 
productivity and nutrient uptake 

Bardgett & van der 
Putten [147] 

Multiple 
factors 

Ecosystem 
multifunctionality 

Soil biodiversity loss due to global change 
can impair multiple ecosystem functions 
simultaneously, reducing overall 
ecosystem performance 
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Table 10. Examples of microbial indicators of soil health and ecosystem functioning 
 

Indicator Description Relevance 

Microbial 
biomass 

Total amount of microbial biomass in 
soil, often measured by phospholipid 
fatty acid (PLFA) analysis 

Reflects the size and activity of the 
microbial community, responds to changes 
in soil management and environmental 
conditions 

Microbial 
diversity 

Taxonomic and functional diversity of 
soil microbial communities, assessed 
by molecular techniques 

Indicates the resilience and stability of soil 
ecosystems, supports multiple ecosystem 
functions 

Functional 
gene 
abundance 

Abundance of genes involved in key 
ecosystem processes, such as 
nitrogen fixation and pesticide 
degradation 

Provides insights into the functional 
capacity of soil microbial communities, 
relates to specific ecosystem services 

Microbial 
respiration 

Rate of carbon dioxide production by 
soil microbes, measured by 
substrate-induced respiration (SIR) 

Reflects the activity and metabolic potential 
of the microbial community, responds to 
changes in soil organic matter and 
management 

 

6.2 Microbial Indicators of Soil Health and 
Ecosystem Functioning 

 
Developing robust indicators of soil health and 
ecosystem functioning based on microbial 
communities is an important goal for sustainable 
land management [167]. Microbial indicators can 
provide rapid and sensitive measures of soil 
quality, allowing for early detection of 
environmental stressors and informing 
management decisions [168]. Various microbial 
parameters, such as biomass, diversity, and 
functional gene abundance, have been proposed 
as potential indicators of soil health [169]. 
 
However, the development and application of 
microbial indicators face several challenges, 
including the high spatial and temporal variability 
of soil microbial communities, the complexity of 
interactions between microbes and their 
environment, and the need for standardized 
sampling and analysis protocols [170]. Future 
research should focus on identifying robust and 
scalable microbial indicators that can be easily 
integrated into soil monitoring and management 
programs [171]. 
 

6.3 Knowledge Gaps and Research 
Priorities 

 
Despite the significant advances in 
understanding soil microbiome diversity and its 
implications for ecosystem functioning, several 
knowledge gaps and research priorities remain 
[172]. One key challenge is to better understand 
the complex interactions between soil microbes 
and their biotic and abiotic environment across 

different spatial and temporal scales [173]. This 
requires the integration of molecular, ecological, 
and biogeochemical approaches, as well as the 
development of new experimental and modeling 
tools [174]. 
 
Another priority is to investigate the functional 
roles of soil microbial communities in regulating 
ecosystem processes and services [175]. While 
much research has focused on describing the 
taxonomic diversity of soil microbiomes, less is 
known about the specific functions performed by 
different microbial groups and how they respond 
to environmental changes [176]. Addressing this 
knowledge gap will require the application of 
functional genomics, metagenomics, and stable 
isotope probing techniques, among others [177]. 
 
Finally, there is a need to better understand the 
resilience and adaptability of soil microbial 
communities in the face of multiple, interacting 
global change stressors [178]. This requires 
long-term, multi-factor experiments that simulate 
realistic scenarios of climate change, land-use 
intensification, and other perturbations [179]. 
Insights from such studies can inform the 
development of management strategies and 
policies to protect and restore soil microbial 
diversity and function in a changing world [180]. 
 

6.4 Integrating Soil Microbiome Diversity 
into Ecosystem Models 

 
Integrating soil microbiome diversity into 
ecosystem models is an important frontier for 
advancing our understanding and prediction of 
ecosystem dynamics in response to global 
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change [181]. Ecosystem models, such as those 
used to simulate carbon and nutrient cycling, 
have traditionally treated soil microbial 
communities as a "black box" with simplified 
functions [182]. However, incorporating the 
diversity and complexity of soil microbiomes into 
these models can improve their accuracy and 
realism [183]. 
 

Recent advances in molecular and computational 
techniques have enabled the development of 
microbial-explicit ecosystem models that 
incorporate data on microbial community 
composition, functional traits, and interactions 
[184]. These models can simulate the dynamic 
responses of soil microbiomes to environmental 
changes and predict their consequences for 
ecosystem processes [185]. For example, the 
MIcrobial-MIneral Carbon Stabilization (MIMICS) 
model integrates microbial physiology and 
community dynamics with soil carbon cycling 
processes, providing a mechanistic framework 
for predicting soil carbon storage under different 
management and climate scenarios [186]. 
 

Integrating soil microbiome diversity into 
ecosystem models faces several challenges, 
including the need for large amounts of empirical 
data on microbial communities and their 
functions, the complexity of microbial-
environmental interactions, and the 
computational demands of simulating diverse 
microbial populations [188]. Future research 
should focus on developing and testing 
microbial-explicit models across different 
ecosystems and scales, as well as coupling 
these models with other ecological and 
biogeochemical models to provide a more 
comprehensive understanding of ecosystem 
dynamics 
 [189]. 
 

6.5 Experiment Result  
 

1. Soil bacterial diversity was significantly 
higher in grassland ecosystems compared 
to agricultural fields [190]. 

2. Fungal diversity was positively correlated 
with plant species richness in temperate 
forests [191]. 

3. Soil microbial biomass carbon increased 
by 20% in response to long-term organic 
matter additions [192]. 

4. Soil enzyme activities (β-glucosidase, N-
acetyl-glucosaminidase, and phosphatase) 
were significantly higher in soils with higher 
microbial diversity [193]. 

5. Inoculation with arbuscular mycorrhizal 
fungi increased plant biomass by 30% and 
phosphorus uptake by 25% in a 
greenhouse experiment [194]. 

6. Soil bacterial community composition 
shifted significantly in response to a 5-year 
warming treatment, with an increase in the 
relative abundance of Firmicutes and a 
decrease in Acidobacteria [195]. 

7. Soil microbial respiration increased by 15% 
in response to a 10% increase in soil 
moisture [196]. 

8. Soil bacterial diversity was positively 
correlated with soil carbon storage across 
a range of ecosystem types [197]. 

9. The abundance of nitrogen-fixing bacteria 
(nifH gene copies) was significantly higher 
in soils under leguminous cover crops 
compared to non-leguminous cover crops 
[198]. 

10. Soil fungal communities exhibited higher 
temporal stability than bacterial 
communities in response to seasonal 
changes [199]. 

11. The ratio of fungal to bacterial biomass 
was significantly higher in forest soils 
compared to grassland soils [200]. 

12. Soil microbial diversity was positively 
correlated with the rate of litter 
decomposition in a microcosm experiment 
[201]. 

13. The abundance of ammonia-oxidizing 
bacteria (amoA gene copies) was 
significantly higher in soils with higher 
nitrogen availability [202]. 

14. Soil microbial community composition was 
significantly different between rhizosphere 
and bulk soil samples [203]. 

15. The inoculation of soil with a consortium of 
plant growth-promoting bacteria increased 
crop yield by 15% in a field experiment 
[204]. 

16. Soil bacterial diversity was negatively 
affected by heavy metal contamination, 
with a 30% reduction in species richness 
[205]. 

17. The abundance of denitrifying bacteria 
(nirK and nirS gene copies) was 
significantly higher in wetland soils 
compared to upland soils [206]. 

18. Soil microbial biomass nitrogen was 
positively correlated with soil organic 
carbon content across a range of soil types 
[207]. 

19. The application of biochar to soil increased 
microbial diversity and altered community 
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composition, favouring the growth of 
Gram-positive bacteria [208]. 

20. Soil bacterial community composition was 
significantly different between soil 
aggregates of different sizes [209]. 

21. The abundance of arbuscular mycorrhizal 
fungi was positively correlated with plant 
phosphorus uptake in a field experiment 
[210]. 

22. Soil microbial diversity was positively 
correlated with the resistance and 
resilience of soil respiration to heat stress 
[211]. 

23. The inoculation of soil with endophytic 
bacteria increased plant drought tolerance 
by 20% [212]. 

24. Soil fungal diversity was negatively 
affected by tillage, with a 25% reduction in 
species richness in tilled soils compared to 
no-till soils [213]. 

25. The abundance of chitinolytic bacteria was 
significantly higher in soils with higher 
fungal biomass [214]. 

26. Soil microbial community composition was 
significantly different between different soil 
horizons [215]. 

27. The application of compost to soil 
increased microbial biomass carbon by 
30% and altered community composition 
[216]. 

28. Soil bacterial diversity was positively 
correlated with the rate of soil nitrogen 
mineralization [217]. 

29. The abundance of sulfate-reducing 
bacteria was significantly higher in wetland 
soils compared to upland soils [218]. 

30. Soil microbial diversity was positively 
correlated with the suppression of soil-
borne plant pathogens [219]. 

31. The inoculation of soil with mycorrhizal 
fungi increased plant resistance to heavy 
metal stress by 25% [220]. 

32. Soil bacterial community composition was 
significantly different between soils of 
different textures (clay, silt, and sand) 
[221]. 

33. The abundance of methanotrophic bacteria 
was significantly higher in soils with higher 
methane oxidation rates [222]. 

34. Soil microbial biomass phosphorus was 
positively correlated with soil pH across a 
range of soil types [223]. 

35. The application of nitrogen fertilizer                       
to soil reduced microbial diversity and 
altered community composition, favouring 
the growth of copiotrophic bacteria                
[224]. 

36. Soil fungal diversity was positively 
correlated with the rate of wood 
decomposition in a microcosm experiment 
[225]. 

37. The abundance of iron-reducing bacteria 
was significantly higher in waterlogged 
soils compared to well-drained soils [226]. 

38. Soil microbial community composition was 
significantly different between soils under 
different vegetation types (grassland, 
shrubland, and forest) [227]. 

39. The inoculation of soil with plant growth-
promoting fungi increased plant nutrient 
uptake and biomass by 20% [228]. 

40. Soil bacterial diversity was negatively 
affected by soil salinity, with a 40% 
reduction in species richness in highly 
saline soils [229]. 

41. The abundance of cellulolytic bacteria was 
significantly higher in soils with higher plant 
litter inputs [230]. 

42. Soil microbial diversity was positively 
correlated with the stability of soil 
aggregate structure [231]. 

43. The application of pesticides to soil 
reduced microbial biomass carbon by 15% 
and altered community composition [232]. 

44. Soil fungal community composition was 
significantly different between soils under 
different land-use types (agricultural, 
grassland, and forest) [233]. 

45. The abundance of phosphate-solubilizing 
bacteria was significantly higher in soils 
with higher organic phosphorus content 
[234]. 

46. Soil microbial diversity was positively 
correlated with the efficiency of soil carbon 
sequestration [235]. 

47. The inoculation of soil with disease-
suppressive bacteria reduced the 
incidence of plant fungal diseases by 30% 
[236]. 

48. Soil bacterial community composition was 
significantly different between soils of 
different ages (young, intermediate, and 
old) [237]. 

49. The abundance of nitrite-oxidizing bacteria 
was significantly higher in soils with higher 
nitrification rates [238]. 

50. Soil microbial biomass and diversity were 
positively correlated with soil water 
retention capacity [239]. 
 

7. CONCLUSION 
 
Soil microbiome diversity is a critical component 
of terrestrial ecosystems, playing a vital role in 
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regulating a wide range of ecosystem functions 
and services. This comprehensive review has 
explored the complex dynamics of soil microbial 
communities, including their composition, 
structure, and responses to biotic and abiotic 
factors. By synthesizing findings from cutting-
edge research, we have highlighted the intricate 
interplay between soil microbiome diversity and 
ecosystem functioning, emphasizing the 
importance of understanding these relationships 
in the context of global change. 
 

The application of advanced molecular 
techniques, such as high-throughput sequencing 
and metagenomic analysis, has revolutionized 
our understanding of soil microbial diversity, 
revealing the immense taxonomic and functional 
complexity of these communities. However, we 
have also identified significant knowledge gaps 
and challenges, such as the need to better 
understand the functional roles of soil microbes, 
the complexity of microbial-environmental 
interactions, and the resilience and adaptability 
of soil microbial communities to multiple, 
interacting stressors. 
 

To address these challenges, future research 
should focus on integrating molecular, ecological, 
and computational approaches to develop a 
more comprehensive understanding of soil 
microbiome diversity and its implications for 
ecosystem functioning. This includes harnessing 
the power of soil microbiomes for sustainable 
agriculture, developing robust microbial 
indicators of soil health, and integrating soil 
microbiome diversity into ecosystem models. The 
protection and restoration of soil microbial 
diversity should be a key priority for sustainable 
land management and conservation efforts. This 
requires the development of management 
strategies and policies that promote soil health, 
minimize the impacts of land-use intensification, 
and enhance the resilience of soil microbial 
communities to global change stressors. 
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