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Abstract

Bimanual movements are fundamental components of everyday actions, yet the underlying

mechanisms coordinating adaptation of the two hands remain unclear. Although previous

studies highlighted the contextual effect of kinematics of both arms on internal model forma-

tion, we do not know how the sensorimotor control system associates the learned memory

with the experienced states in bimanual movements. More specifically, can, and if so, how,

does the sensorimotor control system combine multiple states from different effectors to cre-

ate and adapt a motor memory? Here, we tested motor memory formation in two groups

with a novel paradigm requiring the encoding of the kinematics of the right hand to produce

the appropriate predictive force on the left hand. While one group was provided with training

movements in which this association was evident, the other group was trained on conditions

in which this association was ambiguous. After adaptation, we tested the encoding of the

learned motor memory by measuring the generalization to new movement combinations.

While both groups adapted to the novel dynamics, the evident group showed a weighted

encoding of the learned motor memory based on movements of the other (right) hand,

whereas the ambiguous group exhibited mainly same (left) hand encoding in bimanual trials.

Despite these differences, both groups demonstrated partial generalization to unimanual

movements of the left hand. Our results show that motor memories can be encoded depend-

ing on the motion of other limbs, but that the training conditions strongly shape the encoding

of the motor memory formation and determine the generalization to novel contexts.

Author summary

Using cutlery, buttoning up a shirt, or cooking a meal requires precise coordination

between two hands. These daily activities seem effortless, as they are based on well-

adapted motor memories covering a wide space of experienced states. We demonstrate

that the sensorimotor control system creates a motor memory of one limb using the expe-

rienced states of the other limb. Presentation of evident or ambiguous information about

this relation between the two limbs shaped the bimanual control by changing the extent to

which kinematic information of each arm which was used to control subsequent
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movements. Importantly, bimanual motor memories are only partially transferred to

unimanual actions, likely engaging different neural processes. This has strong implica-

tions for rehabilitation techniques that employ bimanual training.

Introduction

The human sensorimotor control system has extraordinary abilities to flexibly perform skilled

actions. Whether it is coordinating a throw in judo or simply eating with a knife and fork,

humans are able to coordinate and adapt to the complex dynamics across two limbs. Despite

continually changing environmental constraints, sensorimotor transformations, and dynam-

ics, humans perform skillful actions which require a high level of control. Many studies have

shown that the sensorimotor control system adapts to novel dynamics by forming a predictive

motor memory (or internal model) of the task [1–3]. Moreover, we form independent motor

memories specific for the coordination of the two limbs [4, 5] that depend on whether we

move unimanually or bimanually [6]. Further studies on neural activation patterns confirm

this distinction in internal model formation [7–9]. However, measures of transfer from biman-

ual to unimanual contexts, and vice versa, revealed a partial compensation [6, 10, 11] indicat-

ing an overlapping component between internal models for these two contexts. Evidence from

unimanual studies underlines the idea of a task-specific, local internal model formation. Adap-

tation to novel dynamics forms state-dependent representations: states experienced during

learning are used to update the internal model and allow for adaptation to the novel environ-

ment [1, 12–15]. This has been powerfully underlined by the study of Gonzales-Castro, Mon-

sen and Smith [16], who showed that the sensorimotor control system relies on motion-

referenced learning. That is, internal model updates between trials were most efficient for trials

where the plan for the current trial matched the trajectory from the previous trial. However,

learning does not only occur for the trained movement [3], but also generalizes to movements

across similar states [1, 17–21], where the amount of generalization decreases as the states

diverge further from the trained conditions [11, 16, 22–25]. These generalization results have

suggested that learning occurs through the tuning of Gaussian-like units or neural basis func-

tions [26–29], which can be combined to allow for flexible actions in new environments.

The number of possible factors and states influencing the encoding and adaptation of

motor memories multiplies in bimanual tasks. Bays and Wolpert [30] showed that the feedfor-

ward force generation of a stationary arm adapting to a force perturbation could be tailored to

the movement direction of the opposite arm. Using a similar bimanual paradigm, Jackson and

Miall [31] investigated the adaptation to a force perturbation, which was proportional to the

movement speed of the contralateral arm performing a reaching movement. Their participants

reduced the final end-point error quickly and showed an appropriate scaling of the predictive

force to changes in movement velocity. They demonstrated that predictive forces by one arm

could be generated based on the state-dependent encoding of the speed of the movement of

the other arm. However, Jackson and Miall [31] did not assess how the contralateral predictive

response would be shaped if both arms would do a reaching movement, where the states expe-

rienced by both arms could influence the formation of the motor memory. Yokoi et al. [11]

demonstrated that directional changes in movements of both arms led to gaussian-like decay

in predictive force, supporting the hypothesis of overlapping neural control processes [6] and

the flexible encoding of kinematics of both arms to perform bimanual actions. Taken together,

the sensorimotor control system is able to produce highly flexible motor commands simulta-

neously for our arms, based on the encoding of either one or both arms. However, it remains
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unclear how the sensorimotor control system associates the learned memory with the experi-

enced states in bimanual movements. More specifically, how and to what extent does the sen-

sorimotor control system combine the states of the left and right arms in the encoding of

bimanual motor memory?

Here, we tested the motor memory formation with a novel paradigm which required the

encoding of the kinematics in velocity space of the opposite, right hand to produce an ade-

quate, predictive force on the left hand. While one group (the ambiguous group) was trained

on matching movements with similar speeds and lengths for both arms, the other group (the

evident group) had non-matching movements with different speeds and lengths for the left

and right arms. Hence, the latter (evident) group faced different states between arms within

each trial which allowed them to experience the evident relationship between the right-hand

kinematics and the force field on the left hand. In contrast, the matching movement speeds of

the ambiguous group provided little information about the appropriate encoding as the states

of both arms were similar. Differences between arms could only be sensed through variability

in the speeds of the two hands, hence the sensory information provided was ambiguous. To

assess the underlying representation, specifically the amount of right-hand and left-hand

encoding, we tested how participants generalized to novel combinations of the trained condi-

tions (speeds). Furthermore, we removed the state information of the right hand in some trials

to observe how the formed motor memory would cope with the lack of information and trans-

fer to unimanual trials. Overall, we were able to assess how the sensorimotor system combines

the experienced states from both arms to produce an appropriate motor command and discov-

ered that this bimanual encoding is formed during exposure to a specific environment.

Results

The aim of the current study was to understand how the sensorimotor control system associ-

ates the learned motor memory with the experienced states in bimanual movements. We

trained two groups in different conditions, in both of which they had to adapt their move-

ments to a velocity-dependent force field imposed on their left hand, where the forces experi-

enced depended on the movement of their right hand (Fig 1). The evident group trained on

conditions in which the participants would clearly experience the left-hand forces depending

on the right-hand velocity (conditions: bfs, bmm and bsf). On the other hand, the ambiguous

group trained on conditions in which this relationship between the left-hand forces and right-

hand movements was not clearly apparent (conditions: bff , bmm and bss), but could only be

sensed through variability in the speeds of the two hands. After adaptation to the force fields in

these conditions, we tested the representation of the motor memory by measuring the partici-

pants’ predictive forces in novel conditions not experienced during the exposure phase (Fig

1D). We hypothesized that the evident group would extract the relationship between the left-

hand forces and right-hand kinematics, and therefore should generalize the motor memory to

the novel conditions (development of predictive force based on right-hand kinematics). In

contrast, we hypothesized that the ambiguous group will be unable to extract this relationship,

and therefore express a generalization pattern relying on the kinematics of the left hand or a

combination of both and hence produce an inappropriate motor output.

To assess the amount of information participants could potentially extract between both

hands, we compared the differences in velocity profiles between right and left hand (Fig 2) and

conducted a repeated measures ANOVA for each group separately. For both the evident group

(F5,35 = 190.407, p< 0.001, Z2
p ¼ 0:965) and the ambiguous group (F1.749,12.240 = 173.675,

p< 0.001, Z2
p ¼ 0:961, Greenhouse-Geisser corrected), the conditions showed a significant

main effect. The conditions bsf and bfs for the evident group showed a clear difference during
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the exposure phase (Left bsf vs. Right bsf : p<.001; Left bfs vs. Right bfs: p<.001), whereas all

three conditions in the ambiguous group showed only small differences between hands, which

were similar to the condition bmm for the evident group all p> 0.05). The small differences can

be explained by different temporal patterns between the right (dominant) and the left hand.

Interestingly, for all conditions with matched movements of the left and right hands, the right

hand slightly preceded the movement of the left hand across all our participants. Moreover,

both groups complied with the desired peak velocities of the experimental design (Fig 2G).

Fig 1. Experimental set-up for both groups. (A) The experiment was divided into three phases: Baseline, Exposure and Generalization. Each block

consisted of 48 trials and overall 2208 trials were completed. During the exposure phase, participants were confronted with the three depicted training

conditions as well as error clamp trials to assess adaptation. In the generalization phase, the same three training conditions were still used, however, the

interspersed error-clamp trials were applied to all conditions, both unimanual and bimanual. (B) The vBOT was used to apply state-dependent forces

together with a virtual environment presented via the monitor. (C) The force field, which was applied to the left arm, was determined by the velocity of

the right arm during bimanual movements. Error-clamp trials were mechanical force channels, which prohibited any lateral movement of the left hand

and allowed us to measure lateral forces. (D) Nine bimanual and three unimanual conditions were used to assess generalization. The colored, green and

brown conditions represent the trained conditions for the evident and ambiguous group, respectively. The curved lines depict the required amount of

force in case of left-hand encoding during the generalization phase.

https://doi.org/10.1371/journal.pcbi.1011189.g001
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Fig 2. Hand velocities during the exposure phase. (A-F) Difference in velocity profiles between left hand and right hand for all

trials during the exposure phase. (A-C) The trained conditions for the evident group. (D-F) The trained conditions for the

ambiguous group. The force profiles depict the mean difference (left-hand velocity—right-hand velocity) between hands across

subjects. While the ambiguous group showed only minor differences between hands, the evident group experienced major

differences in conditions bsf and bfs. (G) Compliance of peak velocity with experimental design. Mean ± standard error of the mean

(colored region) of the right and left-hand peak velocities for each of the training conditions. Dots represent individual participants.

The grey-shaded region indicates peak velocities that were considered successful for each condition. Participants adhered to the

respective desired peak velocities from the experimental setup.

https://doi.org/10.1371/journal.pcbi.1011189.g002
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Consequently, only little information on the relationship between right-hand velocity and the

perturbing force could be extracted for the ambiguous group during exposure.

Adaptation to novel dynamics

In the baseline phase, participants made straight movements to the targets as no lateral forces

were applied in the null field. When the force fields were applied in the exposure phase, this

produced large lateral errors which were gradually reduced. Finally, in the generalization

phase the representation of the motor memory was probed by testing generalization to

untrained conditions. To verify that both groups were able to learn the imposed dynamics, we

compared the baseline movements in the null field with the late movements in the exposure

and generalization phases (Fig 3). We used four different parameters, namely the maximum

perpendicular error, the force compensation, and the peak and shape of the force profiles, to

assess motor learning in response to the novel dynamics.

In terms of kinematics, the maximum perpendicular error showed a sharp increase in the

initial exposure to the force field (Fig 3A), which was gradually reduced with continued expo-

sure to the force field. These later straighter movements towards the target indicated adapta-

tion to the force fields. Both groups adapted fairly quickly to the novel dynamics, reaching

steady-state levels of kinematic error within the first half of the exposure phase, with maximum

perpendicular error levels remaining around this level for the rest of the experiment. We per-

formed a repeated measures ANOVA with within-subjects factor phase (early exposure, late

exposure and late generalization) and between-subjects factor group (Fig 3B). There was a sig-

nificant effect for phase (F1.229,17.201 = 35.023, p< 0.001, Z2
p ¼ 0:714), but no effect between

groups (F1,14 = 0.079, p = 0.783, Z2
p ¼ 0:006) and no interaction (F1.229,17.201 = 0.100, p = 0.806,

Z2
p ¼ 0:007). Post-hoc Bonferroni pairwise comparison indicated a decrease from early expo-

sure to late exposure by 2.18 cm (p< 0.001), but no further decrease between late exposure

and late generalization (Mean difference of 0.042 cm, p = 0.777).

To quantify the amount of predictive adaptation to the novel dynamics, we examined the

force compensation on random error clamp trials. In the baseline phase, force compensation

was close to zero with 7.62±2.27% and 6.88±2.77% for the evident and ambiguous group,

respectively. Both groups showed similar responses to the introduction of the force field with a

sharp, fast increase in force compensation during the initial exposure block (Fig 3C and 3D).

In subsequent blocks, the performance increase slowed down and the learning curve was

asymptotic at 79.52±3.83% for the evident group and 86.88±2.85% for the ambiguous group in

the late exposure phase. A repeated measures ANOVA revealed a significant main effect for

this change across the phase (F2,18 = 125.963, p< 0.001, Z2
p ¼ 0:933), but not for group (F1,9 =

0.003, p = 0.960, Z2
p ¼ 0:003) or interaction (F1,14 = 2.902, p = 0.111, Z2

p ¼ :041). Post-hoc Bon-

ferroni tests showed that the average increase of 76.92% between baseline and exposure was

significant (p< 0.001), but the slight decrease by 8.68% between late exposure and late general-

ization was not significant (p = 0.120).

We further quantified this adaptation by examining the development of the force profiles

during exposure to the force fields (Fig 4). In the baseline phase (Fig 4A and 4F), force traces

showed only minor deviations from zero, which can be explained by slightly curved move-

ments, which produced small lateral forces. During the first block of exposure, there was an

increase in amplitude compared to baseline performance (Fig 4B and 4G). With continued

exposure, the force amplitudes further increased and diverged for the three different trained

conditions. By the end of the generalization phase we see a clear modulation of the predictive

forces according to the conditions for both groups (Fig 4D and 4I) that is a scaled version of
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Fig 3. Development of the motor learning parameters maximum perpendicular error and force compensation during the experiment. (A) The

maximum perpendicular error throughout the experiment is shown for the three training conditions for the ambiguous (brown) and the evident (green)

groups. After the baseline phase in the null field, the maximum perpendicular error increased initially with the introduction of the perturbation in the

exposure phase but rapidly decreased with continued exposure to force fields, remaining at a constant level throughout the generalization phase. Values

are shown in trial bins of 12 and reported as mean values across participants (solid line) ± standard error of the mean (shaded region). (B) The mean

maximum perpendicular error is shown for the first bin of 12 trials in the exposure phase, the last bin in the exposure phase and the last bin in the

generalization phase (error bars represent standard error). Individuals are represented by grey dots. (C) The force compensation is shown across the

experiment for the bimanual trials (dark brown and dark green) and unimanual trials (light brown and light green), which were only presented in

baseline and generalization phases. Bimanual force compensation increased sharply after introduction of the force field and stayed high throughout the

exposure and generalization phases. Note, that in the generalization phases, the bimanual values include all of the bimanual conditions, not only the

trained ones. Unimanual force compensation increased from baseline to generalization phase, but did not reach bimanual adaptation levels. (D) Force

compensation for last bins in baseline, exposure and generalization phases.

https://doi.org/10.1371/journal.pcbi.1011189.g003
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the perfect compensation for each of the conditions (Fig 4E and 4J). To evaluate the tuning

between conditions, we performed a two-factor ANOVA with repeated measures (factors con-
dition and stage) for each experiment, which revealed a significant effect for both factors in

both the evident (factor Condition F2,14 = 33.617, p< 0.001, Z2
p ¼ 0:828; factor Stage F3,21 =

69.889, p< 0.001, Z2
p ¼ 0:909) and ambiguous (factor Condition F2,14 = 47.413, p< 0.001,

Z2
p ¼ 0:871, Stage F3,21 = 109.462, p< 0.001, Z2

p ¼ 0:940) groups. Interestingly, the forces for

different conditions were not tuned to the respective force field initially during early exposure,

which is underlined by post-hoc Bonferroni pairwise comparison in early exposure for both

the evident (bfs vs. bsf : p = 1.000, bfs vs. bmm: p = 1.000, bmm vs. bsf : p = 1.000) and ambiguous

(bff vs. bss: p = 0.116, bff vs. bmm: p = 1.000, bmm vs. bss: p = 0.758) groups. Following extensive

exposure to the force field, the peak force values diverged, which is shown by the differences in

late exposure between the trained conditions in both the evident (bfs vs. bmm: p< 0.001, bfs vs.

bsf : p< 0.001, no difference for bmm vs. bsf : p = 0.332) and ambiguous (bff vs. bss: p< 0.001,

bmm vs. bss: p = 0.005, no difference for bff vs. bmm: p = 0.357) groups.

Taken together, these results highlight the ability of individuals to adapt to different force

requirements simultaneously and finely tune the lateral force to the desired force profile. Both

Fig 4. Changes in lateral force profile of the left hand during the experiment for the trained conditions. (A to E) The evident group. (F to J) The

ambiguous group. The last column (E, J) represents the required forces for complete adaptation. The force profiles represent mean values across

participants and blocks of 48 trials and were aligned to the peak speed of the right hand. While the lateral force was generic across conditions in early

adaptation, longer exposure led to clear differentiation between conditions according to the required force. Note that the slow movement of the left

hand in the evident group (bsf) required high forces, while it required low forces in the ambiguous group (bss) (e.g., in D and I).

https://doi.org/10.1371/journal.pcbi.1011189.g004
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evident and ambiguous groups adapted to the respective trained conditions and were able to

scale the lateral force output to different peak velocities. While the ambiguous group learned

higher forces for faster velocities of their left hand, the evident group learned to produce higher

forces for slower movements of their left hand. As the right-hand velocity determined the

forces on the left hand, the evident group had to tune the force of the left hand by adjusting it

to the right-hand velocity for each condition.

Fitting of encoding models in trained conditions

Although the two experiments differed in the trained conditions, the underlying relationship

of the right arm velocity influencing the perturbation on the left arm was never explicitly pre-

sented to the participants. Therefore, we hypothesized that participants could use four differ-

ent encoding strategies. If participants used a right-hand encoding, participants would purely

use the velocity of the right arm to produce the motor command of the left arm. Inversely, a

left-hand encoding would only use left-hand velocity. As participants moved both arms, we

also tested the average encoding (average between both velocity profiles) and weighted encod-

ing (weighted average between left and right velocity profiles). We fitted the four models to the

produced force profiles during the generalization phase, but only to the trained conditions and

retrieved the parameters for α and ω (see Predicted outcomes and encoding weights) and con-

ducted repeated-measures ANOVA for the two parameters. For α, which represents the scaling

of forces to the imposed force field, there was no significant difference between groups (F1,14 =

1.512, p = 0.239, Z2
p ¼ 0:097), but effects between models (F1.359,19.021 = 98.320,

p< .001,Z2
p ¼ 0:875), Greenhouse-Geisser corrected) and an interaction (F1.359,19.021 = 47.210,

p< .001, Z2
p ¼ :771, Greenhouse-Geisser corrected). Post-hoc Bonferroni tests reveal a lower

α for the left encoding (p< .001 in all three comparisons), while the interaction reveals, that

this was mainly driven by the evident group, which had a significantly lower α for left encoding

compared to the other models (all p< .001). The results of the fitting for the weighted model

reveal a significant difference between groups for the weighting parameter ω (independent t-

test, t(14) = −11.420, p< .001, Cohen’s d = −5.710). Consequently, we would assume that the

evident group mostly uses the right arm velocity (ω = 0.935), while the ambiguous group uses

kinematic information of both arms with a tendency towards the left arm (ω = 0.374) (see also

Section Transfer to unimanual conditions). To assess model performance and account for dif-

ferences in parameters, we calculated the Bayesian Information Criterion (BIC) for all models

and compared the performance to a non-parametric model with a fixed α = 0.822, which rep-

resents the mean α across all models and participants. The BIC improvements for each partici-

pant and group average are depicted in Fig 5 and show that the right and weighted encoding

outperform the non-parametric, left and average encoding in the evident group (ΔBIC> 10

[32]). Similarly, the weighted encoding has the lowest BIC value for the ambiguous group, fol-

lowed by the average, left and right encoding (all differences ΔBIC> 10). The explained vari-

ance of R2 is high for all five models. Taken together, we could show that the weighted

encoding model fits best to the respective trained conditions while showing a significant differ-

ence in the importance by which the groups weigh the kinematic information from each arm.

In order to examine if the learned movement pattern only applied to the trained conditions,

representative of a local learning function, or if participants were able to extract the relation-

ship between forces and right-hand movements, representative of a generalized learning func-

tion, we tested the participants with novel conditions in the generalization phase.

PLOS COMPUTATIONAL BIOLOGY Learning context shapes bimanual control strategy and generalization of novel dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011189 December 8, 2023 9 / 27

https://doi.org/10.1371/journal.pcbi.1011189


Generalization

The generalization phase consisted of force field trials in the respective training conditions and

interleaved error clamp trials covering all conditions displayed in Fig 1D. Despite the increased

number of error clamp trials in the generalization phase, there was little or no change in the

overall force compensation or maximum perpendicular error (Fig 3). However, individual

conditions showed strong differences in the generated peak forces (S1 Fig) and generated

force compensation (Fig 6). Fig 6A and 6B outline the generated force compensation for each

condition and group. We conducted a rmANOVA with “condition” as the within-subject fac-

tor and “group” as the between-subject factor. While there was no difference between experi-

mental groups (F1,14 = 0.327, p = 0.577, Z2
p ¼ 0:023), the analysis revealed differences between

conditions (F3.333,46.660 = 50.928, p< 0.001, Z2
p ¼ 0:784, Greenhouse-Geisser corrected) and

an interaction (F3.333,46.660 = 59.328, p< 0.001, Z2
p ¼ 0:809, Greenhouse-Geisser corrected).

Neither of the groups had a difference in force compensation between trained conditions (all

Fig 5. BIC model comparison for trained conditions for the evident (A) and ambiguous group (B). Values are shown as positive BIC improvements

compared to a non-parametric model. The last block shows the group average for each group and the inset allows for better readability between the right and

encoding model. C and D show the respective R2 for each participant as well as the group average. Stronger deviations in R2 in the evident group can be

explained by the stark differences in the velocities between arms during the trained conditions, while there was a high correlation between movement

velocities in the trained conditions for the ambiguous group. For all points the standard error of the mean is shown with a line. For most conditions this s.e.

m. is generally not visible beyond the dot as the values are small.

https://doi.org/10.1371/journal.pcbi.1011189.g005
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p = 1.000), which confirms that participants learned to tune the forces to individual conditions

(compare shaded conditions in Fig 6A and 6B). However, the evident group showed signifi-

cantly lower values for bff (to bmm, bms, bsf, bsm and bss, all p< .05) and bfm (to bms, bsm and bss,
all p< .05) as well as higher compensation for bsm (to bfs, bmf, bmm, all p< .05) and bss (to bfs,
bmf, bmm and bsf, all p< .05). This shows that the participants from the evident group did not

perfectly generalize to the novel conditions. Importantly, a higher compensation does not indi-

cate a better adaptation—when we assume a learned force compensation yielding approx. 80%

in the trained conditions, the perfect generalization is indicated by the right prediction as a

model of the actual underlying environment. Therefore, we would expect participants to gen-

erate a force compensation close to the red bars in Fig 6. This deviation from trained condi-

tions and the underlying true relation of the force field is stronger for the ambiguous group,

we showed bigger differences in the posthoc-Bonferroni comparison. Participants produced a

force compensation, which was significantly higher for bfs and lower for bmf, bsf and bsm (all p
< .001). Consequently, the lower generalization in this group underlines, that the ambiguous

group did not learn the true relation of the force field, as they were only experiencing

Fig 6. Different encoding predictions for the force compensation and the quality of the estimation for bimanual generalization

conditions for the evident and ambiguous group. (A) Evident group. (B) Ambiguous group. Predicted force compensation for each

encoding hypothesis and the generated force compensation for all bimanual conditions in the experiment. The predictions for left-hand

encoding in the ambiguous group, right-hand encoding for the evident group and average and weighted encoding in both groups resembled

best the generated force compensation in the the generalized, bimanual conditions. The mean squared error (MSE) for each encoding across

all generalization bimanual conditions in the evident group (C) and the ambiguous group (D). Note that the MSE for the trained conditions

are not included in these values. The weighted and average encoding fits well across both groups.

https://doi.org/10.1371/journal.pcbi.1011189.g006
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correlated movement velocities during training. To evaluate which encoding model explains

best the generated forces, we added the predictions for each model to Fig 6. The right encoding

embodies the true relation of the force field. For the evident group, the weighted and right

model are similar, as the mean ω retrieved from the fit was 0.935±0.021, therefore the sensori-

motor system in the evident group mostly relied on right-hand information. In contrast, pre-

dictions for the average and left encoding model showed higher deviations with increased

differences between right and left-hand velocity in conditions bfm, bmf, bms and bsm. This trend

is quantified by the mean squared error (MSE), which is lowest for right-hand and weighted

encoding, followed by the average encoding in the evident group. We conducted a repeated

measures ANOVA with model and group as factors for the MSE, which revealed a significant

difference between models (F1.342,18.788 = 12.339, p< 0.001, Z2
p ¼ 0:468, Greenhouse-Geisser

corrected), and interaction (F1.342,18.788 = 19.616, p< 0.001, Z2
p ¼ 0:584, Greenhouse-Geisser

corrected), but no difference between groups (F1,14 = 2.907, p< 0.110, Z2
p ¼ 0:172). Bonferro-

ni’s post-hoc comparison revealed that effects are only significant between left-hand encoding

and the other proposed models for the evident group (Fig 6C, all p< .048). Similarly, the

weighted and average encoding in the ambiguous group is low, but the MSE for right-hand

encoding was significantly higher compared to the other models (all p< .001). We obtained

similar results for the MSE when quantifying the error between predicted and generated forces

(S2 Fig). Taken together, the average and weighted encoding models fitted best across experi-

ments. As expected and in contrast to the ambiguous group, the evident group showed a

higher adherence to the right encoding. Consequently, they were at least partially able to

retrieve this underlying relationship.

To further improve the evidence for the encoding models, we added a second BIC model

comparison, taking all bimanual conditions into account (see Fig 7). In the evident group, the

average and left-hand encoding perform worse than the non-parametric model. Previous

results (compare Fig 5) showing that the weighted encoding outperforms the right-hand

encoding model, are confirmed (ΔBIC> 10)(Fig 7A). Moreover, the weighted encoding in the

ambiguous group showed a better BIC improvement compared to left-hand, average and

right-hand encoding (Fig 7B). Interestingly, these effects were observed across all participants.

All models show an average R2 > 0.585, hence we assume a good approximation of our models

to the data. Given the presented evidence, we assume that both groups employed a weighted

encoding scheme tailored to their experience during the trained conditions. The evident group

adheres to an encoding scheme which strongly relies on velocity information from the right

arm, which shows that they were able to at least partially retrieve the relation of the force field.

In contrast, the ambiguous group combined the sensory information from both arms with a

stronger influence of the left arm. These results underline that the sensorimotor system is able

to variably use sensory information of both arms to produce motor commands.

Transfer to unimanual conditions

To examine the transfer of learning from bimanual to unimanual movements, we introduced

three unimanual conditions (Fig 1D) with left-hand movements while the right hand was sta-

tionary. Previous research has shown partial transfer from bimanual to unimanual conditions

when the force field magnitudes depend on the velocity of the same hand experiencing the

forces. However, in our task, the forces depend on the movement of the other hand (right

hand). Therefore, if participants were able to learn that the force fields depended entirely on

the right-hand movement velocity (right-hand encoding), then they should produce no force

on the unimanual movements. Inversely, a left-hand encoding should produce forces match-

ing the forces from bimanual trials (See red and orange lines, respectively, in Fig 8B). However,
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the participants of both groups produced peak forces in the unimanual conditions which were

lower than during bimanual trials (Compare forces to Fig 4), and higher than a right encoding

would predict. While for the ambiguous group both the average and the weighted encoding

match well (Fig 9H to 9J), only average encoding is close to the generated forces in the evident

group. The similarity in the fit between average and weighted encoding for the ambiguous

group is explained by the mean encoding weights in the weighted condition (see Fig 8). While

a fixed weight of 0.5 represents the average encoding, the weights were not fixed in the

weighted encoding. Here, we fitted the weights across all trained conditions after adaptation

(see Methods, Eq 6). The ambiguous group showed a mean weight of 0.374 ± 0.045, which was

significantly different from the evident group with 0.935 ± 0.021 (independent t-test, t(14) =

−11.420, p< 0.001, Cohen’s d = −4.410). Hence, the ambiguous group relied more on the

kinematic encoding of both arms with a slight tendency towards the left to predict the next

trial, while the evident group relied strongly on the right arm with only a small contribution of

the left arm in bimanual trials. Confronted with the loss of information from the right arm in

unimanual trials, the evident group seems to employ the average encoding. When the average

encoding depicts the standard, naive state in bimanual actions, we should also detect a gradual

Fig 7. BIC model comparison for all bimanual conditions as positive BIC improvement from non-parametric model. A and B show the BIC for

each participant and the group average for the evident and ambiguous group, respectively. The inset compares right hand and weighted encoding for

better readability of the difference. The weighted encoding model has the best BIC improvement compared to the non-parametric model across both

groups. C and D depict R2 for each participant and group. For all points the standard error of the mean is shown with a line. For some conditions this s.

e.m. is not visible beyond the dot as the values are small.

https://doi.org/10.1371/journal.pcbi.1011189.g007
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shift during exposure toward the respective weighted encoding. This is exactly what we see

when analyzing the development of the weights over time in Fig 8B: the ambiguous group had

a tendency towards the average encoding throughout the experiment, while the evident group

shifted towards the right-hand encoding in the exposure phase and remained there during

generalization.

Finally, we analyzed the differences between conditions in the force profiles of the uniman-

ual trials in the generalization phase (Fig 9; Insets in B and G). Whilst there was no group dif-

ference for lateral force around peak velocity (F1,14 = 0.631, p = 0.440, Z2
p ¼ 0:043), we found

both an effect for the condition (F1.432,20.047 = 6.721, p = 0.010, Z2
p ¼ 0:324, Greenhouse-Geis-

ser corrected) and an interaction (F1.432,20.047 = 12.275, p< 0.001, Z2
p ¼ 0:467, Greenhouse-

Geisser corrected). While the ambiguous group scaled the lateral force with increasing velocity

in unimanual trials (Fig 9E, uf vs. us: p< 0.001, um vs. us: p = 0.012), the evident group showed

similar force profiles for all conditions (Fig 9B, uf vs. um: p = 1.000, uf vs. us: p = 1.000, um vs.

us: p = 1.000). Consequently, the lack of the kinematic information of the right hand led to a

generic, partial transfer in the evident group, whereas the ambiguous group showed a partial

transfer which matched the trained conditions and underlined the use of the average or

weighted encoding to predict the motor output.

Discussion

Encoding the sensory information of both arms to provide an adequate motor response in our

daily lives requires a flexible and adaptive motor memory. Our study focused on the formation

of bimanual motor memories and how the experienced states during training affected the

encoding of the motor memory and influenced the subsequent motor output. We showed that

the human sensorimotor control system is able to flexibly control bimanual actions and form

motor memories based on the kinematics of both arms. Two groups of participants adapted to

Fig 8. Differences in encoding weights between the ambiguous and evident groups. (A) Mean encoding weights in generalization phase. (B) The

development of weighted encoding weights across blocks (96 trials/block) during exposure (light grey) and generalization phase (dark grey). The dark

green and brown lines represent the mean and shaded errors the standard error of the mean. Individual values are represented as single dots. A static

right-hand, average or left-hand encoding would be represented by weights of 1, 0.5 and 0, respectively, and are indicated in figure B. Different

experimental training conditions led to different encoding weights in the two groups (A). These weights are developed over the course of the

experiment (B), especially for the evident group.

https://doi.org/10.1371/journal.pcbi.1011189.g008
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novel dynamics within a bimanual movement task. The evident group trained in conditions in

which there was information available that the forces experienced on the left hand depended

on the right-hand velocity. The ambiguous group only trained with conditions where this rela-

tion was not explicitly presented as both hands made the same movements. The encoding of

the motor memory was examined by testing generalization to novel combinations of right and

left-hand movement speeds (untrained conditions). Both groups adapted to the novel dynam-

ics during exposure, showing clear adaptation to the trained conditions, but with slightly dif-

ferent patterns of generalization to the untrained conditions. The evident group was able to

retrieve the relationship between the right-hand velocity and the force field strength acting on

the left hand, as was shown by the shift in encoding weight towards the right hand during

exposure, the generalization to novel combinations of the trained conditions (speeds) and the

best performance of the weighted encoding model. On the other hand, the ambiguous group

mainly learned the force field as a function of both hands with a slight shift towards the left

hand (Fig 8), as evidenced by the primarily left-hand encoding on the untrained conditions

Fig 9. Force profiles, mean lateral force around peak velocity (dashed grey line) and force predictions for three unimanual conditions uf, um and

us. (A-E), The evident group (green). (F-J), The ambiguous group (brown). Force profiles are shown as mean values across subjects and blocks for the

last baseline and the last generalization block. While the lateral force is around zero in the baseline phase (A, F), it is increased after the exposure phase

in late generalization (B, G). The insets show the mean of the lateral force (horizontal line) and individual data points for each participant and

condition over a window around peak velocity (shaded light grey region). While the forces are similar between conditions for the evident group, they

are scaled with velocity for the ambiguous group. However, only the ambiguous group showed a force profile similar to weighted encoding (H to J),

while the evident group produced higher forces. Due to the high reliance on right-hand encoding in bimanual trials, the prediction in unimanual trials

is low (C to E). Values represent mean values ± standard error of the mean.

https://doi.org/10.1371/journal.pcbi.1011189.g009

PLOS COMPUTATIONAL BIOLOGY Learning context shapes bimanual control strategy and generalization of novel dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011189 December 8, 2023 15 / 27

https://doi.org/10.1371/journal.pcbi.1011189.g009
https://doi.org/10.1371/journal.pcbi.1011189


during generalization, indicated by the left hand and weighted encoding model (Fig 6). More-

over, the BIC model comparison for all bimanual conditions underlines the selection of the

weighted encoding model in the ambiguous group as well (Fig 7). Finally, we tested the trans-

fer of the learned bimanual motor memory to unimanual reaching movements, showing a

clear decrease in force for both groups. That is, the transfer to unimanual movements was sim-

ilar regardless of the shift to either right- or left-hand encoding.

Although the sensorimotor control system performs similar movements over and over

again in daily life, none of the movements will be performed identically to the previous move-

ments. Hence, the sensorimotor control system creates a motor memory, adapted to the envi-

ronmental dynamics, which is able to generalize across similar states. That is, generalization of

an existing motor memory helps the sensorimotor control system perform successful actions

outside of the specific learned context. The amount and pattern of generalization to a novel

context (or different states) differ between dimensions, e.g. between different movement

speeds or different movement lengths [18, 20, 25, 29, 33]. As the peak velocity of a movement

increases or decreases away from the trained movement, we scale our endpoint force appropri-

ately [18, 29]. There is a strong generalization to shorter movements, but generalization to lon-

ger movements is limited unless the occasional interspersed trial at this longer distance is

experienced [20]. In our study, we directly trained participants with force fields associated

with three movements of different lengths and velocities. Both groups of participants were able

to learn to produce the appropriate force compensation for the dynamics with the left hand,

scaling to the different movement velocities of the training conditions. While the ambiguous

group primarily scaled the forces produced by the left hand according to the left-hand velocity

(weighted towards left-hand encoding), the evident group extracted sufficient information to

scale (at least partially) the forces in the left hand with the right-hand movement velocities

(weighted towards right-hand encoding). Here we have extended previous work [18, 20, 25,

29] by showing that this velocity-dependent scaling of generalization can occur across the two

limbs. Importantly, one key aspect of our study is that movement of the non-adapting limb is

not only acting as a contextual cue. While associative learning can play a crucial role in motor

adaptation [34, 35], the motor memory in the current study is encoded based on the actual

kinematics of the movement. This means that participants learned to map the weighted, con-

tinuous velocities of the arms to a given force instead of discrete, contextual cues to a perturba-

tion [6, 15, 35, 36].

Generalization also occurs across different movement locations and different movement

directions. If the spatial allocation (location) of the movement changes, the amount of general-

ization found depends on the motor memory representation and the distance away from the

trained movement [1, 17, 19, 37]. Similarly, as the angle of the movement changes further

away from the trained movement direction we find a decrease in predictive motor output [11,

16, 22–24]. This decrease in the generalization with angular deviation is consistent with the

use of local neural basis functions with Gaussian-like tuning as the building blocks of the

motor memories [26–29]. The idea is that forming motor memories via these local neural basis

functions can provide the flexibility in the tuning of these motor memories to a variety of dif-

ferent states and conditions. Classical, unimanual force field paradigms [1, 14, 22] as well as

bimanual force field studies [6, 11, 31] showed that humans are able to directly learn a map-

ping between the forces perturbing the arm and the velocity of that arm. However, we were

able to show that this mapping is dependent on the experienced states during exposure to the

force field and that this encoding is flexible enough to be influenced by the training paradigm.

The ambiguous group showed a shift towards left-hand encoding which is in line with these

classical studies. On the other hand, the evident group used a strong shift to right-hand encod-

ing pattern to generalize to novel combinations of movement speeds of the two hands. This
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shows that the sensorimotor control system has sufficient flexibility in its encoding to combine

the states of both the right and left arm to encode a new bimanual motor memory. Instead of a

rigid distribution between left and right, it employs a highly flexible encoding which reacts

rapidly to changing environments. This finding extends previous results of bimanual experi-

ments, which assumed full right-hand encoding [30, 31]. This is also evident in our last step:

we removed the kinematic information of the right hand in unimanual trials (where the right

hand remains stationary) to see whether any forces were still produced by the left arm. As the

evident group was mostly encoding right-hand kinematics in bimanual trials, we expected

them to show little transfer. In contrast, we might expect stronger transfer for the ambiguous

group as they exhibited a shift towards left-hand encoding. However, transfer from bimanual

to unimanual conditions was substantial and similar in both groups. These results underlined

previous findings which showed partial transfer when switching from bimanual to unimanual

actions and vice versa [6, 11]. Again, this highlighted the flexibility of the human sensorimotor

control system while encountering new environments and situations. Interestingly, the partial

transfer from bimanual to unimanual control of approximately 50% of the learned peak forces

compares well to the reported transfer of 58% by Nozaki et al. [6] and slightly less than the

65% found by Yokoi et al. [11]. Despite the very different training conditions of the two groups

in our experiment, which produced a shift towards right-hand encoding for the evident group

and left-hand encoding for the ambiguous group, the peak forces were similar for both groups.

If this transfer to the unimanual conditions occurs as a byproduct of the final encoding of the

learned motor memory, then we would predict two very different levels of transfer in these

two conditions, with much higher transfer for the ambiguous group. In addition, we would

predict a scaling between unimanual conditions based on the learned scaling from the expo-

sure for the ambiguous group as well. While the latter existed indeed (see Figs 6 and 9) for the

ambiguous group and was absent in the evident group, we did not measure a difference

between experiments in the total amount of transfer. One possible explanation is that this

transfer, or more specifically this tuning of the neural basis functions related to the unimanual

motor memory might occur early during the exposure phase when little information about the

perturbation is available [38]. This rapid, initial adaptation is then simply maintained in mem-

ory throughout the rest of the experiment until probed at the end, and could explain the simi-

larity between both groups. This idea is further underlined by the development of the

encoding weights during the experiment (Fig 8B). Initially, the state information for creating

the prediction is not evident. During the exposure, participants learned to combine the kine-

matic inputs from both arms to predict the motor output. Being confronted with a new (unim-

anual) environment, they might base their predictions on these early states. Despite the overall

similar levels of transfer to the unimanual condition, the extensive exposure to the different

training conditions produced small but clear differences on the force production in the unim-

anual trials. Specifically, the ambiguous group, which demonstrated a shift to left-hand encod-

ing for the bimanual trials, showed a small, significant scaling of the lateral forces with the

speed of the left hand, matching the scaling during the trained, bimanual conditions. That is,

the participants learned that forces were affected by the velocity of the movement, and associ-

ated these forces with changes in the velocity of the left hand, as predicted by their shift to left-

hand bimanual encoding. In contrast, this scaling was absent for the evident group, where they

showed almost identical force profiles for the three different unimanual trials. We propose that

this may be due to the stronger reliance on right-hand encoding of the motor memory, and

the absence of this additional input that should drive this scaling—the speed or kinematics of

the right hand. These differences in the two groups might again reflect our hypothesis that

most of the adaptation shown in unimanual trials occurred primarily during early exposure.

In addition, force profiles in early exposure show a similar scaling in forces between conditions
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for the ambiguous group and no scaling for the evident group (Fig 4B and 4G). We suggest

that both groups experienced an initial generic tuning of the unimanual adaptation early in

learning, that would not be tuned to the different velocity conditions. Continued exposure to

the training conditions would train the right hand encoding in the evident group leaving this

generic response intact through the training. In contrast, such exposure in the ambiguous

group would train the left-hand encoding in which the force scaled with left-hand velocity,

and therefore gradually fine-tune these unimanual responses. Further research measuring

unimanual transfer early in exposure is needed to test this hypothesis and understand the pro-

cesses governing the motor memory formation and the subsequent transfer to unimanual con-

ditions. While the evident group experienced clear differences in the velocities of the hands,

allowing them to learn the mapping between right-hand velocity and the resulting forces on

the left hand, the ambiguous group was not provided with clear information regarding the

force implementation. However, due to noise and variations within the sensorimotor system,

there were small differences in velocities between the hands resulting in slightly unmatched

movements. This might have allowed them to experience the relationship between right-hand

velocity and left-hand forces. These small effects might underlie the small weight of right-hand

encoding that was found for the ambiguous group. As this was around 40% across the partici-

pants, it is clear that the small trial-by-trial variability in movement velocities was by itself not

sufficient for the participants to extract the full force field representation. However, the partial

weighting of right-hand encoding even within the ambiguous group supports the findings that

higher motor variability and motor noise can be beneficial to adapt to novel environments

[39–43].

Recent studies have proposed compound conditioning paradigms from associative learning

theory to explain motor adaptation cued by arbitrary stimuli [34, 35]. These studies typically

employ a contextual cue that precedes the actual movement [15, 35, 36]. While this is a possible

explanation of our findings, we argue that in the current study, the sensorimotor system

encoded the weighted velocity of both arms to predict the force instead of explicit cues from

the environment. Importantly, one key aspect of the compound paradigm, the additivity prin-

ciple, states that the combined strength of associated cues is bounded [44–46]. This predicts a

negative correlation between associated cues [35]. However, this is not consistent with the cur-

rent experimental results, specifically the transfer to the unimanual conditions. Given a nega-

tive correlation, we would expect higher forces in the ambiguous group, as they would rely

more on the left arm movement as a cue, while for the evident group, we would expect lower

forces. However, the force levels are similar between groups, rejecting the hypothesis of a

bounded associative strength of the contextual cues.

In addition, while we tested generalization on novel combinations of movement speeds,

each hand was only tested on conditions in which the training was performed. That is, each

hand had previously experienced forces on the fast, medium, and slow movements. Testing

generalization of the learned motor memory outside of the trained conditions of both hands

(to much faster or much slower movements) would allow us to measure the underlying pro-

cesses better. This would allow us to determine to what degree the learned motor memory is

locally learned compared to full predictive models of the adaptation.

Our findings on the partial transfer of learning between unimanual and bimanual actions,

and the difference in motor output between unimanual and bimanual movements, confirming

previous results [6, 11], are further underlined by studies reporting altered neural activation

patterns in the primary motor cortex between these two actions [7–9]. Recent evidence from a

load perturbation study suggested that the activity of neurons in M1 can indeed express two

independent representations for unimanual and bimanual movements simultaneously [47].

Further, it has been hypothesized that the cerebellum plays a major role in motor memory
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formation [13, 48–51]. The authors state that the cerebellum might host a multitude of differ-

ent internal models, which could reflect distinct internal models for bimanual and unimanual

movements in our experiments. Depending on the context, different models would be

retrieved and might control and adjust the subsequent motor output. Apart from the crucial

role of M1 and the cerebellum, other areas such as parietal and frontal regions and the spinal

cord have been considered to contribute to the sensorimotor integration underlying motor

memory formation [52]. This neuro-physiological evidence in combination with the findings

from our study underline the need for experiments investigating the interplay between unim-

anual and bimanual motor memories and their expression on a neuronal level.

To conclude, we were able to show that the human sensorimotor control system is able to

encode the sensory information of both hands and flexibly combine the information to control

the movement of the other hand. More specifically, the right-hand velocity was used to predict

the motor output on the left arm. This highlights that motor memory formation is a highly

flexible process, which might occur through the tuning of neural basis functions. The tuning

of these basis functions has to take many variables into account, e.g. the kinematics of both

arms [11]. This is also underlined by the switch to the unimanual conditions: although the evi-

dent group relied mostly on right-hand encoding, they showed substantial transfer—possibly

enabled by neural basis functions which have been activated previously during similar states in

bimanual movements.

Materials and methods

Participants

Sixteen individuals (mean age 25.9 ± 3.0 years, 7 females) participated in this study and were

randomly assigned to the evident group (N = 8) or ambiguous group (N = 8). All individuals

reported normal or corrected-to-normal vision, no neuropsychological disorders, were free of

acute upper limb injuries and right-handed according to the Edinburgh Handedness Ques-

tionnaire [53]. Four participants had previous experience performing experiments using a

robotic manipulandum.

Ethical statement

All participants gave their written informed consent and volunteered for the study without any

financial compensation. The ethics commission of the Faculty of Medicine at the Technical

University of Munich approved the experiments.

Experimental apparatus and setup

Apparatus. We used a bimanual set-up of the two-dimensional, planar robotic manipu-

landum vBOT [54] to apply state-dependent forces to the arms (Fig 1B). Position and velocity

of the handles in the horizontal workspace are recorded via joint position sensors on the

motor axis (58SA; Industrial encoders design) and endpoint forces on the left hand were mea-

sured by a six-axis force transducer (Nano-25 six-axis force/torque transducers, ATI Industrial

Automation, Apex, NC, USA). The sampling rate was set to 1 kHz. The robot and data acquisi-

tion was controlled by a customized Microsoft Visual C++ software library under Windows

XP [54].

A virtual reality system was used to present visual feedback regarding the task and to pre-

vent the participants from directly viewing their arms. A semi-silvered mirror system, which

reflected an attached screen, provided visual feedback of the task in the plane of movement.

Visual feedback of each hand’s position was indicated by a red cursor with a diameter of 0.5
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cm. Start and end targets were represented by yellow circles of 1.0 cm and 1.5 cm diameter,

respectively, which turned to white when the cursor was located within their boundaries.

Between the target positions, a white cross served as a visual fixation point during the move-

ment. The participants were seated on a height-adjustable chair and fixed by with a four-point

safety harness in order to maintain the same upper-body position throughout the experiment.

The workspace was located approximately 25 cm in front of the participant’s chest and cen-

tered with their body. Two air sleds supported each forearm to constrain the arm movement

to the horizontal plane and prevent fatigue.

Course of a trial. Participants performed bimanual, parallel reaching movements with

both arms and unimanual reaching movements with the left arm (right arm stationary; see Fig

1D). The movements of each hand could be short, medium or long lengths. We instructed par-

ticipants to make straight, natural reaching movements to the targets (or target) while keeping

their eye gaze at the fixation cross. At the beginning of each trial, the start circles and end tar-

gets appeared on the screen, and the robot moved each hand to the starting circle. Once the

two hands were stationary within the start circle for 1000–2000 ms (randomly determined

based on a truncated exponential), a beep tone indicated the start of the movements. Partici-

pants were asked to make simultaneous movements of both hands to the two targets. Trials

ended when both cursors rested in the target position for 600 ms. After each movement feed-

back was provided about the speed of each hand separately. If participants obtained peak

speed within the desired ranges, they were provided with “good” or “great” feedback (“great”

occurred when participants’ speed was within the middle 50% of the desired range). Desired

peak speeds were 75 ± 7.5 cm/s, 60 ± 6 cm/s and 45 ± 4.5 cm/s for long, medium and short

reaches respectively, such that the same movement time was required for each reach. If partici-

pants did not obtain the desired peak speed, they were told whether they were “too slow” or

“too fast”. Individuals received a point when both hands met the desired speed and were

encouraged to collect as many points as possible. Independent of the score, we included all tri-

als into analysis.

After each trial ended, the robot moved the handles (and participants’ hands) back to the

next starting positions (start circle) to start a new trial. Movements were self-paced, meaning

that participants could rest at any point during the experiment. Every 150 trials a teapot indi-

cated a short break, in which participants were instructed to release the handles and pause for

approximately one minute. In the middle of the experiment, we introduced a longer break of

approximately 25 min.

We used three different field types in the experiment: null field, force field and error clamp.

The force field and the error clamp were only applied to the left hand. The right hand always

moved in a null field. In the null field, the robot applied no force on the handle and partici-

pants could move freely. In the force field, the manipulandum created a velocity-dependent,

counter-clockwise curl force field on the left handle with the following properties:

Fxleft

Fyleft

2

4

3

5 ¼
0 � 13

13 0

" #
_xright

_yright

2

4

3

5 ð1Þ

such that the forces on the left hand depended on the movement of the right hand. In the

error-clamp trials, a mechanical channel [14, 55, 56] was applied. The mechanical channel

allows straight movements to the target but restricts lateral movements of the left hand. The
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channel trials were defined as:

Fx

Fy

2

4

3

5 ¼
Kxxþ Dx _x

0

" #

ð2Þ

with a stiffness K of 6,000 Nm and a damping D of 20 Ns/m to reduce lateral vibration while

moving through the channel. These error clamp trials allowed us to measure the force applied

by the participants against the channel wall via the force transducers at the handle.

Experimental conditions

The experiment consisted of nine bimanual and three unimanual conditions (Fig 1D). In the

bimanual (b) conditions, each hand could move one of three different distances [15, 20, 25]

cm in the same movement time (700 ms), resulting in a slow (s), medium (m) or fast (f) move-

ment respectively of each hand. All possible combinations were performed, resulting in nine

different bimanual conditions. Each condition is named according to the left and right speed

requirements, such that a slow movement on the left hand and a fast movement on the right

hand would be indicated as bsf, whereas a fast movement on the left hand and slow movement

on the right hand is indicated as bfs.
In the unimanual (u) conditions, the left-hand movement distance was one of 15, 20 or 25

cm, while the right hand remained stationary. Again the desired movement time was fixed to

700 ms for all distances, resulting in a slow (s), medium (m) or fast (f) movement of the left

hand. These three conditions were therefore indicated as us, um, and uf.
Two groups of participants (evident and ambiguous) performed the experiments and expe-

rienced force fields on three of the bimanual conditions. The evident group trained on condi-

tions in which the participants would clearly experience the left-hand forces depending on the

right-hand velocity. That is, the evident group, was trained on two conditions in which the left

and right hands moved at different speeds (bsf, bfs) as well as the middle condition (bmm). In

contrast, the ambiguous group trained on conditions in which this relationship between left-

hand forces and right-hand velocity was not clearly apparent. Specifically, the ambiguous

group was trained on conditions in which the left and right hands moved at the same speeds

(bss, bmm, bff). Although in both groups the forces experienced in the left hand depend on the

right-hand velocities, the evident group was presented with conditions where the left- and

right-hand velocities were clearly different, whereas the ambiguous group would only experi-

ence this if the left and right-hand velocities were different according to motor variability.

The experiment itself was divided into three phases (Fig 1A): baseline, exposure and gener-

alization. The baseline phase consisted of six blocks of 48 trials (288 trials total) in the null

field. Within the first five baseline blocks, each condition (unimanual and bimanual) was pre-

sented three times in the null field (36 null field trials) and once in an error clamp trial (12

error clamp trials). All conditions were randomized across each block. In the last baseline

block, participants were only presented with the three training conditions (evident group: bsf,
bmm and bfs; ambiguous group: bff, bmm and bss), with two error clamp trials and 14 null field

trials for each of the three conditions (6 error-clamp and 42 null field trials). The exposure

phase consisted of 20 blocks of 48 trials (960 trials total) in the force field. These blocks con-

tained the same structure as the final baseline block, with two error clamp trials and fourteen

force field trials for each training condition. The final generalization phase consisted of 20

blocks of 48 trials (960 trials total). In the generalization phase, each block consisted of twelve

force field trials for each of the three training conditions (36 force field trials) and one error

clamp trial for all bimanual and unimanual conditions (12 error clamp trials).
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Data analysis

The data was analyzed with Python 3.8.12, the Sypder IDE (Spyder 5.1.5, The Scientific Python

Development Environment) and Jupyter Notebook 6.4.6. Position and force data was filtered

with a 5th order, zero lag Butterworth low pass filter with a cut-off frequency of 40 Hz, using

SciPy’s filtfilt function [57]. To remove any drift of the measured handle forces due to an

inconsistent position on the air sled during error clamp trials [58], we subtracted the mean lat-

eral force applied 200 ms to 150 ms before movement onset from the subsequent force vector.

Kinematic error. During null field and force field trials, we used the maximum perpen-

dicular error (MPE) as a measure of adaptation to the force field. It reflected the signed maxi-

mum perpendicular distance between the handle position and the straight line connecting the

center of the start and end targets. For plotting purposes, we averaged the maximum perpen-

dicular error over a bin of 12 trials.

Force compensation. The force compensation (FC) is a scalar which depicts the amount

of adaptation to the force field, by measuring the imposed forces acting laterally on the handle

on the clamp trials [56]. The force compensation value is calculated as the regression coeffi-

cient of a linear regression between the actual force output and the predicted force profile

required to perfectly compensate the perturbation [56]. In our study, the force field applied to

the left hand depended on the velocity of the right handle. Therefore, the predicted force pro-

file for bimanual conditions is calculated as the product of the right-hand velocity and the

force field strength (13 Ns/m). Importantly, a force field was never applied during any unim-

anual conditions.

Force profiles and peak forces. In order to evaluate the shape and timing of feedforward,

predictive forces during channel trials, we aligned the force profile of the left hand to the peak

velocity of the right hand and clipped the time window to 400 ms before and after peak velocity

[58]. Peak forces were assessed by calculating the average of the left force profile in a window

of 20ms around peak velocity of the right arm in bimanual trials and around peak velocity of

the left arm in unimanual trials.

Predicted outcomes and encoding weights. In our experiment, the force field was

applied to the left hand according to the velocity of the right hand. Here we examined whether

adaptation resulted from learning this relationship (dependence on the velocity of the right

hand), simply independent learning of the force field within a single limb (ignoring the rela-

tionship with the right-hand velocity) or different combinations of both arms. These combina-

tions could entail average encoding by weighting each input equally or a weighted encoding by

a variable weight between arms. First, we fitted the different predictions to the generated force

profiles during generalization in the trained conditions. We fitted the right, left, average, and

weighted encoding models to the force profiles by applying a nonlinear regression model

(minimize from SciPy) to our force and velocity data defined by:

F ¼ aright � _xright � B ð3Þ

F ¼ aleft � _x left � B ð4Þ

F ¼ aaverage � ðð _x left þ _xrightÞ � 0:5� BÞ ð5Þ

F ¼ aweighted � ðo� _xright � Bþ ð1 � oÞ � _x left � BÞ ð6Þ

where _xright and _x left were the velocity vectors of the right and left hand, B was the force field

strength with 0.13 N and F was the actual force profile. The α values represented the slope of

PLOS COMPUTATIONAL BIOLOGY Learning context shapes bimanual control strategy and generalization of novel dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011189 December 8, 2023 22 / 27

https://doi.org/10.1371/journal.pcbi.1011189


the regression between the different encoding patterns of velocity and the generated force. Ini-

tial ω in (6) was set to 0.5, which corresponded to an equal distribution between left and right

prediction. The weights were unrestricted. A weight of 1.0 would reflect perfect right-hand

encoding whereas a weight of 0 would reflect perfect left-hand encoding. Consequently, we

calculated the average ω value for each participant and the results are depicted in Fig 8A.

To evaluate the generalization and transfer to unimanual conditions, we used the α and ω
values retrieved from the fit on trained conditions to generate the predictions for each general-

ized condition by multiplying the generated velocities with these weights. The predicted force

profiles and the predicted force compensation are depicted in Figs 6 and 9, the predicted peak

forces in S1 Fig Appendix. To quantify the difference between generated force compensation

and forces profiles, we calculated the mean squared error for each subject and condition (see

Fig 6 and S1 Fig).

Lastly, we calculated the development of the weighted encoding for each group by fitting Eq

6 to smaller blocks of 96 trials through the exposure and generalization phases.

Model comparison

To compare between the models, we conducted two BIC calculations. The first BIC was calcu-

lated for the trained conditions in trials of the generalization phase to avoid any effects of ini-

tial learning. We compared the right hand, left hand, average (all one parameter), and

weighted encoding model (two parameters) to a non-parametric model with a static α = 0.822,

which was the average α across models and participants. We calculated a second BIC across all

bimanual conditions during generalization to evaluate if the models can explain generalization

as well. The results are depicted as positive BIC improvements compared to the non-paramet-

ric, standard model. In addition, we calculated R2 values for each model.

Statistical analysis

We used JASP (version 0.16) [59] for our statistical analysis. To compare velocities between

arms within an experiment, we calculated separate repeated measures ANOVA for each group

with the factor condition. To test for adaptation, we conducted a mixed ANOVA on the

dependent variables force compensation and maximum perpendicular error with the within-

subjects factor phase (3 levels) and the between-subjects factor group (2 levels). The three levels

for force compensation were late baseline, late exposure and late generalization, and for the

maximum perpendicular error these were early exposure, late exposure and late generalization.

In addition, we calculated a 2-factor ANOVA with repeated measures for the dependent vari-

able lateral peak force. After fitting the four models to the data from trained conditions, we

compared the α values with a repeated measures ANOVA (within-subject factor model and

between-subject factor group). For the comparison of ω between groups, we used an indepen-

dent t-test. To assess generalization, we calculated two repeated measures ANOVAs for the

generated force compensation with within-subject factor condition and between-subject factor

group, as well as the mean squared error with model and group for within-subject and

between-subject factor, respectively. Finally, one repeated measures ANOVA with group as

between-subjects factor and unimanual condition as the repeated measures factor was con-

ducted to test for differences in lateral force around peak velocity in unimanual trials. A

Mauchly test [60] and Levene’s Test for Equality of variance [61] were applied to check for

sphericity and homogeneity, respectively. In the case that the Mauchly test was significant, the

degrees of freedom were adjusted using a Greenhouse-Geisser correction. We used Bonferroni

post-hoc tests to determine any differences between the levels. We reported Z2
p as the effect

size. For t-tests, we tested normal distribution via the Shapiro-Wilk test and presented the
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effect size as Cohen’s d. If the equal variance assumption was violated, we conducted a Mann-

Whitney U-test alternatively. The α-level was set to .05 in all tests and results were reported as

means and standard errors of the mean.

Supporting information

S1 Fig. Peak force predictions and generated peak fores in bimanual conditions. The hori-

zontal lines depict the group average and dots individual participants. The right-hand encod-

ing shows the required force induced by the force field respective the individual adaptation for

each participant. (A), The ambiguous group generated peak forces, which deviated from the

required forces (red), especially in the conditions bmf, bsf, and bsm. (B), The evident group

scaled the peak forces inversely during the trained conditions, and were able to generalize to

the generalized conditions (as indicated by their adherence to the right-hand encoding). How-

ever, generalization was less strong for bff and bfm.

(TIF)

S2 Fig. Mean squared error (MSE) for different models for force profiles in generalized

conditions. The results show individual data (dots) and the group average (horizontal line) of

the MSE during the generalization phase. (A), The evident group showed the lowest MSE for

right-hand, average and weighted encoding, with being significantly lower compared to the

left-hand encoding. (B), In contrast, the ambiguous group had a lower MSE for left-hand,

average and weighted encoding.

(TIF)

Acknowledgments

We thank Marion Forano and Filipa Pereira for initial work on an early version of this study,

Sae Franklin for assistance with running the experiments, and Clara Günter, Raz Leib and Sae

Franklin for their helpful feedback on the research. We also thank all the volunteers who par-

ticipated in the study and contributed with their patience to the long experiments.

Author Contributions

Conceptualization: Jonathan Orschiedt, David W. Franklin.

Data curation: Jonathan Orschiedt.

Formal analysis: Jonathan Orschiedt.

Investigation: Jonathan Orschiedt, David W. Franklin.

Methodology: Jonathan Orschiedt, David W. Franklin.

Resources: David W. Franklin.

Software: Jonathan Orschiedt, David W. Franklin.

Supervision: David W. Franklin.

Visualization: Jonathan Orschiedt.

Writing – original draft: Jonathan Orschiedt, David W. Franklin.

Writing – review & editing: Jonathan Orschiedt, David W. Franklin.

PLOS COMPUTATIONAL BIOLOGY Learning context shapes bimanual control strategy and generalization of novel dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011189 December 8, 2023 24 / 27

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011189.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011189.s002
https://doi.org/10.1371/journal.pcbi.1011189


References
1. Shadmehr R, Mussa-Ivaldi FA. Adaptive representation of dynamics during learning of a motor task.

The Journal of Neuroscience. 1994; 14(5):3208–3224. https://doi.org/10.1523/JNEUROSCI.14-05-

03208.1994 PMID: 8182467

2. Lackner JR, DiZio P. Rapid adapatation to coriolis force perturbations of arm trajectory. Journal of

Neurophysiology. 1994; 72(1):299–313. https://doi.org/10.1152/jn.1994.72.1.299 PMID: 7965013

3. Conditt MA, Gandolfo F, Mussa-Ivaldi FA. The motor system does not learn the dynamics of the arm by

rote memorization of past experience. J Neurophysiol. 1997; 78(1):554–560. https://doi.org/10.1152/jn.

1997.78.1.554 PMID: 9242306

4. Burgess JK, Bareither R, Patton JL. Single limb performance following contralateral bimanual limb train-

ing. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2007; 15(3):347–355.

https://doi.org/10.1109/TNSRE.2007.903908 PMID: 17894267

5. Howard IS, Ingram JN, Wolpert DM. Context-dependent partitioning of motor learning in bimanual

movements. Journal of neurophysiology. 2010; 104(4):2082–2091. https://doi.org/10.1152/jn.00299.

2010 PMID: 20685927

6. Nozaki D, Kurtzer I, Scott SH. Limited transfer of learning between unimanual and bimanual skills within

the same limb. Nat Neurosci. 2006; 9(11):1364–1366. https://doi.org/10.1038/nn1785 PMID: 17028583

7. Donchin O, Gribova A, Steinberg O, Bergman H, Vaadia E. Primary motor cortex is involved in bimanual

coordination. Nature. 1998; 395(6699):274–278. https://doi.org/10.1038/26220 PMID: 9751054

8. Steinberg O, Donchin O, Gribova A, De Oliveira SC, Bergman H, Vaadia E. Neuronal populations in pri-

mary motor cortex encode bimanual arm movements. European Journal of Neuroscience. 2002; 15

(8):1371–1380. https://doi.org/10.1046/j.1460-9568.2002.01968.x PMID: 11994131

9. Rokni U, Steinberg O, Vaadia E, Sompolinsky H. Cortical representation of bimanual movements. Jour-

nal of Neuroscience. 2003; 23(37):11577–11586. https://doi.org/10.1523/JNEUROSCI.23-37-11577.

2003 PMID: 14684860

10. Nozaki D, Scott SH. Multi-compartment model can explain partial transfer of learning within the same

limb between unimanual and bimanual reaching. Exp Brain Res. 2009; 194(3):451–463. https://doi.org/

10.1007/s00221-009-1720-x PMID: 19205679

11. Yokoi A, Hirashima M, Nozaki D. Gain field encoding of the kinematics of both arms in the internal

model enables flexible bimanual action. Journal of Neuroscience. 2011; 31(47):17058–17068. https://

doi.org/10.1523/JNEUROSCI.2982-11.2011 PMID: 22114275

12. Wolpert DM, Kawato M. Multiple paired forward and inverse models for motor control. Neural networks.

1998; 11(7-8):1317–1329. https://doi.org/10.1016/S0893-6080(98)00066-5 PMID: 12662752

13. Kawato M. Internal models for motor control and trajectory planning. Current opinion in neurobiology.

1999; 9(6):718–727. https://doi.org/10.1016/S0959-4388(99)00028-8 PMID: 10607637

14. Scheidt RA, Reinkensmeyer DJ, Conditt MA, Rymer WZ, Mussa-Ivaldi FA. Persistence of motor adap-

tation during constrained, multi-joint, arm movements. Journal of neurophysiology. 2000; 84(2):853–

862. https://doi.org/10.1152/jn.2000.84.2.853 PMID: 10938312

15. Howard IS, Ingram JN, Franklin DW, Wolpert DM. Gone in 0.6 Seconds: The Encoding of Motor Memo-

ries Depends on Recent Sensorimotor States. Journal of Neuroscience. 2012; 32(37):12756–12768.

https://doi.org/10.1523/JNEUROSCI.5909-11.2012 PMID: 22972999

16. Gonzalez Castro LN, Monsen CB, Smith MA. The Binding of Learning to Action in Motor Adaptation.

PLOS Computational Biology. 2011; 7(6):1–14. https://doi.org/10.1371/journal.pcbi.1002052 PMID:

21731476

17. Shadmehr R, Moussavi ZM. Spatial generalization from learning dynamics of reaching movements.

Journal of Neuroscience. 2000; 20(20):7807–7815. https://doi.org/10.1523/JNEUROSCI.20-20-07807.

2000 PMID: 11027245

18. Goodbody SJ, Wolpert DM. Temporal and amplitude generalization in motor learning. J Neurophysiol.

1998; 79(4):1825–1838. https://doi.org/10.1152/jn.1998.79.4.1825 PMID: 9535951

19. Berniker M, Mirzaei H, Kording KP. The effects of training breadth on motor generalization. J Neurophy-

siol. 2014; 112(11):2791–2798. https://doi.org/10.1152/jn.00615.2013 PMID: 25210163

20. Mattar AAG, Ostry DJ. Generalization of Dynamics Learning Across Changes in Movement Amplitude.

Journal of Neurophysiology. 2010; 104(1):426–438. https://doi.org/10.1152/jn.00886.2009 PMID:

20463200

21. Leib R, Franklin DW. Error Prediction Determines the Coordinate System Used for Novel Dynamics

Representation. bioRxiv. 2021.

22. Thoroughman KA, Shadmehr R. Learning of action through adaptive combination of motor primitives.

Nature. 2000; 407(6805):742. https://doi.org/10.1038/35037588 PMID: 11048720

PLOS COMPUTATIONAL BIOLOGY Learning context shapes bimanual control strategy and generalization of novel dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011189 December 8, 2023 25 / 27

https://doi.org/10.1523/JNEUROSCI.14-05-03208.1994
https://doi.org/10.1523/JNEUROSCI.14-05-03208.1994
http://www.ncbi.nlm.nih.gov/pubmed/8182467
https://doi.org/10.1152/jn.1994.72.1.299
http://www.ncbi.nlm.nih.gov/pubmed/7965013
https://doi.org/10.1152/jn.1997.78.1.554
https://doi.org/10.1152/jn.1997.78.1.554
http://www.ncbi.nlm.nih.gov/pubmed/9242306
https://doi.org/10.1109/TNSRE.2007.903908
http://www.ncbi.nlm.nih.gov/pubmed/17894267
https://doi.org/10.1152/jn.00299.2010
https://doi.org/10.1152/jn.00299.2010
http://www.ncbi.nlm.nih.gov/pubmed/20685927
https://doi.org/10.1038/nn1785
http://www.ncbi.nlm.nih.gov/pubmed/17028583
https://doi.org/10.1038/26220
http://www.ncbi.nlm.nih.gov/pubmed/9751054
https://doi.org/10.1046/j.1460-9568.2002.01968.x
http://www.ncbi.nlm.nih.gov/pubmed/11994131
https://doi.org/10.1523/JNEUROSCI.23-37-11577.2003
https://doi.org/10.1523/JNEUROSCI.23-37-11577.2003
http://www.ncbi.nlm.nih.gov/pubmed/14684860
https://doi.org/10.1007/s00221-009-1720-x
https://doi.org/10.1007/s00221-009-1720-x
http://www.ncbi.nlm.nih.gov/pubmed/19205679
https://doi.org/10.1523/JNEUROSCI.2982-11.2011
https://doi.org/10.1523/JNEUROSCI.2982-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/22114275
https://doi.org/10.1016/S0893-6080(98)00066-5
http://www.ncbi.nlm.nih.gov/pubmed/12662752
https://doi.org/10.1016/S0959-4388(99)00028-8
http://www.ncbi.nlm.nih.gov/pubmed/10607637
https://doi.org/10.1152/jn.2000.84.2.853
http://www.ncbi.nlm.nih.gov/pubmed/10938312
https://doi.org/10.1523/JNEUROSCI.5909-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/22972999
https://doi.org/10.1371/journal.pcbi.1002052
http://www.ncbi.nlm.nih.gov/pubmed/21731476
https://doi.org/10.1523/JNEUROSCI.20-20-07807.2000
https://doi.org/10.1523/JNEUROSCI.20-20-07807.2000
http://www.ncbi.nlm.nih.gov/pubmed/11027245
https://doi.org/10.1152/jn.1998.79.4.1825
http://www.ncbi.nlm.nih.gov/pubmed/9535951
https://doi.org/10.1152/jn.00615.2013
http://www.ncbi.nlm.nih.gov/pubmed/25210163
https://doi.org/10.1152/jn.00886.2009
http://www.ncbi.nlm.nih.gov/pubmed/20463200
https://doi.org/10.1038/35037588
http://www.ncbi.nlm.nih.gov/pubmed/11048720
https://doi.org/10.1371/journal.pcbi.1011189


23. Donchin O, Francis JT, Shadmehr R. Quantifying generalization from trial-by-trial behavior of adaptive

systems that learn with basis functions: theory and experiments in human motor control. Journal of Neu-

roscience. 2003; 23(27):9032–9045. https://doi.org/10.1523/JNEUROSCI.23-27-09032.2003 PMID:

14534237

24. Howard IS, Franklin DW. Adaptive tuning functions arise from visual observation of past movement. Sci-

entific Reports. 2016; 6:28416 EP–. https://doi.org/10.1038/srep28416 PMID: 27341163

25. Howard IS, Franklin S, Franklin DW. Asymmetry in kinematic generalization between visual and passive

lead-in movements are consistent with a forward model in the sensorimotor system. PloS one. 2020; 15

(1):e0228083. https://doi.org/10.1371/journal.pone.0228083 PMID: 31995588

26. Poggio T, Bizzi E. Generalization in vision and motor control. Nature. 2004; 431(7010):768–774. https://

doi.org/10.1038/nature03014 PMID: 15483597

27. Shadmehr R. Generalization as a behavioral window to the neural mechanisms of learning internal

models. Human Movement Science. 2004; 23(5):543–568. https://doi.org/10.1016/j.humov.2004.04.

003 PMID: 15589621

28. Kadiallah A, Franklin DW, Burdet E. Generalization in adaptation to stable and unstable dynamics.

PLoS one. 2012; p. e45075. https://doi.org/10.1371/journal.pone.0045075 PMID: 23056191

29. Joiner WM, Ajayi O, Sing GC, Smith MA. Linear hypergeneralization of learned dynamics across move-

ment speeds reveals anisotropic, gain-encoding primitives for motor adaptation. J Neurophysiol. 2011;

105(1):45–59. https://doi.org/10.1152/jn.00884.2009 PMID: 20881197

30. Bays PM, Wolpert DM. Actions and Consequences in Bimanual Interaction Are Represented in Differ-

ent Coordinate Systems. Journal of Neuroscience. 2006; 26(26):7121–7126. https://doi.org/10.1523/

JNEUROSCI.0943-06.2006 PMID: 16807341

31. Jackson CP, Miall RC. Contralateral manual compensation for velocity-dependent force perturbations.

Experimental brain research. 2008; 184:261–267. https://doi.org/10.1007/s00221-007-1179-6 PMID:

17973103

32. Raftery AE. Bayesian Model Selection in Social Research. Sociological Methodology. 1995; 25:111–

163. https://doi.org/10.2307/271066

33. Francis JT. Error generalization as a function of velocity and duration: human reaching movements.

Experimental brain research. 2008; 186(1):23–37. https://doi.org/10.1007/s00221-007-1202-y PMID:

18030456

34. Gershman SJ. A unifying probabilistic view of associative learning. PloS Computational Biology. 2015;

11(11):e1004567. https://doi.org/10.1371/journal.pcbi.1004567 PMID: 26535896

35. Avraham G, Taylor JA, Breska A, Ivry RB, McDougle SD. Contextual effects in sensorimotor adaptation

adhere to associative learning rules. eLife. 2022; 11:e75801. https://doi.org/10.7554/eLife.75801 PMID:

36197002

36. Howard IS, Wolpert DM, Franklin DW. The effect of contextual cues on the encoding of motor memo-

ries. Journal of Neurophysiology. 2013; 109:2632–2644. https://doi.org/10.1152/jn.00773.2012 PMID:

23446696

37. Berniker M, Franklin DW, Flanagan JR, Wolpert DM, Kording K. Motor learning of novel dynamics is not

represented in a single global coordinate system: evaluation of mixed coordinate representations and

local learning. Journal of neurophysiology. 2014; 111(6):1165–1182. https://doi.org/10.1152/jn.00493.

2013 PMID: 24353296

38. Sing GC, Joiner WM, Nanayakkara T, Brayanov JB, Smith MA. Primitives for motor adaptation reflect

correlated neural tuning to position and velocity. Neuron. 2009; 64(4):575–589. https://doi.org/10.1016/

j.neuron.2009.10.001 PMID: 19945398

39. Wulf G, Schmidt RA. Variability of practice and implicit motor learning. Journal of Experimental Psychol-

ogy: Learning, Memory, and Cognition. 1997; 23(4):987.

40. Herzfeld DJ, Shadmehr R. Motor variability is not noise, but grist for the learning mill. Nature neurosci-

ence. 2014; 17(2):149–150. https://doi.org/10.1038/nn.3633 PMID: 24473260
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