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Abstract

This study provides a novel method for obtaining Erlang mixtures from a mixed Poisson process. The study
solved the basic differential equations of the Poisson process to obtain the Poisson distribution. The waiting
time distribution in a Poisson process is illustrated as an Erlang distribution. The study also presented the
Erlang mixture as the first passage time distribution in the mixed Poisson process, which was expressed using
both the direct method and the method of moments. Moreover, these two ways of inferring a mathematical
identity have been equated. The exponential mixture and Poisson mixture are explained as special cases of
the Erlang mixture. A practical example is given, using type II gamma distribution mixtures. Properties of
the mixtures, such as raw moments and probability generating function, are analyzed.

Keywords: Erlang mixture; exponential mixture; Poisson mixture; Poisson process; first passage time distribution.

*Corresponding author: E-mail: beatricegathongo@gmail.com;

Cite as: Gathongo, Beatrice M. 2024. “Continuous Erlang Mixtures and Their Relation to
Exponential Mixtures and Poisson Mixtures”. Asian Journal of Probability and Statistics 26 (8):58-70.
https://doi.org/10.9734/ajpas/2024/v26i8637.

https://doi.org/10.9734/ajpas/2024/v26i8637
https://www.sdiarticle5.com/review-history/118568


Gathongo; Asian J. Prob. Stat., vol. 26, no. 8, pp. 58-70, 2024; Article no.AJPAS.118568

1 Introduction

The Erlang distribution is a special case of the gamma distribution, where the shape parameter, α = n, is a
positive integer. It was introduced by Agner K Erlang, when he applied it in analyzing the number of telephone
calls made concurrently to switching station operators. It is used to model events that occur in a given interval
of time, with the shape parameter predicting the number of events and the rate/scale predicting the time interval
between these events. It has a wide applicability due to its relation to the exponential and Poisson distributions.
The exponential distribution models time between consecutive events, while the Erlang distribution is used in
describing time intervals between any two events. The Erlang (n, θ) is the distribution of a sum of n independent
exponentially distributed variables, each with parameter θ. The Poisson distribution is used to model events
that occur within a given time interval, while the waiting times between occurrences of the events are Erlang
distributed.

A mixed distribution is a combination of two or more distributions, known as the mixture components. It is
used to model populations with sub-populations, with the mixture components representing the sub-populations.
Mixed distributions are constructed to address overdispersion and other limitations that basic distributions fail
to address in modeling real lifetime data. Continuous mixtures are among the three types of mixtures, the
other two being finite and discrete. Pearson [1] was the pioneer of mixed distributions when he constructed
a finite mixture from two normal distributions with different means and variances. Greenwood and Yule [2]
initiated continuous mixtures when they mixed the Poisson and gamma distributions to form the negative
binomial distribution. Continuous Erlang mixtures were introduced by McNolty [3]. He used the Rayleigh,
scaled beta, gamma, Maxwell- Boltzman and the random Bessel variate mixing distributions in constructing the
mixed distributions.

Kang [4] and Jordanova and Stehlık [5] are among other people who studied the continuous Erlang mixtures.
Kang [4] derived extreme value distributions of Erlang mixtures and proved that they depended on those of their
mixing distributions. Jordanova Pp and Stehlık M [6] analyzed properties of the Erlang-Pareto I distribution.
Jordanova et al., [7] expressed the Erlang-Pareto I distribution in terms of the incomplete gamma function.
They also obtained the exponential-Pareto distribution from its CDF and the Poisson-Pareto mixture by direct
integration. They, however, didn’t show the connection between the three mixtures.

Sarguta [8] constructed continuous Poisson mixtures using various mixing distributions. Sankaran [9] and Bhati
et al. [10] presented the Poisson-Lindley and Poisson-transmuted exponential distributions respectively. None
of them linked the mixed distributions to either the Erlang mixtures or exponential mixtures. Wakoli [11] linked
exponential mixtures to Poisson mixtures by showing that a sum of hazard functions of exponential mixtures
results to a convolution of compound Poisson distributions. Ottieno and Wakoli [12], Ottieno and Wakoli [13],
Walhin and Paris [14], Nadarajah and Kotz [15], Frangos and Karlis [16] and Maceda [17] are among other
authors who also studied Poisson and exponential mixtures.

The objective of this work is to show the relationship between continuous Erlang mixtures, exponential mixtures,
and Poisson mixtures. The Erlang distribution and Erlang mixture have been shown to be waiting time
distributions in a Poisson process and a mixed Poisson process respectively. Properties of the mixed distributions
obtained include the mean and the PGF.

The outline of the rest of the paper is as follows: Distributions arising from a Poisson process and a mixed
Poisson process have been discussed is section 2. The connection between Erlang mixtures and exponential
mixtures has been demonstrated in section 3. In section 4, the relation of the Erlang mixtures to the Poisson
mixtures has been shown. In section 5, the Erlang-Type II gamma mixture has been studied as an example of the
mixed Erlang distribution, and its special cases, the Exponential-Type II gamma mixture and the Poisson-Type
II gamma mixture, have been presented in sections 6 and 7 respectively. Section 8 provides a conclusion of the
paper.
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2 Distributions Arising from a Poisson Process and a Mixed
Poisson Process

There are two approaches to deriving distributions arising from mixed Poisson processes. The first one is based
on a Poisson process with a randomized rate. The other approach is based on a pure birth process.

The Poisson process is a special case of a pure birth process. Solving the basic difference-differential equations
for a Poisson process results to a Poisson distribution. The waiting time distribution for an nth event to occur
in a Poisson process has been shown to be an Erlang distribution. The first passage time distribution based on
randomization has been expressed in two forms. Mathematical identities based on these two forms have also
been determined. The first passage time distribution of the mixed Poisson process has been proven to be an
Erlang mixture. The rth moment of the Erlang mixture has also been analyzed in this section.

• Solving the basic difference-differential equation for a Poisson process using the probability
generating function (PGF) technique

Consider the following diagram

Time 0 t t + ∆t

Population X(0) X(t) X(t + ∆t)
size

Let X(t) be the population size in time interval t and pn(t) = Prob{X(t) = n}.

The basic difference-differential equations for a pure birth process are given by;

p′0(t) = −λ0p0(t)

p′n(t) = −λnpn(t) + λn−1pn−1(t), n = 1, 2, 3, ... (2.1)

where p′n(t) = d
dt
pn(t) and λn is the birth rate in time interval ∆t when the population size is n in time interval

t.

For a Poisson process, λn = λ for all n. Thus we have

p′0(t) = −λp0(t) (2.2)

and p′n(t) = −λpn(t) + λpn−1(t), n = 1, 2, 3, .. (2.3)

Multiplying equation (2.3) by Sn and then summing the result over n, we obtain;
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∞∑
n=1

p′n(t)Sn = −λ
∞∑
n=1

pn(t)Sn + λ

∞∑
n=1

pn−1(t)Sn

= −λ
∞∑
n=1

pn(t)Sn + λS

∞∑
n=1

pn−1(t)Sn−1 (2.4)

Define G(s, t) =

∞∑
n=0

pn(t)Sn = p0(t) +

∞∑
n=1

pn(t)Sn =

∞∑
n=1

pn−1(t)Sn−1

=⇒ δ

δt
G(s, t) = p′0(t) +

∞∑
n=1

p′n(t)Sn

Equation (2.4) becomes;

δ

δt
G(s, t)− p′0(t) = −λ [G(s, t)− p0(t)] + λSG(s, t)

= −λG(s, t) + λp0(t) + λSG(s, t) (2.5)

Substituting equation (2.2) into equation (2.5) yields;

δ

δt
G(s, t) + λp0(t) = −λG(s, t) + λp0(t) + λSG(s, t)

δ

δt
G(s, t) = −λ(1− S)G(s, t)

1

G(s, t)

δ

δt
G(s, t) = −λ(1− S)

δ

δt
lnG(s, t) = −λ(1− S)

lnG(s, t) = −λ(1− S)t+ C

G(s, t) = e−(1−S)λteC (2.6)

Letting the initial condition be X(0) = 0 =⇒ p0(0) = 1 and pn(0) = 0 for n 6= 0. At t = 0, equation (2.6)
becomes G(s, 0) = eC .

But by definition;

G(s, t) =

∞∑
n=0

pn(t)Sn = p0(t) +

∞∑
n=1

pn(t)Sn

and therefore, G(s, 0) = p0(0) +

∞∑
n=1

pn(0)Sn = 1 + 0 = 1

Hence, G(s, 0) = eC = 1

and, G(s, t) = e−λt(1−s) (2.7)

which is the probability generating function of a Poisson distribution with parameter λt.
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• Waiting time distribution for a Poisson process

Consider the following diagram.

Time 0 Tn t

Population X(0) X(Tn) = n X(t)
size

Let Tn be the first time the population is of size n, that is, X(Tn) = n.

Tn < t =⇒ X(Tn) ≤ X(t), that is, n ≤ X(t)

Tn = t =⇒ X(Tn) = X(t), that is, n = X(t)

Tn ≤ t =⇒ X(Tn) ≤ X(t) =⇒ n ≤ X(t)

therefore; Prob(Tn ≤ t) = Prob(X(t) ≥ X(Tn)) = Prob(X(t) ≥ n)

Let Fn(t) = Prob(Tn ≤ t)
Since pn(t) = Prob(X(t) = n), then,

Fn(t) = Prob(X(t) ≥ n)

= 1− Prob(X(t) < n)

= 1− Prob(X(t) ≤ n− 1)

Fn(t) = 1−
n−1∑
j=0

pj(t) (2.8)

and therefore, fn(t) =
d

dt
Fn(t) = −

n−1∑
j=0

d

dt
pj(t) (2.9)

For a Poisson process;

Fn(t) = 1−
n−1∑
j=0

e−λt(λt)j

j!

and thus, fn(t) = −
n−1∑
j=0

1

j!

d

dt
e−λt(λt)j

= −
n−1∑
j=0

1

j!

(
e−λtj(λt)j−1λ− λe−λt(λt)j

)

= λe−λt
(
n−1∑
j=0

(λt)j

j!
−
n−1∑
j=0

(λt)j−1

(j − 1)!

)

= λe−λt
(λt)n−1

(n− 1)!
=

λn

Γ(n)
e−λttn−1, t > 0;λ > 0, n = 1, 2, 3, .. (2.10)
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which is an Erlang (n, λ) distribution.

• The first passage time distribution for a mixed Poisson Process

For a mixed Poisson process where n is fixed and λ is varying, the first passage time distribution is thus given
by;

fn(t) =

∫ ∞
0

λn

Γ(n)
e−λttn−1g(λ)dλ (2.11)

where g(λ) is a continuous mixing distribution. This is an Erlang mixture which can be expressed in two ways,
namely;

The direct method, which is given by;

fn(t) =
tn−1

Γ(n)

∫ ∞
0

λne−λtg(λ)dλ

=
tn−1

Γ(n)
E
(

Λne−tΛ
)

(2.12)

and the method of moments, which can be obtained from the direct method as illustrated below.

fn(t) =
tn−1

Γ(n)
E
(

Λne−tΛ
)

=
tn−1

Γ(n)
E

(
Λn

∞∑
k=0

(−Λt)k

k!

)

=
tn−1

Γ(n)

∞∑
k=0

(−1)ktk

k!
E
(

Λn+k
)

=
∞∑
k=0

(−1)ktn+k−1

k!Γ(n)
E
(

Λn+k
)

let n+ k = j =⇒ k = j − n

fn(t) =

∞∑
j=n

(−1)j−ntj−1

Γ(n)(j − n)!
E(Λj) (2.13)

Equating (2.12) and (2.13) we obtain the mathematical identity;

∞∑
j=n

(−1)j−ntj−1

Γ(n)(j − n)!
E(Λj) =

tn−1

Γ(n)
E
(

Λne−tΛ
)

∞∑
j=n

(−1)j−ntj−n

(j − n)!
E(Λj) = E

(
Λne−tΛ

)
(2.14)
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which has been proven below.

let j − n = k =⇒ j = n+ k
∞∑

j−n=0

(−1)j−ntj−n

(j − n)!
E(Λj) =

∞∑
k=0

(−1)ktk

k!
E(Λn+k) =

∞∑
k=0

(−t)k

k!
E(Λn+k)

= E

(
Λn

∞∑
k=0

(−Λt)k

k!

)
= E

(
Λne−tΛ

)
(2.15)

The rth moment of the Erlang mixture is given by;

E(T r) = EE(T r|Λ = λ), using conditional expectation

= E

∫ ∞
0

trfn(t|λ)dt

= E

∫ ∞
0

tr
λn

Γ(n)
e−λttn−1dt

= E

(
λn

Γ(n)

∫ ∞
0

tn+r−1e−λtdt

)
= E

(
λn

Γ(n)

Γ(n+ r)

λn+r

)
=

Γ(n+ r)

Γ(n)
E
(
Λ−r

)
(2.16)

Thus, the rth moment of the Erlang mixture has been expressed in terms of the rth moment of the reciprocal of
the mixing distribution.

3 The Connection between Erlang Mixtures and Exponential
Mixtures

The Erlang distribution is a sum of n independent exponential random variables, each with parameter λ, that
is, if Xi ∼ exponential(λ), then

∑n
i=1 Xi ∼ Erlang (n, λ). Therefore the exponential mixture is a special case

of the Erlang mixture when n = 1, as illustrated below.

fn(t) =

∫ ∞
0

λn

Γn
e−λttn−1g(λ)dλ

f1(t) =

∫ ∞
0

λe−λtg(λ)dλ (3.1)

which is the exponential mixture, and can be expressed, using the direct method, as;

f1(t) = E
(

Λe−tΛ
)

(3.2)

and, using the method of moments, as

f1(t) =

∞∑
j=1

(−1)j−1tj−1

(j − 1)!
E(Λj) (3.3)
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The identity is therefore;

∞∑
j=1

(−1)j−1tj−1

(j − 1)!
E(Λj) = E

(
Λe−tΛ

)
(3.4)

The rth moment is E(T r) = r!E
(
Λ−r

)
and the first moment is thus E(T ) = E

(
Λ−1

)
.

4 The connection between Erlang Mixtures and Poisson Mixtures

The Erlang distribution is related to the Poisson distribution through the Poisson process, as shown in section
two above. The Poisson mixture is t

n
times the Erlang mixture, as demonstrated below.

fn(t) =

∫ ∞
0

λn

Γ(n)
e−λttn−1g(λ)dλ

=
n

t

∫ ∞
0

(λt)ne−λt

Γ(n+ 1)
g(λ)dλ

=
n

t

∫ ∞
0

e−λt(λt)n

n!
g(λ)dλ =

n

t
pn(t) (4.1)

where pn(t) =
∫∞

0

e−λt(λt)n

n!
g(λ)dλ is a continuous Poisson mixture.

Therefore, a Poisson mixture is t
n

times an Erlang mixture, that is;

pn(t) =
t

n
fn(t), n = 1, 2, 3, ... (4.2)

The factor t
n

transforms a continuous distribution to a discrete distribution.

The Poisson mixture pn(t) can be expressed, using the direct method, as;

pn(t) =
t

n

tn−1

Γn
E
(

Λne−tΛ
)

=
tn

n!
E
(

Λne−tΛ
)

(4.3)

and, using the method of moments, as

pn(t) =
t

n

∞∑
j=n

(−1)j−ntj−1

Γn(j − n)!
E(Λj)

=

∞∑
j=n

(−1)j−ntj

n!(j − n)!
E(Λj) (4.4)

65



Gathongo; Asian J. Prob. Stat., vol. 26, no. 8, pp. 58-70, 2024; Article no.AJPAS.118568

The identity, from equating the two methods, is;

∞∑
j=n

(−1)j−ntj

n!(j − n)!
E(Λj) =

tn

n!
E
(

Λne−tΛ
)

∞∑
j=n

(−1)j−ntj−n

(j − n)!
E(Λj) = E

(
Λne−tΛ

)
(4.5)

which is the same as equation (2.14).

The probability generating function (PGF) of the Poisson mixture is;

G(s, t) =

∞∑
n=0

pn(t)Sn =

∞∑
n=0

(
t

n
fn(t)

)
Sn

=

∞∑
n=0

(
t

n

∫ ∞
0

λn

Γn
e−λttn−1g(λ)dλ

)
Sn =

∞∑
n=0

∫ ∞
0

e−λt
(λt)n

n!
Sng(λ)dλ

=

∫ ∞
0

e−λt
(
∞∑
n=0

(λtS)n

n!

)
g(λ)dλ =

∫ ∞
0

e−λteλtSg(λ)dλ

=

∫ ∞
0

e−(1−s)λtg(λ)dλ = E
(
−(1−s)t∧

)
= LΛ[(1− s)t] (4.6)

δG

δS
=

δ

δS
E[e−tΛetΛS ] = E[tΛe−tΛetΛS ] (4.7)

δ2G

δS2
= E[(tΛ)2e−tΛetΛS ] (4.8)

.

.

.

δrG

δSr
= E[(tΛ)re−tΛetΛS ] (4.9)

at s=1,
δrG(s, t)

δSr
= E[trΛr] (4.10)

which is equal to the rth factorial moment, E[X(X − 1)(X − 2)....(X − r + 1)] = trE(Λr), r = 1, 2, 3, ..., and
thus E(X) = tE(Λ).

Remark: We notice that the key unifying function in this work is E[Λne−tΛ], which we can obtain for a
given mixing distribution g(λ), then deduce the following special cases.

i. E[Λj ] when n = j and t = 0

ii. E[Λr] when n = r and t = 0

iii. E[Λ−r] when n = −r and t = 0

iv. E[Λe−tΛ] when n = 1
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v. E[e−(1−s)tΛ] when n = 0 and t = (1− s)t

5 Erlang-Type II gamma Mixture

The Type II gamma mixing distribution is

g(λ) =
1

βαΓ(α)
e

−λ
β λα−1, λ > 0;β > 0, α > 0 (5.1)

and hence; E
(

Λne−tΛ
)

=
Γ(n+ α)

Γ(α)

(
1
β

t+ 1
β

)α(
1

t+ 1
β

)n
(5.2)

(see Gathongo [18]).

a) Construction by the direct method results to;

fn(t) =
n

t

(
α+ n− 1

n

)(
1
β

t+ 1
β

)α(
t

t+ 1
β

)n
, t > 0;β > 0, α > 0, n = 1, 2, 3, ... (5.3)

b) By the method of moments we obtain;

fn(t) =

∞∑
j=n

(−1)j−ntj−1

Γ(n)(j − n)!

Γ(α+ j)

Γ(α)
βj (5.4)

c) Equating the above two methods gives the identity

∞∑
j=n

(−1)j−ntj−n

(j − n)!

Γ(α+ j)

Γ(α)
βj =

Γ(n+ α)

Γ(α)

(
1
β

t+ 1
β

)α(
1

t+ 1
β

)n
(5.5)

d) The rth moment of the Erlang mixture is

E(T r) =
Γ(n+ r)

Γ(n)

Γ(α− r)
Γ(α)

1

βr
(5.6)

and the mean is thus

E(T ) =
n

β(α− 1)
(5.7)

6 Exponential-Type II gamma Mixture

a) Construction by the direct method gives;

f1(t) =
α
(

1
β

)α
(
t+ 1

β

)α+1 , t > 0;α > 0, β > 0 (6.1)
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which is the Lomax distribution with parameters
(
α, 1

β

)
. (see [11]).

b) By the method of moments we have;

f1(t) =

∞∑
j=1

(−1)j−1tj−1

(j − 1)!

Γ(α+ j)

Γ(α)
βj (6.2)

c) Equating the above two methods yields the identity

∞∑
j=1

(−1)j−1tj−1

(j − 1)!

Γ(α+ j)

Γ(α)
βj =

α
(

1
β

)α
(
t+ 1

β

)α+1 (6.3)

d) The rth moment of the exponential mixture is

E(T r) =
r!

βr
Γ(α− r)

Γ(α)
(6.4)

and the mean is therefore

E(T ) =
1

β(α− 1)
(6.5)

7 Poisson-Type II Gamma Mixture

a) Construction by the direct method yields;

pn(t) =

(
α+ n− 1

n

)(
1
β

t+ 1
β

)α(
t

t+ 1
β

)n
, t > 0;α > 0, β > 0 (7.1)

which is the negative binomial distribution with parameters α and 1
β

. (see [8])

b) By the method of moments we obtain;

pn(t) =
∞∑
j=n

(−1)j−ntj

n!(j − n)!
βj

Γ(α+ j)

Γ(α)
(7.2)

c) Equating the above two methods results in the identity

∞∑
j=n

(−1)j−ntj−n

(j − n)!
βjΓ(α+ j) = Γ(n+ α)

(
1
β

t+ 1
β

)α(
1

t+ 1
β

)n
(7.3)
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d) The probability generating function of the Poisson mixture is

G(s, t) =

(
1
β

1
β

+ (1− s)t

)α
(7.4)

e) The rth moment of the Poisson mixture is

E(T r) = (tβ)r
Γ(α+ r)

Γ(α)
(7.5)

and the mean is

E(T ) = αtβ (7.5)

8 Conclusion

This study provides a unique method of obtaining Erlang mixtures from a mixed Poisson process. The study
solved the fundamental difference-differential equations for a Poisson process to obtain the Poisson distribution.
The waiting time distribution in a Poisson process is demonstrated as the Erlang distribution. The study also
presented the Erlang mixture as the first passage time distribution in a mixed Poisson process and expressed it
using both the direct method and the method of moments. Further, these two methods were equated to deduce
a mathematical identity. The exponential mixture and Poisson mixture are illustrated as special cases of the
Erlang mixture. A practical example, using mixtures of Type II gamma distribution, is provided. Properties of
the mixtures, such as the rth raw moment and probability generating function, are analyzed.

This study recommends further research into the diverse applications of mixtures and distributions derived from
the Poisson process, such as the Erlang and the mixed Erlang distributions. These include, enhancing service
efficiency in telecommunications and customer support, improving reliability and maintenance in engineering,
optimizing financial risk assessment, analyzing patient survival and treatment effectiveness in healthcare, refining
production schedules and inventory management in manufacturing, and developing better environmental
monitoring and disaster response strategies among others. In addition, exploring the links between these
mixtures and other distributions can lead to more effective models and solutions across various fields.
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