
electronics

Article

Implementation of a Fast Link Rate Adaptation Algorithm for
WLAN Systems

Chester Sungchung Park 1 and Sungkyung Park 2,*

����������
�������

Citation: Park, C.S.; Park, S.

Implementation of a Fast Link Rate

Adaptation Algorithm for WLAN

Systems. Electronics 2021, 10, 91.

https://doi.org/10.3390/

electronics10010091

Received: 8 November 2020

Accepted: 28 December 2020

Published: 5 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical and Electronics Engineering, Konkuk University, Neungdong-ro 120,
Gwangjin-gu, Seoul 05029, Korea; chester@konkuk.ac.kr

2 Department of Electronics Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil,
Geum-jeong-gu, Busan 46241, Korea

* Correspondence: fspark@pusan.ac.kr; Tel.: +82-51-510-2368

Abstract: With a target to maximize the throughput, a fast link rate adaptation algorithm for IEEE
802.11a/b/g/n/ac is proposed, which is basically preamble based and can adaptively compensate
for the discrepancy between transmitter and receiver radio frequency performances by exploiting
the acknowledgment signal. The target system is a 1 × 1 wireless local area network chip with no
null data packet or sounding. The algorithm can be supplemented by automatic rate fallback at
the initial phase to further expedite rate adaptation. The target system receives wireless channel
coefficients and previous packet information, translates them to amended signal-to-noise ratios, and
then, via the mean mutual information, selects the modulation and coding scheme with the maximum
throughput. Extensive simulation and wireless tests are carried out to demonstrate the validity of the
proposed adaptive preamble-based link adaptation in comparison with both the popular automatic
rate fallback and ideal link adaptation. The throughput gain of the proposed link adaptation over
automatic rate fallback is demonstrated over various packet transmission intervals and Doppler
frequencies. The throughput gain of the proposed algorithm over ARF is 46% (15%) for a 1-tap (3-tap)
channel over 10 m–250 m (16 m–160 m) normalized Doppler frequencies. Assuming a 3-tap channel
and 30 m–50 m normalized Doppler frequencies, the throughput of the proposed algorithm is about
31 Mbps, nearly the same as that of ideal link adaptation, whereas the throughput of ARF is about
24 Mbps, leading to a 30% throughput gain of the proposed algorithm over ARF. The firmware is
implemented in C and on Xilinx Zynq 7020 (Xilinx, San Jose, CA, USA) for wireless tests.

Keywords: ACK; firmware; link adaptation; mean mutual information; preamble; rate adaptation; WLAN

1. Introduction

The wireless channel features variations over time in the temporal domain and across
frequency in the spectral domain are characterized by delay spread and Doppler spread,
respectively, giving rise to frequency selectivity and time selectivity, respectively. Both the
physical layer (PHY) and the data link layer or the medium access control (MAC) sublayer
of the air interface (or access mode) should be designed in consideration of this wireless
channel. In other words, signal transmission techniques should be effectively adjusted
according to the varying channel quality or channel status.

For instance, the access point (AP) in wireless local area networks (WLANs) may
send a known signal to the station and subsequently the station can send to the AP a
feedback signal with channel state information that recommends which signal transmission
techniques are adequate for the channel. Taking this feedback into account, the AP may
choose effective transmission techniques with which to send data to the station. This
is known as closed-loop link adaptation. As another way, the station sends a known
signal to the AP (via the uplink) and from the quality of this signal, the AP predicts the
status of the downlink channel, assuming channel reciprocity. This is known as open-loop
link adaptation.

Electronics 2021, 10, 91. https://doi.org/10.3390/electronics10010091 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-1171-5020
https://doi.org/10.3390/electronics10010091
https://doi.org/10.3390/electronics10010091
https://doi.org/10.3390/electronics10010091
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10010091
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/10/1/91?type=check_update&version=1

Electronics 2021, 10, 91 2 of 28

Closed-loop link adaptation assumes perfect channel knowledge available at the trans-
mitter from either receiver feedback or channel sounding, incurring high computational
complexity and communication overhead. A link adaptation algorithm where the receiver
feedback is considered through the acknowledgment (ACK) of the transmitted data is a
closed-loop link adaptation algorithm [1]. On the other hand, open-loop link adaptation
utilizes only the transmitter’s statistics and can maintain seamless interoperability and
coexistence with legacy WLAN devices [2,3]. In a target system that is based on the time
division duplex (TDD), the wireless channel holds channel reciprocity for a relatively short
time and accordingly open-loop link adaptation is an amenable choice in IEEE 802.11
with multi-user multi-input multi-output (MIMO). When the AP senses that the wireless
channel condition is good or the signal-to-noise ratio (SNR) level is high, it will switch
to another modulation and coding scheme (MCS) available in the WLAN which offers a
higher data rate or enhanced throughput [4].

One of the most widely used basic link rate adaptation algorithm is automatic rate
fallback (ARF) [5] which is based on statistical count of frames. After first ACK miss, the
retransmission is still performed at the same rate but after second ACK miss, the second
retry and subsequent transmission attempts are performed at the fallback rate. When the
No. of successively received good ACKs reaches 10, the rate is upgraded. However, if the
first transmission fails right after the rate upgrade, the rate is immediately decreased. A
drawback of ARF is that if the channel changes quickly, the rate in ARF cannot be adapted
effectively. Another statistical-count-based link adaptation algorithm called dynamic link
adaptation [6] employs a success counter and a failure counter such that it increases the
rate when the success counter reaches the threshold value S and decreases the rate when
the failure counter reaches the threshold value F. If the channel changes very slowly, the
number of retransmission attempts in both ARF and dynamic link adaptation increases. To
address these two problems with ARF, adaptive ARF [7] was proposed such that if the first
transmission fails right after the rate upgrade, not only the rate is immediately switched
back to the previous rate but also the success threshold is doubled. On the other hand,
if the rate is decreased owing to two consecutive fails, the success threshold is set to the
initial value, 10.

More variant algorithms exist as the statistical-count-based link adaptation using
frame-based measurement. The Onoe algorithm [8] is less sensitive to individual packet
failure than the ARF algorithm by means of employing averaged credits as another condi-
tion to increase the rate. Fast-responsive link adaptation [9] decreases the rate in the same
manner as ARF but tries to increase the rate more frequently if the transmission duration
of the current rate is sufficiently long. The SampleRate algorithm [10] sends data at the
rate that has the smallest predicted average packet transmission time. Loss-differentiating
ARF [11] entails a new control frame, NAK [12], in IEEE 802.11, which indicates a channel
error to the transmitter. Fail count increases only when a NAK is received whereas if no
ACK, a collision is deemed to have occurred. Collision-aware rate adaptation [13] handles
the inability of ARF to differentiate collisions from channel errors by adopting request-
to-send probing and/or clear-channel-assessment detection. The robust rate adaptation
algorithm [14] estimates the packet loss ratio during a given time window of observation
and increases (decreases) the rate if this ratio is lower (higher) than a given lower (upper)
threshold. In addition, to suppress collision losses, an adaptive request-to-send filter is
employed. The drawback of the algorithm in [14] is that the algorithm may tend to be
too aggressive for static stations and too conservative for moving stations. Stochastic
automata rate adaptation [15] is based on stochastic learning automata that can estimate
the probabilistic packet success rate. Sequential hypothesis testing-based rate control [16]
is also a statistical-count-based link adaptation algorithm.

Another category for link adaptation, as opposed to statistical-count-based link adapta-
tion, is SNR-measurement-based or PHY-measurement-based link adaptation, an example
of which is receiver-based AutoRate [17]. This algorithm allows the receiver to select the
appropriate rate for the data packet during the request-to-send and clear-to-send packet

Electronics 2021, 10, 91 3 of 28

exchange. Link adaptation methods based on a multitude of link quality metrics [18–25]
are other examples of PHY-measurement-based link adaptation. The effective goodput
(which is the expected data payload length delivered divided by the expected transmission
time spent on the frame delivery) is computed in [20] and the best set of PHY modes that
maximizes this goodput is found. Exponential effective SNR of the orthogonal frequency
division multiplexing (OFDM) system is proposed as a link quality metric in [21]. To
estimate the packet error rate (PER), lookup tables of PER vs. SNR in the additive white
Gaussian noise (AWGN) channel for all PHY modes are constructed first and then the
average SNRs of all subcarriers are estimated. Subsequently, the effective SNR is calculated
and the PER is found from the lookup table at this effective SNR. The motivation of [22] is
that if the SNR distance from the AWGN PER curve is known (by means of a PER indicator),
the PER of a specific frequency selective channel can be predicted accordingly. On the
other hand, it is proved in [23] that the exponential effective SNR has a slightly better
performance than the PER indicator in [22]. Ref. [24] calculates the PER, starting with the
per-subcarrier post detection SNR from the channel matrix and then the bit error rate forms
the effective SNR. It is proved in [25] that among the three link quality metrics, namely, the
instantaneous SNR, the exponential effective SNR, and Shannon capacity, the exponential
effective SNR usage shows the best performance. Yet another link quality metric exists,
which provides better PER estimation accuracy than the exponential effective SNR, in case
of fast link adaptation. This metric [26] is based on mutual information, which will be
explained in Section 2.

Some more variant algorithms exist as the PHY-measurement-based link adapta-
tion [27,28]. RSSI-based link adaptation [29,30], which does not require feedback from the
receiver, is based on the measured received signal strength of received frames and the num-
ber of retransmission attempts, in order to determine the channel and receiver conditions.
Hybrid automatic rate control [31] uses both SNR-based and statistic-based algorithms. In
this approach, a signal-strength-indicator-to-rate lookup table is employed such that the
three signal-strength-indicator thresholds of the table are dynamically adjusted at the end
of each time window, according to the frame error rate. Opportunistic rate adaptation is
used in [32,33] and distributed cooperative rate adaptation is used in [34].

To summarize, the problems in ARF-like algorithms include:

• No consideration of fails due to collision;
• Non-optimal rate selection (due to the rate fallback only in successive fails);
• Meaningless periodic rate upgrade in slow channel variations;
• Obscure number of consecutive transmission successes or fails before a rate change.

On the other hand, the problems in PHY-measurement-based algorithms include:

• A large SNR variation in case of a short-term measurement;
• Weakness with mobile clients in case of a long-term measurement for smoothening.

The system considered in this paper for fast link rate adaptation is a 1 × 1 WLAN chip
having one transmitter (TX) antenna and one receiver (RX) antenna. In a certain system
that allows null data packet transmission, the RX can utilize a null data packet (NDP) from
the TX to decide an MCS feedback which will be sent to the TX. However, since the target
system considered in this paper is a 1 × 1 WLAN chip, an NDP is not sent. Many APs
in WLANs do not support sounding and accordingly an algorithm that does not use a
sounding PHY protocol data unit is considered in this paper. As a consequence, in our target
system, no MCS feedback is assumed from the RX. The proposed fast link rate adaptation
algorithm in this paper is based on the preamble (instead of NDP or sounding). The target
system in the proposed algorithm receives wireless channel coefficients (namely, channel
state information or CSI, from PHY measurements) and previous packet information
(ACKs), translates them to amended signal-to-noise ratios, and then, via the mean mutual
information, selects the MCS with the maximum throughput. The proposed algorithm can
be applied to IEEE 802.11a/b/g/n/ac WLAN systems.

Electronics 2021, 10, 91 4 of 28

The paper is organized as follows. The basics of the link rate adaptation algorithm is
addressed in Section 2, followed by the link adaptation firmware in Section 3 that deals
with the overall flow of the proposed link adaptation and the functions in detail that
constitute the proposed firmware. Analysis and optimization of the operating speed of the
proposed link adaptation are covered in Section 4 and the link adaptation performance
measurements and wireless tests are depicted in Section 5, followed by discussion and
conclusion with an appendix.

2. Link Adaptation Algorithm Basics

The target system supposed in the paper is made up of one TX antenna and one RX
antenna, as drawn in Figure 1. The system supports IEEE 802.11a, 11b, 11g, 11n, and 11ac
WLAN standards in the AP and the non-AP modes, and leverages an open-loop type link
adaptation (LA) in which the RX of the station (STA) does not support MCS feedback. The
goal of the link rate adaptation implementation in this paper, based on adaptive modulation
and coding, is to select an MCS that can achieve the maximum throughput.

Electronics 2021, 17, x FOR PEER REVIEW 4 of 29

(ACKs), translates them to amended signal-to-noise ratios, and then, via the mean mutual
information, selects the MCS with the maximum throughput. The proposed algorithm can
be applied to IEEE 802.11a/b/g/n/ac WLAN systems.

The paper is organized as follows. The basics of the link rate adaptation algorithm is
addressed in Section 2, followed by the link adaptation firmware in Section 3 that deals
with the overall flow of the proposed link adaptation and the functions in detail that con-
stitute the proposed firmware. Analysis and optimization of the operating speed of the
proposed link adaptation are covered in Section 4 and the link adaptation performance
measurements and wireless tests are depicted in Section 5, followed by discussion and
conclusion with an appendix.

2. Link Adaptation Algorithm Basics
The target system supposed in the paper is made up of one TX antenna and one RX

antenna, as drawn in Figure 1. The system supports IEEE 802.11a, 11b, 11g, 11n, and 11ac
WLAN standards in the AP and the non-AP modes, and leverages an open-loop type link
adaptation (LA) in which the RX of the station (STA) does not support MCS feedback. The
goal of the link rate adaptation implementation in this paper, based on adaptive modula-
tion and coding, is to select an MCS that can achieve the maximum throughput.

Figure 1. Target system.

In comparison, with ideal link adaptation, the RX estimates the SNR and accordingly
selects an MCS that enables the maximum available throughput and feeds this MCS back
to the TX via a control wrapper, which is a closed-loop type link adaptation, as drawn in
Figure 2. Assuming the feedback delay is negligible, this type of link adaptation with MCS
feedback can predict the link most accurately and swiftly.

Figure 2. Ideal link adaptation.

In case the MCS feedback of the RX being not available, illustrated in Figure 3, an
acknowledgment (ACK) success or fail (S/F) of the data frame sent by the TX can be lev-
eraged by the target system for link adaptation. However, it takes long for this method to
obtain the channel information. Another method is to utilize the preamble [35] in the
frames (ACK frame, beacon frame, etc.,) received by the RX. It has the upside of acquiring
the channel information swiftly and has the downside of degrading the performance in
the event that the channel information is inaccurate.

Figure 1. Target system.

In comparison, with ideal link adaptation, the RX estimates the SNR and accordingly
selects an MCS that enables the maximum available throughput and feeds this MCS back
to the TX via a control wrapper, which is a closed-loop type link adaptation, as drawn in
Figure 2. Assuming the feedback delay is negligible, this type of link adaptation with MCS
feedback can predict the link most accurately and swiftly.

Electronics 2021, 17, x FOR PEER REVIEW 4 of 29

(ACKs), translates them to amended signal-to-noise ratios, and then, via the mean mutual
information, selects the MCS with the maximum throughput. The proposed algorithm can
be applied to IEEE 802.11a/b/g/n/ac WLAN systems.

The paper is organized as follows. The basics of the link rate adaptation algorithm is
addressed in Section 2, followed by the link adaptation firmware in Section 3 that deals
with the overall flow of the proposed link adaptation and the functions in detail that con-
stitute the proposed firmware. Analysis and optimization of the operating speed of the
proposed link adaptation are covered in Section 4 and the link adaptation performance
measurements and wireless tests are depicted in Section 5, followed by discussion and
conclusion with an appendix.

2. Link Adaptation Algorithm Basics
The target system supposed in the paper is made up of one TX antenna and one RX

antenna, as drawn in Figure 1. The system supports IEEE 802.11a, 11b, 11g, 11n, and 11ac
WLAN standards in the AP and the non-AP modes, and leverages an open-loop type link
adaptation (LA) in which the RX of the station (STA) does not support MCS feedback. The
goal of the link rate adaptation implementation in this paper, based on adaptive modula-
tion and coding, is to select an MCS that can achieve the maximum throughput.

Figure 1. Target system.

In comparison, with ideal link adaptation, the RX estimates the SNR and accordingly
selects an MCS that enables the maximum available throughput and feeds this MCS back
to the TX via a control wrapper, which is a closed-loop type link adaptation, as drawn in
Figure 2. Assuming the feedback delay is negligible, this type of link adaptation with MCS
feedback can predict the link most accurately and swiftly.

Figure 2. Ideal link adaptation.

In case the MCS feedback of the RX being not available, illustrated in Figure 3, an
acknowledgment (ACK) success or fail (S/F) of the data frame sent by the TX can be lev-
eraged by the target system for link adaptation. However, it takes long for this method to
obtain the channel information. Another method is to utilize the preamble [35] in the
frames (ACK frame, beacon frame, etc.,) received by the RX. It has the upside of acquiring
the channel information swiftly and has the downside of degrading the performance in
the event that the channel information is inaccurate.

Figure 2. Ideal link adaptation.

In case the MCS feedback of the RX being not available, illustrated in Figure 3, an
acknowledgment (ACK) success or fail (S/F) of the data frame sent by the TX can be
leveraged by the target system for link adaptation. However, it takes long for this method
to obtain the channel information. Another method is to utilize the preamble [35] in the
frames (ACK frame, beacon frame, etc.,) received by the RX. It has the upside of acquiring
the channel information swiftly and has the downside of degrading the performance in the
event that the channel information is inaccurate.

Electronics 2021, 10, 91 5 of 28Electronics 2021, 17, x FOR PEER REVIEW 5 of 29

Figure 3. Link adaptation in case of no modulation and coding scheme (MCS) feedback from the
receiver (RX) antenna.

One of the most well-known and widely used traditional link adaptation algorithm
is ARF. In ARF, the MCS value steps up by 1 (upgrade or UG) if ten consecutive ACKs are
received whereas the MCS value steps down by 1 (downgrade or DG) if two consecutive
no ACKs (namely, two consecutive failures to receive ACK) occur or if a no ACK is re-
ceived immediately after the MCS value steps up by 1. Table 1 shows the modulation
scheme and the throughput for each of the MCS values or indices, along with the code
rate (R). Each throughput value in the parenthesis indicates the throughput value when
two streams are used instead of a single stream. Table 1 is specified for 20 MHz channels
and 600 ns guard intervals in WLAN standards. Figure 4 shows the simulation results that
compare ARF with ILA or ideal link adaptation. ARF, since it selects an MCS according
to its qualifications described above even if the channel is in favorable conditions, has its
MCS altered at a slow pace, as opposed to ILA which has its MCS altered fast accordingly
as the channel varies, since it selects an MCS that achieves maximum throughput accord-
ing to the channel condition. With ARF, packet numbers 12 and 25 correspond to the case
when a no ACK comes in immediately after the MCS value is upgraded, at which an ARF
function called probing comes into play, whose role is to one step downgrade the MCS
value. In this case, ARF probing interprets a no ACK directly after an upgrade in MCS
occurs as an erroneous decision.

Table 1. Modulation and throughput for each of the modulation and coding scheme (MCS) values.

MCS Modulation R Throughput [Mbps]MCSModulation R Throughput [Mbps]
0 BPSK 1/2 6.5 (13.0) 4 16-QAM 3/4 39.0 (78.0)
1 QPSK 1/2 13.0 (26.0) 5 64-QAM 2/3 52.0 (104.0)
2 QPSK 3/4 19.5 (39.0) 6 64-QAM 3/4 58.5 (117.5)
3 16-QAM 1/2 26.0 (52.0) 7 64-QAM 5/6 65.0 (130.0)

Figure 3. Link adaptation in case of no modulation and coding scheme (MCS) feedback from the
receiver (RX) antenna.

One of the most well-known and widely used traditional link adaptation algorithm is
ARF. In ARF, the MCS value steps up by 1 (upgrade or UG) if ten consecutive ACKs are
received whereas the MCS value steps down by 1 (downgrade or DG) if two consecutive no
ACKs (namely, two consecutive failures to receive ACK) occur or if a no ACK is received
immediately after the MCS value steps up by 1. Table 1 shows the modulation scheme and
the throughput for each of the MCS values or indices, along with the code rate (R). Each
throughput value in the parenthesis indicates the throughput value when two streams
are used instead of a single stream. Table 1 is specified for 20 MHz channels and 600 ns
guard intervals in WLAN standards. Figure 4 shows the simulation results that compare
ARF with ILA or ideal link adaptation. ARF, since it selects an MCS according to its
qualifications described above even if the channel is in favorable conditions, has its MCS
altered at a slow pace, as opposed to ILA which has its MCS altered fast accordingly as the
channel varies, since it selects an MCS that achieves maximum throughput according to
the channel condition. With ARF, packet numbers 12 and 25 correspond to the case when a
no ACK comes in immediately after the MCS value is upgraded, at which an ARF function
called probing comes into play, whose role is to one step downgrade the MCS value. In
this case, ARF probing interprets a no ACK directly after an upgrade in MCS occurs as an
erroneous decision.

Table 1. Modulation and throughput for each of the modulation and coding scheme (MCS) values.

MCS Modulation R Throughput
[Mbps] MCS Modulation R Throughput

[Mbps]

0 BPSK 1/2 6.5 (13.0) 4 16-QAM 3/4 39.0 (78.0)

1 QPSK 1/2 13.0
(26.0) 5 64-QAM 2/3 52.0 (104.0)

2 QPSK 3/4 19.5
(39.0) 6 64-QAM 3/4 58.5 (117.5)

3 16-QAM 1/2 26.0
(52.0) 7 64-QAM 5/6 65.0 (130.0)

Electronics 2021, 10, 91 6 of 28Electronics 2021, 17, x FOR PEER REVIEW 6 of 29

Figure 4. Automatic rate fallback (ARF) simulation results.

On the other hand, preamble-based link adaptation (PBLA), categorized as PHY-
measurement-based link adaptation, utilizes the preambles in the received frames such as
ACK frames, beacon frames, and so forth. Rate adaptation based on the received packet
SNR measurement may be highly erroneous under certain scenarios like mobile multipath
channels. Thus, from the SNR concerning the received channel, mutual information (MI)
is calculated per modulation scheme and subsequently the mean MI or MMI is obtained
by taking the average of MI over the channel subcarriers in the OFDM [26]. Then, the
packet error rate (PER) is obtained from the MMI and finally the throughput is calculated
from the PER. Through this procedure the throughput is obtained for each of the MCS
and among all the MCS values, the MCS with the maximum throughput is selected. As
mentioned in Section 1, the MMI-based link quality metric is known to be more accurate
than the exponential effective SNR.

More specifically, conversion of the SNR to the MI and conversion of the MMI to the
PER are explained as follows. MI is the probability that one bit is transmitted successfully,
namely, the expectation value of the number of bits that are delivered successfully. MMI
is the mean MI over all the subcarriers. PER is the probability that the packet is transmitted
unsuccessfully and hence the lower the PER the better the likelihood of successful trans-
mission. SNRk,i that is the SNR of the i-th subcarrier of the k-th packet is computed with
Equation (1).

2
,

,
0

k i
k i

H
SNR

N
=

(1)

where Hk,i is the channel coefficient of the i-th subcarrier of the k-th packet and N0 is the
noise power spectral density (PSD). MI vs. SNR has the same shape for the same modula-
tion scheme, as plotted in Figure 5. MI per symbol can be calculated from the SNR by
using cubic polynomials, which is specified in Appendix A.

Figure 4. Automatic rate fallback (ARF) simulation results.

On the other hand, preamble-based link adaptation (PBLA), categorized as PHY-
measurement-based link adaptation, utilizes the preambles in the received frames such as
ACK frames, beacon frames, and so forth. Rate adaptation based on the received packet
SNR measurement may be highly erroneous under certain scenarios like mobile multipath
channels. Thus, from the SNR concerning the received channel, mutual information (MI) is
calculated per modulation scheme and subsequently the mean MI or MMI is obtained by
taking the average of MI over the channel subcarriers in the OFDM [26]. Then, the packet
error rate (PER) is obtained from the MMI and finally the throughput is calculated from the
PER. Through this procedure the throughput is obtained for each of the MCS and among
all the MCS values, the MCS with the maximum throughput is selected. As mentioned
in Section 1, the MMI-based link quality metric is known to be more accurate than the
exponential effective SNR.

More specifically, conversion of the SNR to the MI and conversion of the MMI to the
PER are explained as follows. MI is the probability that one bit is transmitted successfully,
namely, the expectation value of the number of bits that are delivered successfully. MMI is
the mean MI over all the subcarriers. PER is the probability that the packet is transmitted
unsuccessfully and hence the lower the PER the better the likelihood of successful trans-
mission. SNRk,i that is the SNR of the i-th subcarrier of the k-th packet is computed with
Equation (1).

SNRk,i =

∣∣Hk,i
∣∣2

N0
(1)

where Hk,i is the channel coefficient of the i-th subcarrier of the k-th packet and N0 is
the noise power spectral density (PSD). MI vs. SNR has the same shape for the same
modulation scheme, as plotted in Figure 5. MI per symbol can be calculated from the SNR
by using cubic polynomials, which is specified in Appendix A.

Electronics 2021, 10, 91 7 of 28Electronics 2021, 17, x FOR PEER REVIEW 7 of 29

Figure 5. Signal-to-noise ratio (SNR)-to-mutual information (MI) conversion for MCS 0–7.

Figure 6 is obtained from Monte Carlo simulations under the additive white Gauss-
ian noise (AWGN) environment, from which the PER is acquired and the throughput can
be expressed in terms of the PER as in Equation (2).

(1)M C S M C S M C ST P PER R= − (2)

where TPMCS is the expected value of the data rate or throughput for each MCS value in
Table 1, PERMCS is the expected value of the PER, and RMCS is the peak data rate or through-
put listed in Table 1. Under fading channel environments, the PERMCS varies as the channel
condition varies, and hence TPMCS also varies.

In this paper, an adaptive preamble-based link adaptation (adaptive PBLA or AP-
BLA) algorithm is proposed, which is outlined in the following. If a difference exists be-
tween the MMI-to-PER table (Figure 6) in PBLA and the actual RX performance (owing to
the mismatch between uplink SNR and downlink SNR), then performance degradation
will occur. The right half of Figure 7 shows the MMI-to-PER table used in PBLA while the
left half of Figure 7 shows the result after the curves for MCS values are shifted randomly
and independently of each other, in order to model the actual RX performance. If PBLA is
adopted for link adaptation, the right half of Figure 7 is put to use to determine the MCS
value. If the actual RX is assumed to have the MMI-to-PER relationship shown on the left
half of Figure 7, then, in this case, PBLA will be unable to carry out correct link adaptation.
Besides, if the channel coefficients experience separate scaling procedures, the channel
quality will be falsely predicted and hence PBLA will scarcely select the MCS value with
the maximum throughput.

Figure 5. Signal-to-noise ratio (SNR)-to-mutual information (MI) conversion for MCS 0–7.

Figure 6 is obtained from Monte Carlo simulations under the additive white Gaussian
noise (AWGN) environment, from which the PER is acquired and the throughput can be
expressed in terms of the PER as in Equation (2).

TPMCS = (1− PERMCS)RMCS (2)

where TPMCS is the expected value of the data rate or throughput for each MCS value
in Table 1, PERMCS is the expected value of the PER, and RMCS is the peak data rate or
throughput listed in Table 1. Under fading channel environments, the PERMCS varies as
the channel condition varies, and hence TPMCS also varies.

Electronics 2021, 17, x FOR PEER REVIEW 8 of 29

Figure 6. Mean mutual information (MMI)-to- packet error rate (PER) conversion for MCS 0–7.

Figure 7. Randomly shifted (left) and standard (right) MMI-to-PER tables.

To cope with the case that the actual RX performance is different than the perfor-
mance PBLA assumes, the adaptive PBLA or APBLA algorithm takes advantage of the
ACK information of the previous packets to amend the channel SNR. If ACKs have fre-
quently occurred, the channel condition is regarded as better than what the table predicts
whereas if ACKs have not occurred often, the channel condition is counted as worse than
that expected by the table. Thus when many ACKs have occurred, the channel SNR is
incremented and conversely when ACKs have not occurred many times, the channel SNR
is decremented. More specifically, the SNR offset value renewed every packet on the basis
of the ACKs of the previous packets and this renewed SNR offset is applied to each sub-
carrier SNR, whereby the discrepancy between the actual RX and the PBLA internal model
is overcome.

Figure 6. Mean mutual information (MMI)-to- packet error rate (PER) conversion for MCS 0–7.

Electronics 2021, 10, 91 8 of 28

In this paper, an adaptive preamble-based link adaptation (adaptive PBLA or APBLA)
algorithm is proposed, which is outlined in the following. If a difference exists between
the MMI-to-PER table (Figure 6) in PBLA and the actual RX performance (owing to the
mismatch between uplink SNR and downlink SNR), then performance degradation will
occur. The right half of Figure 7 shows the MMI-to-PER table used in PBLA while the left
half of Figure 7 shows the result after the curves for MCS values are shifted randomly
and independently of each other, in order to model the actual RX performance. If PBLA is
adopted for link adaptation, the right half of Figure 7 is put to use to determine the MCS
value. If the actual RX is assumed to have the MMI-to-PER relationship shown on the left
half of Figure 7, then, in this case, PBLA will be unable to carry out correct link adaptation.
Besides, if the channel coefficients experience separate scaling procedures, the channel
quality will be falsely predicted and hence PBLA will scarcely select the MCS value with
the maximum throughput.

Electronics 2021, 17, x FOR PEER REVIEW 8 of 29

Figure 6. Mean mutual information (MMI)-to- packet error rate (PER) conversion for MCS 0–7.

Figure 7. Randomly shifted (left) and standard (right) MMI-to-PER tables.

To cope with the case that the actual RX performance is different than the perfor-
mance PBLA assumes, the adaptive PBLA or APBLA algorithm takes advantage of the
ACK information of the previous packets to amend the channel SNR. If ACKs have fre-
quently occurred, the channel condition is regarded as better than what the table predicts
whereas if ACKs have not occurred often, the channel condition is counted as worse than
that expected by the table. Thus when many ACKs have occurred, the channel SNR is
incremented and conversely when ACKs have not occurred many times, the channel SNR
is decremented. More specifically, the SNR offset value renewed every packet on the basis
of the ACKs of the previous packets and this renewed SNR offset is applied to each sub-
carrier SNR, whereby the discrepancy between the actual RX and the PBLA internal model
is overcome.

Figure 7. Randomly shifted (left) and standard (right) MMI-to-PER tables.

To cope with the case that the actual RX performance is different than the performance
PBLA assumes, the adaptive PBLA or APBLA algorithm takes advantage of the ACK
information of the previous packets to amend the channel SNR. If ACKs have frequently
occurred, the channel condition is regarded as better than what the table predicts whereas if
ACKs have not occurred often, the channel condition is counted as worse than that expected
by the table. Thus when many ACKs have occurred, the channel SNR is incremented and
conversely when ACKs have not occurred many times, the channel SNR is decremented.
More specifically, the SNR offset value renewed every packet on the basis of the ACKs
of the previous packets and this renewed SNR offset is applied to each subcarrier SNR,
whereby the discrepancy between the actual RX and the PBLA internal model is overcome.

3. The Link Adaptation Firmware

The firmware for the proposed link adaptation, APBLA, consists of the coef2snr
function, the offset_update function, the snr2thr function, the snr2mi_bpsk, snr2mi_qpsk,
snr2mi_16qm, and snr2mi_64qm functions, the mmi2thr function, and the interp function,
as shown in Figure 8. In the first place, the overall flow of the link adaptation firmware is
explained. Subsequently, the details of each function in the firmware are accounted for in
detail. The firmware is implemented in the C programming language.

Electronics 2021, 10, 91 9 of 28

Electronics 2021, 17, x FOR PEER REVIEW 9 of 29

3. The Link Adaptation Firmware
The firmware for the proposed link adaptation, APBLA, consists of the coef2snr func-

tion, the offset_update function, the snr2thr function, the snr2mi_bpsk, snr2mi_qpsk,
snr2mi_16qm, and snr2mi_64qm functions, the mmi2thr function, and the interp function,
as shown in Figure 8. In the first place, the overall flow of the link adaptation firmware is
explained. Subsequently, the details of each function in the firmware are accounted for in
detail. The firmware is implemented in the C programming language.

3.1. Overall Flow
The wrapper function is named link_adaptation_ku which is shown in Figure 8. The

inputs to this function are the integer data type PHY_Mode (the mode used in the PHY
that is 0 for legacy, 1 for high throughput or HT, and 2 for very high throughput or VHT)
(not shown in Figure 8 for brevity), the integer data type mcsin (the MCS index for the
previous packet), the integer data type ack (the ACK for the previous packet), and the
pointer to short data types nch_coef_real and nch_coef_imag (the real and imaginary parts

of the channel information or normalized channel coefficients 0/iH N per subcar-
rier). This wrapper function determines the MCS value of the next packet and returns this
value. It may be subdivided into two parts—one part that executes the PBLA algorithm
and the other part that runs the remaining algorithms.

Figure 8. Overall structure of the proposed link adaptation.

If a mismatch occurs between the uplink and the downlink SNRs, stemming from the
disagreement between the TX and the RX radio frequency (RF) performances, then PBLA
will not run correctly. By contrast, the proposed algorithm, APBLA, by means of amend-
ing the channel SNR through the SNR offset, gets around this problem. APBLA multiplies
the channel SNR by the SNR offset and this product is fed to the next firmware functions,
as shown in Figure 8. The SNR offset grows or drops according to whether the ACK of the
previous packet is 1 or 0.

, ,k iAPBLA k k iSNR Offset SNR= ⋅

(3)

In Equation (3), Offsetk means the SNR offset of the k-th packet and SNRAPBLAk,i means
the amended SNR of the i-th subcarrier of the k-th packet. Equations (4) and (5) show the
way the SNR offset is updated according to ACK or NACK. (NACK frames are not actu-
ally transmitted over the air in IEEE 802.11 but a NACK signal is sent by the driver inter-
nally when an ACK is not received over the air. Thus, we denote no ACK as NACK, here-
after.)

Figure 8. Overall structure of the proposed link adaptation.

3.1. Overall Flow

The wrapper function is named link_adaptation_ku which is shown in Figure 8. The
inputs to this function are the integer data type PHY_Mode (the mode used in the PHY
that is 0 for legacy, 1 for high throughput or HT, and 2 for very high throughput or VHT)
(not shown in Figure 8 for brevity), the integer data type mcsin (the MCS index for the
previous packet), the integer data type ack (the ACK for the previous packet), and the
pointer to short data types nch_coef_real and nch_coef_imag (the real and imaginary parts
of the channel information or normalized channel coefficients Hi/

√
N0 per subcarrier).

This wrapper function determines the MCS value of the next packet and returns this value.
It may be subdivided into two parts—one part that executes the PBLA algorithm and the
other part that runs the remaining algorithms.

If a mismatch occurs between the uplink and the downlink SNRs, stemming from the
disagreement between the TX and the RX radio frequency (RF) performances, then PBLA
will not run correctly. By contrast, the proposed algorithm, APBLA, by means of amending
the channel SNR through the SNR offset, gets around this problem. APBLA multiplies the
channel SNR by the SNR offset and this product is fed to the next firmware functions, as
shown in Figure 8. The SNR offset grows or drops according to whether the ACK of the
previous packet is 1 or 0.

SNRAPBLAk,i = O f f setk · SNRk,i (3)

In Equation (3), Offsetk means the SNR offset of the k-th packet and SNRAPBLAk,i means
the amended SNR of the i-th subcarrier of the k-th packet. Equations (4) and (5) show the
way the SNR offset is updated according to ACK or NACK. (NACK frames are not actually
transmitted over the air in IEEE 802.11 but a NACK signal is sent by the driver internally
when an ACK is not received over the air. Thus, we denote no ACK as NACK, hereafter.)

In case of ACK,
O f f setk+1 = StepACK ·O f f setk (4)

In case of NACK,
O f f setk+1 = StepNACK ·O f f setk (5)

here, StepACK is the ACK update step which is multiplied to the SNR offset in case of
ACK while StepNACK is the NACK update step which is multiplied to the SNR offset in
case of NACK. The update steps vary when channel conditions vary, which is detailed in
Section 3.3 on the offset_update function.

The APBLA algorithm compensates for the mismatch of the channel SNRs but if this
mismatch is much too large it takes some time to compensate. Thus, on initiation of the

Electronics 2021, 10, 91 10 of 28

overall function (link_adaptation_ku), ARF can be employed at the beginning. In this ARF
phase, the MCS is determined and output by ARF and at the same time the computation is
executed to determine the SNR offset (from the MCS obtained by running PBLA) before
APBLA sets in. The SNR offset in the ARF phase is updated once every 200 packets whereas
before reaching the packet count of 200, the temporary SNR offset is (internally) updated
every packet, by Equation (6). The SNR offset is updated every 200 packets by substituting
the corresponding temporary SNR offset and then the SNR offset is applied to PBLA for
200 packets.

O f f setTMPk+1 = 0.995405(MCSARFk
−MCSPBLAk

) ·O f f setTMPk (6)

where OffsetTMPk+1 is the temporary SNR offset, MCSARFk is the MCS determined by ARF,
and MCSPBLAk is the MCS determined by PBLA. Specifically, the update step of the tempo-
rary SNR offset is determined by the difference between the MCS value recommended by
PBLA and the MCS value recommended by ARF. In this paper, the update step is chosen
such that the value is proportional to the difference between the two MCS values and,
through extensive simulation, the proportionality constant is determined at 0.995405 em-
pirically. The ARF phase terminates and the APBLA phase is initiated on the condition that
the variation of the SNR offset for the following 200 packets is below 35% of the SNR offset
200 packets before, which is expressed in Equation (7). This 35% is associated with the
time point where the mismatch of the channel SNR is compensated for such that APBLA
exhibits better performance over ARF. In this paper, the percentage value is empirically set
after extensive simulation so that the throughput of APBLA is maximized.

O f f setTMPk −O f f setTMPk−200 < 0.35 ·O f f setTMPk−200 (7)

What is meant by meeting this condition is that over the past 200 packets the difference
between the MCS determined by PBLA and that determined by ARF is not significant
and hence the channel SNR mismatch is not considerable. Thus if the condition above is
satisfied, the APBLA phase sets in to conduct fine mismatch compensation.

In the APBLA phase, the MCS is decided by means of APBLA. This algorithm intro-
duced in Section 2 can be represented by the state diagram shown in Figure 9. A0 state
is defined as the state when the SNR offset is incremented and the APBLA algorithm is
executed to determine the MCS. N0 state is defined as the state when the SNR offset is
decremented and the APBLA algorithm is executed to determine the MCS.

Electronics 2021, 17, x FOR PEER REVIEW 11 of 29

Figure 9. State diagram of the basic adaptive preamble-based link adaptation (APBLA).

With the basic APBLA the MCS is determined always through the APBLA algorithm
as shown above and simply two cases exist, namely, in case of ACK, the SNR offset steps
up and in case of NACK, the SNR offset steps down. However, in reality, with the current
target system in case a NACK occurs, no channel coefficients are received for link adap-
tation. Accordingly, an MCS-determining mechanism is needed when a no ACK or NACK
occurs and a link adaptation mechanism is proposed as a state diagram in Figure 10. In
A0 state, the SNR offset is increased and APBLA is conducted to decide the MCS. In N0
state, the MCS is maintained. In N1 state, both the SNR offset is decreased and the MCS
index is stepped down by one. In N2 state, the MCS is maintained. In N3 state, the MCS
value is stepped down by one. Regardless of the current state, if an ACK occurs, then the
state transitions to A0 state. Additionally, if the current MCS value is 0 when the MCS
value is to be decremented, the current MCS value is held unchanged as 0. For instance, if
the current MCS value is 1, the state is A0, and thereafter four consecutive NACKs come
in, then basically state transitions occur to N0 through N2 to N3, reflecting in principle an
MCS index drop by two steps and an SNR offset drop by one step. However, when the
MCS value is 0, no way exists to lower the MCS anymore and hence the value stays at 0.
The SNR offset step-up or step-down is implemented in the form of multiplying the exist-
ing SNR offset by the update step as explained earlier in this subsection.

Figure 10. Proposed state diagram of the action according to acknowledgment (ACK) or no acknowledgment (NACK) of
the previous packet.

The reason the current form of APBLA behaves as such is elaborated as follows.
When an actual test was carried out under a wireless test environment, the channel SNR
varied too quickly and hence despite the correct prediction of APBLA based on the chan-
nel SNR at that time, NACKs were received too frequently. As a provision against this
problem, the SNR offset is not reduced for a NACK immediately after an ACK. Further-
more, the SNR offset decrement is executed only once even for consecutive NACKs since
the SNR offset is to be updated only once for each APBLA action. Thus, if consecutive
NACKs occur, then N2 and N3 states are repeated over and again and the MCS drop takes
place once every two NACKs.

If an ACK occurs with the previous packet in the APBLA phase, the state enters A0
state and the MCS is determined according to the proposed APBLA algorithm which will
be executed as follows. First, as was drawn in Figure 8, by using the coef2snr function, the

Figure 9. State diagram of the basic adaptive preamble-based link adaptation (APBLA).

With the basic APBLA the MCS is determined always through the APBLA algorithm
as shown above and simply two cases exist, namely, in case of ACK, the SNR offset
steps up and in case of NACK, the SNR offset steps down. However, in reality, with the
current target system in case a NACK occurs, no channel coefficients are received for link
adaptation. Accordingly, an MCS-determining mechanism is needed when a no ACK or
NACK occurs and a link adaptation mechanism is proposed as a state diagram in Figure 10.
In A0 state, the SNR offset is increased and APBLA is conducted to decide the MCS. In N0
state, the MCS is maintained. In N1 state, both the SNR offset is decreased and the MCS
index is stepped down by one. In N2 state, the MCS is maintained. In N3 state, the MCS

Electronics 2021, 10, 91 11 of 28

value is stepped down by one. Regardless of the current state, if an ACK occurs, then the
state transitions to A0 state. Additionally, if the current MCS value is 0 when the MCS
value is to be decremented, the current MCS value is held unchanged as 0. For instance, if
the current MCS value is 1, the state is A0, and thereafter four consecutive NACKs come
in, then basically state transitions occur to N0 through N2 to N3, reflecting in principle
an MCS index drop by two steps and an SNR offset drop by one step. However, when
the MCS value is 0, no way exists to lower the MCS anymore and hence the value stays
at 0. The SNR offset step-up or step-down is implemented in the form of multiplying the
existing SNR offset by the update step as explained earlier in this subsection.

Electronics 2021, 17, x FOR PEER REVIEW 11 of 29

Figure 9. State diagram of the basic adaptive preamble-based link adaptation (APBLA).

With the basic APBLA the MCS is determined always through the APBLA algorithm
as shown above and simply two cases exist, namely, in case of ACK, the SNR offset steps
up and in case of NACK, the SNR offset steps down. However, in reality, with the current
target system in case a NACK occurs, no channel coefficients are received for link adap-
tation. Accordingly, an MCS-determining mechanism is needed when a no ACK or NACK
occurs and a link adaptation mechanism is proposed as a state diagram in Figure 10. In
A0 state, the SNR offset is increased and APBLA is conducted to decide the MCS. In N0
state, the MCS is maintained. In N1 state, both the SNR offset is decreased and the MCS
index is stepped down by one. In N2 state, the MCS is maintained. In N3 state, the MCS
value is stepped down by one. Regardless of the current state, if an ACK occurs, then the
state transitions to A0 state. Additionally, if the current MCS value is 0 when the MCS
value is to be decremented, the current MCS value is held unchanged as 0. For instance, if
the current MCS value is 1, the state is A0, and thereafter four consecutive NACKs come
in, then basically state transitions occur to N0 through N2 to N3, reflecting in principle an
MCS index drop by two steps and an SNR offset drop by one step. However, when the
MCS value is 0, no way exists to lower the MCS anymore and hence the value stays at 0.
The SNR offset step-up or step-down is implemented in the form of multiplying the exist-
ing SNR offset by the update step as explained earlier in this subsection.

Figure 10. Proposed state diagram of the action according to acknowledgment (ACK) or no acknowledgment (NACK) of
the previous packet.

The reason the current form of APBLA behaves as such is elaborated as follows.
When an actual test was carried out under a wireless test environment, the channel SNR
varied too quickly and hence despite the correct prediction of APBLA based on the chan-
nel SNR at that time, NACKs were received too frequently. As a provision against this
problem, the SNR offset is not reduced for a NACK immediately after an ACK. Further-
more, the SNR offset decrement is executed only once even for consecutive NACKs since
the SNR offset is to be updated only once for each APBLA action. Thus, if consecutive
NACKs occur, then N2 and N3 states are repeated over and again and the MCS drop takes
place once every two NACKs.

If an ACK occurs with the previous packet in the APBLA phase, the state enters A0
state and the MCS is determined according to the proposed APBLA algorithm which will
be executed as follows. First, as was drawn in Figure 8, by using the coef2snr function, the

Figure 10. Proposed state diagram of the action according to acknowledgment (ACK) or no acknowledgment (NACK) of
the previous packet.

The reason the current form of APBLA behaves as such is elaborated as follows. When
an actual test was carried out under a wireless test environment, the channel SNR varied
too quickly and hence despite the correct prediction of APBLA based on the channel SNR
at that time, NACKs were received too frequently. As a provision against this problem, the
SNR offset is not reduced for a NACK immediately after an ACK. Furthermore, the SNR
offset decrement is executed only once even for consecutive NACKs since the SNR offset is
to be updated only once for each APBLA action. Thus, if consecutive NACKs occur, then
N2 and N3 states are repeated over and again and the MCS drop takes place once every
two NACKs.

If an ACK occurs with the previous packet in the APBLA phase, the state enters A0
state and the MCS is determined according to the proposed APBLA algorithm which will
be executed as follows. First, as was drawn in Figure 8, by using the coef2snr function,
the channel information is converted to the SNR per subcarrier. Second, by means of the
repetitive statement (i.e., the loop construct) in the snr2thr function the expected values of
the throughput are calculated for all the MCS values apropos of the current subcarrier SNR.
Among these MCS values, the value with the highest expected throughput value is opted
for as the optimal MCS value that is returned. The offset_update function renews the SNR
offset value in accordance with ACKs or NACKs of the previous packets. These component
functions, shown in Figure 8, are explained in depth in the following subsections.

3.2. Function coef2snr

The inputs to the coef2snr function are the real pointer to short data type (the real
part of the channel information Hi/

√
N0 per subcarrier), the image pointer to short data

type (the imaginary part of the channel information Hi/
√

N0 per subcarrier), and the
snr_subcarr pointer to float data type (the SNR value per subcarrier). The coef2snr function
receives the channel information as the input and calculates the subcarrier SNR. The
operation that governs this function is Equation (8).

SNRi =
(

Real(Hi/
√

N0)
2
+ Imag(Hi/

√
N0)

2) × sqscale (8)

where the sqscale constant is the square of the scale value in order to match the channel
information that is input as an integer to the original magnitude. The function terminates
after the calculated result is stored in order at the address of the subcarrier SNR array.

Electronics 2021, 10, 91 12 of 28

3.3. Function Offset_Update

The inputs to the offset_update function are the mcsin integer data type (the MCS index
applied to the previous packet), the ack integer data type (the ACK concerning the previous
packet), and the snr_offset pointer to float data type (the SNR offset value per MCS). The
function offset_update, as explained in Section 3.1, references the ACK of the previous
packet and accordingly renews the SNR offset. If the previous transmission has succeeded,
the SNR offset is multiplied by the ACK_OFFSET value (A0 state in Figure 10), whereas
if the previous transmission has failed, the offset is multiplied by the NACK_OFFSET
value. In state A0, if two NACKs occur in sequence, NACK_OFFSET is multiplied (N1
state). The update step of the SNR offset is not constant but varies according to a given
condition. More specifically, if the channel SNR compensation by the SNR offset is not
enough, update steps with a large step up or a large step down are made use of to rapidly
compensate for the channel SNR. In this case the SNR offset update step is set to 0.015 dB
in case of an ACK and 0.15 dB in case of a NACK. After it is decided that the channel SNR
mismatch compensation is nearly attained, update steps with a small step up and a small
step down are exploited to finely tune the channel SNR mismatch, in which case the SNR
offset update step is set to 0.005 dB with an ACK and 0.05 dB with a NACK. How the
values of the SNR offset update step are determined is explained as follows. If the update
step is chosen too small, the adaptation is unable to keep track of the channel variation or
unable to compensate for the error in the MMI-to-PER mapping table whereas if chosen
too large, much deviation from the mapping table will arise. Generally, the update step
may well be chosen smaller in case of slow fading and larger in case of fast fading, which is
demonstrated in Table 2 in Section 6 later on. In this paper, the SNR offset values for ACK
and NACK are determined empirically to achieve the balance mentioned above, from a
multitude of wireless tests.

If the SNR offset value does not oscillate around a specific value but continually
increases or decreases, it is decided that the channel SNR mismatch compensation is not
sufficient. On the contrary, the channel SNR mismatch compensation being almost reached
is judged from the SNR offset value fluctuating around a specific value.

Mk+1 = 0.95 ·Mk + 0.05 ·O f f setk (9)

Dk+1 = 0.9 · Dk + 0.1 · (O f f setk −Mk) (10)

In Equations (9) and (10), Offsetk is the SNR offset up to the k-th packet, Mk is the mean
SNR offset up to the k-th packet, and Dk is the mean variation (or deviation) of the SNR
offset up to the k-th packet. Equations (9) and (10) represent IIR filters to take on averages,
which are to filter out the SNR variations caused by AWGN observed in wireless tests.
As is well-known, the sum of the coefficients is set to be unity, e.g., 0.95 + 0.05 = 1 and
0.9 + 0.1 = 1, where each of the coefficients, 0.05 and 0.1, that is attached to the new sample,
is the forgetting factor of the IIR filter, which decides the magnitude of the average window
of the filter. For instance, if the forgetting factor is 0.05 (0.1), the magnitude of the average
window is 20 (10) samples wide. In this paper, the forgetting factors are determined from
AWGN and Doppler identified in wireless tests.

0.02 ·Mk > Dk (11)

Since Mk and Dk denote the average SNR offset and the average variation of the SNR
offset, respectively, inequality Equation (11) is the condition that discerns whether the
channel SNR mismatch compensation is enough or not. If the value that relates Mk and Dk
in Equation (11), 0.02 in our case, is set too large, then the update step will be diminished
too early before the SNR offset value oscillates around a specific value. On the other hand,
if the value is set too small, then the update step will be reduced too late after the SNR
offset value oscillates unnoticed. In this paper, the value, 0.02, is empirically determined
to maximize the throughput in the wireless tests. If the SNR offset fluctuates around a

Electronics 2021, 10, 91 13 of 28

constant value, Equation (11) may be satisfied and hence in this case it is decided that the
compensation is almost fulfilled and thereafter the SNR offset is finely tuned by means of
small update steps. If Equation (11) is not met, it is deemed that the compensation is not
satisfactory and on this occasion the update steps are bumped up to compensate for the
SNR offset rapidly.

3.4. Function snr2thr

The inputs that are fed to the snr2thr function are the mcsnum integer data type (the
MCS index loop variable for which the throughput is to be computed), the snr_subcarr
pointer to float data type (the SNR per subcarrier), and the snr_offset pointer to float data
type (the SNR offset value for each MCS). The snr2thr function receives the MCS index loop
variable and the array of subcarrier SNRs and calculates the MMI by summing up the MI of
subcarriers as to the current MCS loop variable. More specifically, through the conditional
statement the MCS values are distinguished according to the modulation schemes. Then,
each MI computation function corresponding to the distinguished modulation scheme is
decided as follows. As displayed in Figure 8, in case of BPSK (MCS 0), the snr2mi_bpsk
function is selected, and in case of QPSK (MCS 1 and 2), the snr2mi_qpsk function is
selected. For 16-QAM (MCS 3 and 4), the snr2mi_16qm function is picked up and for
64-QAM (MCS 5–7), the snr2mi_64qm function is chosen. The procedure of computing the
MI value from the corresponding function is reiterated over all the subcarriers and the MI
values are summed up. The total sum of the MI values are multiplied by the inverse of
the number of subcarriers, yielding the MMI, which is input to the mmi2thr function to
obtain the expected value of the throughput. This throughput value is the output of the
snr2thr function.

3.5. Functions snr2mi_bpsk, snr2mi_qpsk, snr2mi_16qm, and snr2mi_64qm

The input to the snr2mi_bpsk function is the snr float data type that is the SNR loop
variable per subcarrier, for which the MI is to be calculated. The snr2mi_bpsk function
receives the subcarrier SNR loop variable and computes the MI. To apply the BPSK SNR-to-
MI table, particularly at which location the current subcarrier SNR lies in the SNR axis of
the table is detected by using conditional statements. Here, a linear interpolation function,
interp, is employed to compute a more accurate MI value from the SNR lying between
two given entries on the SNR axis of the table. The interp function is briefly explained
in Section 3.7. The SNR-to-MI tables according to the modulation schemes are shown
in Figure 11.

Electronics 2021, 17, x FOR PEER REVIEW 14 of 29

of the table is detected by using conditional statements. Here, a linear interpolation func-
tion, interp, is employed to compute a more accurate MI value from the SNR lying be-
tween two given entries on the SNR axis of the table. The interp function is briefly ex-
plained in Section 3.7. The SNR-to-MI tables according to the modulation schemes are
shown in Figure 11.

In a similar fashion, the input to the snr2mi_qpsk function is the SNR loop variable
per subcarrier, for which the MI is calculated. This function computes the MI from the
single subcarrier SNR and the only difference from the snr2mi_bpsk is that a QPSK SNR-
to-MI table is applied rather than the BPSK SNR-to-MI table. The simple linear interpola-
tion function interp is employed here as well. How the MI value for each modulation
scheme was obtained from the SNR is provided in Appendix A in equations. Likewise,
the snr2mi_16qm function and the snr2mi_64qm function are constructed to behave as
desired.

Figure 11. SNR-to-MI tables for modulation schemes.

3.6. Function mmi2thr
The inputs to the mmi2thr function are the mcsnum integer data type (the MCS index

loop variable for which the throughput is obtained) and the mmi float data type (the MMI
as regards the MCS being calculated). The mmi2thr function receives the MCS index and
MMI and computes the expected value of the throughput. More specifically, first, in order
to apply the MMI-to-throughput table, the location of the current MMI input value on the
MMI axis is identified by using conditional statements. Then, linear interpolation (the in-
terp function) is employed to estimate the throughput value at an MMI value between
two predetermined MMI points on the x axis, and this throughput value is returned. The
MMI-to-throughput tables for MCS 0–7 are plotted in Figure 12.

Figure 11. SNR-to-MI tables for modulation schemes.

Electronics 2021, 10, 91 14 of 28

In a similar fashion, the input to the snr2mi_qpsk function is the SNR loop variable per
subcarrier, for which the MI is calculated. This function computes the MI from the single
subcarrier SNR and the only difference from the snr2mi_bpsk is that a QPSK SNR-to-MI
table is applied rather than the BPSK SNR-to-MI table. The simple linear interpolation
function interp is employed here as well. How the MI value for each modulation scheme
was obtained from the SNR is provided in Appendix A in equations. Likewise, the
snr2mi_16qm function and the snr2mi_64qm function are constructed to behave as desired.

3.6. Function mmi2thr

The inputs to the mmi2thr function are the mcsnum integer data type (the MCS
index loop variable for which the throughput is obtained) and the mmi float data type
(the MMI as regards the MCS being calculated). The mmi2thr function receives the MCS
index and MMI and computes the expected value of the throughput. More specifically,
first, in order to apply the MMI-to-throughput table, the location of the current MMI
input value on the MMI axis is identified by using conditional statements. Then, linear
interpolation (the interp function) is employed to estimate the throughput value at an MMI
value between two predetermined MMI points on the x axis, and this throughput value is
returned. The MMI-to-throughput tables for MCS 0–7 are plotted in Figure 12.

Electronics 2021, 17, x FOR PEER REVIEW 15 of 29

Figure 12. MMI-to-throughput tables for modulation schemes.

3.7. Function Interp
The inputs to the interp function are the y1 float data type (the y-axis value of table

variable 1), the y2 float data type (the y-axis value of the table variable 2), the dx_inv float
data type (the inverse of the interval between the x-axis values of table variable 1 and table
variable 2), and the a float data type (the difference between the x-axis value of the input
and the x-axis value of table variable 1). The interp function conducts linear interpolation
and the related operation is shown in Equation (12) with an example drawn in Figure 13.

2 13 (3 1) 1
2 1

(2 1) _ 1

y yy x x y
x x
y y dx inv a y

−= ⋅ − +
−

= − ⋅ ⋅ +

(12)

where dx_inv corresponds to the inverse of x2 − x1 and a corresponds to x3 − x1.

Figure 13. Linear interpolation.

4. Operating Speed of the Link Adaptation
4.1. Execution Time Breakdown and Analysis

Figure 14 shows the analysis of the internal functions of the firmware after repeating
APBLA before optimization. The experiments are made with the Xilinx Zynq 7020 pro-
grammable SoC chip that includes an embedded ARM Cortex A9 core running at 667
MHz. The timer (individual) column is obtained by measuring the execution time of each
internal function in the APBLA firmware by using platform-provided library functions.

Figure 12. MMI-to-throughput tables for modulation schemes.

3.7. Function Interp

The inputs to the interp function are the y1 float data type (the y-axis value of table
variable 1), the y2 float data type (the y-axis value of the table variable 2), the dx_inv float
data type (the inverse of the interval between the x-axis values of table variable 1 and table
variable 2), and the a float data type (the difference between the x-axis value of the input
and the x-axis value of table variable 1). The interp function conducts linear interpolation
and the related operation is shown in Equation (12) with an example drawn in Figure 13.

y3 = y2−y1
x2−x1 · (x3− x1) + y1

= (y2− y1) · dx_inv · a + y1
(12)

where dx_inv corresponds to the inverse of x2 − x1 and a corresponds to x3 − x1.

Electronics 2021, 10, 91 15 of 28

Electronics 2021, 17, x FOR PEER REVIEW 15 of 29

Figure 12. MMI-to-throughput tables for modulation schemes.

3.7. Function Interp
The inputs to the interp function are the y1 float data type (the y-axis value of table

variable 1), the y2 float data type (the y-axis value of the table variable 2), the dx_inv float
data type (the inverse of the interval between the x-axis values of table variable 1 and table
variable 2), and the a float data type (the difference between the x-axis value of the input
and the x-axis value of table variable 1). The interp function conducts linear interpolation
and the related operation is shown in Equation (12) with an example drawn in Figure 13.

2 13 (3 1) 1
2 1

(2 1) _ 1

y yy x x y
x x
y y dx inv a y

−= ⋅ − +
−

= − ⋅ ⋅ +

(12)

where dx_inv corresponds to the inverse of x2 − x1 and a corresponds to x3 − x1.

Figure 13. Linear interpolation.

4. Operating Speed of the Link Adaptation
4.1. Execution Time Breakdown and Analysis

Figure 14 shows the analysis of the internal functions of the firmware after repeating
APBLA before optimization. The experiments are made with the Xilinx Zynq 7020 pro-
grammable SoC chip that includes an embedded ARM Cortex A9 core running at 667
MHz. The timer (individual) column is obtained by measuring the execution time of each
internal function in the APBLA firmware by using platform-provided library functions.

Figure 13. Linear interpolation.

4. Operating Speed of the Link Adaptation
4.1. Execution Time Breakdown and Analysis

Figure 14 shows the analysis of the internal functions of the firmware after repeating
APBLA before optimization. The experiments are made with the Xilinx Zynq 7020 pro-
grammable SoC chip that includes an embedded ARM Cortex A9 core running at 667 MHz.
The timer (individual) column is obtained by measuring the execution time of each internal
function in the APBLA firmware by using platform-provided library functions. The timer
(overall) column is obtained by algebraically estimating the execution time according to
the number of function calls of the internal functions after measuring the execution time of
the overall APBLA. The measured values for the two means, timer (individual) and timer
(overall), are generally similar to each other.

Electronics 2021, 17, x FOR PEER REVIEW 16 of 29

The timer (overall) column is obtained by algebraically estimating the execution time ac-
cording to the number of function calls of the internal functions after measuring the exe-
cution time of the overall APBLA. The measured values for the two means, timer (indi-
vidual) and timer (overall), are generally similar to each other.

It is conjectured that although the experimental environment (e.g., performance of
the microprocessor unit, clock frequency, etc.,) of the SoC platform may be different than
the actual operating environment of link adaptation, the ratio of each function affecting
the overall execution time in the platform case will be similar to that in the actual link
adaptation case. The snr2mi_interp function occupies about half of the overall execution
time and the interp function with the snr2mi function is the next culprit concerning the
latency. Thus, these three functions are the targets for optimization as far as the link ad-
aptation firmware speed enhancement is concerned.

Figure 14. Execution time per packet for each function.

4.2. Execution Time Optimization
When the main time-consuming functions, snr2mi and interpolation functions, were

compared with the other functions in the firmware, little difference was found in terms of
the number of additions and multiplications but the number of conditional statements
and repetitive statements was much larger with the snr2mi and interpolation functions.

In case of the snr2mi function, this function was executed once per subcarrier and the
conditional statement execution regarding modulation scheme selection also occurred
every subcarrier. Therefore, the firmware has been modified and optimized such that the
conditional statement execution is not reiterated by the number of subcarriers but occurs
for only the MCS indices, leading to a much smaller number of conditional statements
executed. To achieve this, the snr2mi_interp function is made to exist for each of the four
modulation schemes and within each modulation scheme, the function execution is reit-
erated by the number of subcarriers to obtain the MI.

The snr2mi_interp function as well has repetitive statements (the for loops) other than
conditional statements. The repetitive statement execution is reiterated by the size of the
table and hence the reiteration count is a fixed number. Therefore, the repetitive state-
ments are removed and only the conditional statements are left for the sake of execution
time saving. Whenever the aforementioned two optimized functions that contribute to

Figure 14. Execution time per packet for each function.

It is conjectured that although the experimental environment (e.g., performance of
the microprocessor unit, clock frequency, etc.,) of the SoC platform may be different than
the actual operating environment of link adaptation, the ratio of each function affecting
the overall execution time in the platform case will be similar to that in the actual link

Electronics 2021, 10, 91 16 of 28

adaptation case. The snr2mi_interp function occupies about half of the overall execution
time and the interp function with the snr2mi function is the next culprit concerning the
latency. Thus, these three functions are the targets for optimization as far as the link
adaptation firmware speed enhancement is concerned.

4.2. Execution Time Optimization

When the main time-consuming functions, snr2mi and interpolation functions, were
compared with the other functions in the firmware, little difference was found in terms of
the number of additions and multiplications but the number of conditional statements and
repetitive statements was much larger with the snr2mi and interpolation functions.

In case of the snr2mi function, this function was executed once per subcarrier and
the conditional statement execution regarding modulation scheme selection also occurred
every subcarrier. Therefore, the firmware has been modified and optimized such that the
conditional statement execution is not reiterated by the number of subcarriers but occurs
for only the MCS indices, leading to a much smaller number of conditional statements
executed. To achieve this, the snr2mi_interp function is made to exist for each of the
four modulation schemes and within each modulation scheme, the function execution is
reiterated by the number of subcarriers to obtain the MI.

The snr2mi_interp function as well has repetitive statements (the for loops) other than
conditional statements. The repetitive statement execution is reiterated by the size of the
table and hence the reiteration count is a fixed number. Therefore, the repetitive statements
are removed and only the conditional statements are left for the sake of execution time
saving. Whenever the aforementioned two optimized functions that contribute to reducing
the execution time are executed, the interp functions are called, and hence in proportion
to the number of executions of the interp function, the execution time is reduced by a
large amount.

The execution time and ratio (in percentage) of each internal function and the total
execution time before and after the optimization are listed in Figure 15. It is shown that the
ratio of the execution time of each function is not altered a lot but the total execution time
after optimization shrunk to less than a half of the execution time before optimization.

Electronics 2021, 17, x FOR PEER REVIEW 17 of 29

reducing the execution time are executed, the interp functions are called, and hence in
proportion to the number of executions of the interp function, the execution time is re-
duced by a large amount.

The execution time and ratio (in percentage) of each internal function and the total
execution time before and after the optimization are listed in Figure 15. It is shown that
the ratio of the execution time of each function is not altered a lot but the total execution
time after optimization shrunk to less than a half of the execution time before optimiza-
tion.

Figure 15. Execution time and ratio of each function before and after optimization.

5. Performance Measurements and Wireless Tests of the Link Adaptation
5.1. Simulation

To identify the conditions for which the throughput gain of APBLA over ARF is guar-
anteed, simulation in a MATLAB environment is carried out according to packet trans-
mission intervals and Doppler frequencies. The simulation environment to identify the
throughput gain interval of APBLA relative to ARF is set up as drawn in Figure 16. Chan-
nel coefficients are first generated in MATLAB and sent to the TX as is whereas they are
sent to the RX with an SNR error. The reason for this is to express the SNR difference that
stems from the RF gain mismatch between the uplink and the downlink channels.
Through the MMI table error the disagreement is considered between the RX performance
assumed by APBLA and the actual performance. In summary, by means of the SNR error
and the MMI table error, the simulation environment is made closely akin to the actual
test environment. In case of ARF, link adaptation is applied every packet whereas in case
of APBLA, link adaptation is applied every 1 ms when the packet transmission interval is
less than 1 ms and it is applied every packet when the interval is longer than 1 ms. For
example, if the transmission interval is 0.1 ARFms, ARF is applied every packet but AP-
BLA is applied once every ten applications of ARF, in view of the operating speed of ARF
and APBLA. During the time when APBLA is not applied, the MCS value of the most
recently applied point in time is taken and sustained until the next applied time point.

Figure 15. Execution time and ratio of each function before and after optimization.

5. Performance Measurements and Wireless Tests of the Link Adaptation
5.1. Simulation

To identify the conditions for which the throughput gain of APBLA over ARF is
guaranteed, simulation in a MATLAB environment is carried out according to packet
transmission intervals and Doppler frequencies. The simulation environment to identify
the throughput gain interval of APBLA relative to ARF is set up as drawn in Figure 16.
Channel coefficients are first generated in MATLAB and sent to the TX as is whereas they

Electronics 2021, 10, 91 17 of 28

are sent to the RX with an SNR error. The reason for this is to express the SNR difference
that stems from the RF gain mismatch between the uplink and the downlink channels.
Through the MMI table error the disagreement is considered between the RX performance
assumed by APBLA and the actual performance. In summary, by means of the SNR error
and the MMI table error, the simulation environment is made closely akin to the actual
test environment. In case of ARF, link adaptation is applied every packet whereas in case
of APBLA, link adaptation is applied every 1 ms when the packet transmission interval
is less than 1 ms and it is applied every packet when the interval is longer than 1 ms. For
example, if the transmission interval is 0.1 ARFms, ARF is applied every packet but APBLA
is applied once every ten applications of ARF, in view of the operating speed of ARF and
APBLA. During the time when APBLA is not applied, the MCS value of the most recently
applied point in time is taken and sustained until the next applied time point.

Electronics 2021, 17, x FOR PEER REVIEW 18 of 29

Figure 16. Simulation setup to identify the throughput gain of APBLA vs. ARF.

Figure 17 plots the simulation results of the gain of APBLA against ARF. The x-axis
is the normalized Doppler frequency. For instance, if the packet transmission interval is 1
ms and Doppler frequency is 1 Hz, the normalized Doppler frequency is 1 m, which is
defined the product of the packet transmission interval and Doppler frequency. The y-axis
is the throughput that is measured from ACKs stochastically produced with respect to the
calculated PER in the RX model. The blue line is for ARF, the grey line for ILA, and the
red line for APBLA. Here, ILA means the link adaptation model where the most ideal
MCS is selected according to the received channel information. As the channel infor-
mation is acquired from the preamble of the previous packet, 1 packet delay is reflected
in any events. Three-tap Rayleigh fading is assumed as to MCS 0–7 in IEEE 802.11n. Also,
the MMI table errors corresponding to the left half of Figure 7 are considered. From Figure
17, it is identified that when the normalized Doppler frequency increases, the throughput
for ARF is heavily aggravated. On the other hand, the throughput for APBLA only mod-
estly deteriorates as the normalized Doppler frequency grows. When the throughput gain
of APBLA over ARF is maximized or equivalent when the normalized Doppler frequency
is 50 m (say, when the packet transmission interval is 10 ms for a 5 Hz Doppler frequency),
the ARF throughput is 24 Mbps and the APBLA throughput is 31 Mbps, yielding a
throughput gain of around 30% for APBLA against ARF.

Figure 16. Simulation setup to identify the throughput gain of APBLA vs. ARF.

Figure 17 plots the simulation results of the gain of APBLA against ARF. The x-axis
is the normalized Doppler frequency. For instance, if the packet transmission interval is
1 ms and Doppler frequency is 1 Hz, the normalized Doppler frequency is 1 m, which is
defined the product of the packet transmission interval and Doppler frequency. The y-axis
is the throughput that is measured from ACKs stochastically produced with respect to
the calculated PER in the RX model. The blue line is for ARF, the grey line for ILA, and
the red line for APBLA. Here, ILA means the link adaptation model where the most ideal
MCS is selected according to the received channel information. As the channel information
is acquired from the preamble of the previous packet, 1 packet delay is reflected in any
events. Three-tap Rayleigh fading is assumed as to MCS 0–7 in IEEE 802.11n. Also, the
MMI table errors corresponding to the left half of Figure 7 are considered. From Figure 17,
it is identified that when the normalized Doppler frequency increases, the throughput for
ARF is heavily aggravated. On the other hand, the throughput for APBLA only modestly
deteriorates as the normalized Doppler frequency grows. When the throughput gain of
APBLA over ARF is maximized or equivalent when the normalized Doppler frequency is
50 m (say, when the packet transmission interval is 10 ms for a 5 Hz Doppler frequency), the
ARF throughput is 24 Mbps and the APBLA throughput is 31 Mbps, yielding a throughput
gain of around 30% for APBLA against ARF.

Electronics 2021, 10, 91 18 of 28

Electronics 2021, 17, x FOR PEER REVIEW 18 of 29

Figure 16. Simulation setup to identify the throughput gain of APBLA vs. ARF.

Figure 17 plots the simulation results of the gain of APBLA against ARF. The x-axis
is the normalized Doppler frequency. For instance, if the packet transmission interval is 1
ms and Doppler frequency is 1 Hz, the normalized Doppler frequency is 1 m, which is
defined the product of the packet transmission interval and Doppler frequency. The y-axis
is the throughput that is measured from ACKs stochastically produced with respect to the
calculated PER in the RX model. The blue line is for ARF, the grey line for ILA, and the
red line for APBLA. Here, ILA means the link adaptation model where the most ideal
MCS is selected according to the received channel information. As the channel infor-
mation is acquired from the preamble of the previous packet, 1 packet delay is reflected
in any events. Three-tap Rayleigh fading is assumed as to MCS 0–7 in IEEE 802.11n. Also,
the MMI table errors corresponding to the left half of Figure 7 are considered. From Figure
17, it is identified that when the normalized Doppler frequency increases, the throughput
for ARF is heavily aggravated. On the other hand, the throughput for APBLA only mod-
estly deteriorates as the normalized Doppler frequency grows. When the throughput gain
of APBLA over ARF is maximized or equivalent when the normalized Doppler frequency
is 50 m (say, when the packet transmission interval is 10 ms for a 5 Hz Doppler frequency),
the ARF throughput is 24 Mbps and the APBLA throughput is 31 Mbps, yielding a
throughput gain of around 30% for APBLA against ARF.

Figure 17. APBLA vs. ARF throughput simulation results.

To identify the conditions to obtain the throughput gain of APBLA over ARF in terms
of Doppler frequency and the transmission interval, simulation is carried out with the
MMI table errors maximized as in the left half of Figure 18 and also with the worst case
of no compensation assumed (in practice, the MMI table errors will be smaller, which
can be partly compensated for by the SNR offsets, and hence the actual throughput gain
is predicted to be larger). Except for the MMI table errors considered, the simulation
environment is identical to that for obtaining Figure 17. One-tap and three-tap Rayleigh
fading is assumed. Figure 18 represents the MMI-to-throughput tables with (left) and
without (right) the MMI table errors. Since the curves on the left half of Figure 18 are
shifted right or left individually, it is hard to compensate for the errors even with the SNR
offsets, in which case the impact of the MMI table errors will be severe. Hereafter, the
simulation environment is set up assuming that the MCS is determined by using the left
half of Figure 18.

Electronics 2021, 17, x FOR PEER REVIEW 19 of 29

Figure 17. APBLA vs. ARF throughput simulation results.

To identify the conditions to obtain the throughput gain of APBLA over ARF in terms
of Doppler frequency and the transmission interval, simulation is carried out with the
MMI table errors maximized as in the left half of Figure 18 and also with the worst case of
no compensation assumed (in practice, the MMI table errors will be smaller, which can be
partly compensated for by the SNR offsets, and hence the actual throughput gain is pre-
dicted to be larger). Except for the MMI table errors considered, the simulation environ-
ment is identical to that for obtaining Figure 17. One-tap and three-tap Rayleigh fading is
assumed. Figure 18 represents the MMI-to-throughput tables with (left) and without
(right) the MMI table errors. Since the curves on the left half of Figure 18 are shifted right
or left individually, it is hard to compensate for the errors even with the SNR offsets, in
which case the impact of the MMI table errors will be severe. Hereafter, the simulation
environment is set up assuming that the MCS is determined by using the left half of Figure
18.

Figure 18. Shifted (left) and standard (right) MMI-to-throughput tables.

The throughput gain of APBLA versus ARF for a 1-tap channel is plotted in Figure
19 as a function of the ARF packet transmission interval. As Doppler frequency grows
from 2.5 Hz to 10 Hz, the throughput gain curves are shifted left, from which it follows
that the APBLA-vs-ARF throughput gain for a 1-tap channel is up to 46% over 10 m–250
m of the normalized Doppler frequency (which is the product of Doppler frequency and
the packet transmission interval).

Figure 18. Shifted (left) and standard (right) MMI-to-throughput tables.

The throughput gain of APBLA versus ARF for a 1-tap channel is plotted in Figure 19
as a function of the ARF packet transmission interval. As Doppler frequency grows from
2.5 Hz to 10 Hz, the throughput gain curves are shifted left, from which it follows that the
APBLA-vs-ARF throughput gain for a 1-tap channel is up to 46% over 10 m–250 m of the

Electronics 2021, 10, 91 19 of 28

normalized Doppler frequency (which is the product of Doppler frequency and the packet
transmission interval).

Electronics 2021, 17, x FOR PEER REVIEW 20 of 29

Figure 19. Throughput gain of APBLA relative to ARF as a function of the packet transmission
interval over some Doppler frequencies (1-tap channel).

The throughput gain of APBLA relative to ARF is plotted in Figure 20 for a 3-tap
channel (where it is assumed that the first three taps have a uniform power-delay profile)
as a function of the ARF packet transmission interval. The gain has significantly reduced
and the range that the gain can be acquired has also reduced, compared with that for the
1-tap channel, but the general property that the throughput gain is limited to a specific
range of the normalized Doppler frequency is maintained. Similarly to the 1-tap channel
case, as Doppler frequency grows, the range where the gain of APBLA over ARF occurs
is shifted to the left. The gain of APBLA over ARF for a 3-tap channel manifests itself up
to 15% over 16 m–160 m of the normalized Doppler frequency.

Figure 20. Throughput gain of APBLA relative to ARF as a function of the packet transmission
interval over some Doppler frequencies (3-tap channel).

Figure 19. Throughput gain of APBLA relative to ARF as a function of the packet transmission
interval over some Doppler frequencies (1-tap channel).

The throughput gain of APBLA relative to ARF is plotted in Figure 20 for a 3-tap
channel (where it is assumed that the first three taps have a uniform power-delay profile)
as a function of the ARF packet transmission interval. The gain has significantly reduced
and the range that the gain can be acquired has also reduced, compared with that for the
1-tap channel, but the general property that the throughput gain is limited to a specific
range of the normalized Doppler frequency is maintained. Similarly to the 1-tap channel
case, as Doppler frequency grows, the range where the gain of APBLA over ARF occurs is
shifted to the left. The gain of APBLA over ARF for a 3-tap channel manifests itself up to
15% over 16 m–160 m of the normalized Doppler frequency.

Electronics 2021, 17, x FOR PEER REVIEW 20 of 29

Figure 19. Throughput gain of APBLA relative to ARF as a function of the packet transmission
interval over some Doppler frequencies (1-tap channel).

The throughput gain of APBLA relative to ARF is plotted in Figure 20 for a 3-tap
channel (where it is assumed that the first three taps have a uniform power-delay profile)
as a function of the ARF packet transmission interval. The gain has significantly reduced
and the range that the gain can be acquired has also reduced, compared with that for the
1-tap channel, but the general property that the throughput gain is limited to a specific
range of the normalized Doppler frequency is maintained. Similarly to the 1-tap channel
case, as Doppler frequency grows, the range where the gain of APBLA over ARF occurs
is shifted to the left. The gain of APBLA over ARF for a 3-tap channel manifests itself up
to 15% over 16 m–160 m of the normalized Doppler frequency.

Figure 20. Throughput gain of APBLA relative to ARF as a function of the packet transmission
interval over some Doppler frequencies (3-tap channel).
Figure 20. Throughput gain of APBLA relative to ARF as a function of the packet transmission
interval over some Doppler frequencies (3-tap channel).

Electronics 2021, 10, 91 20 of 28

In turn, given that the packet transmission interval is fixed and Doppler frequency is
varied, the throughput gain of APBLA against ARF is plotted in Figure 21, which exhibits
to what degree the transmission interval should be, according to Doppler frequency, when
a throughput gain is expected. To summarize, with a 1-tap (3-tap) channel, the throughput
gain of APBLA vs. ARF is at its maximum of 46% (15%) when the normalized Doppler
frequency range is about 10 m–250 m (16 m–160 m). When the packet transmission interval
is less than 1 ms, the throughput gain of APBLA over ARF can be expected only if Doppler
frequency is over 100 Hz–1000 Hz. The throughput gain of APBLA relative to ARF can be
maximized if the normalized Doppler frequency is about 50 m and the packet transmission
interval is greater than 1 ms.

Electronics 2021, 17, x FOR PEER REVIEW 21 of 29

In turn, given that the packet transmission interval is fixed and Doppler frequency is
varied, the throughput gain of APBLA against ARF is plotted in Figure 21, which exhibits
to what degree the transmission interval should be, according to Doppler frequency, when
a throughput gain is expected. To summarize, with a 1-tap (3-tap) channel, the throughput
gain of APBLA vs. ARF is at its maximum of 46% (15%) when the normalized Doppler
frequency range is about 10 m–250 m (16 m–160 m). When the packet transmission inter-
val is less than 1 ms, the throughput gain of APBLA over ARF can be expected only if
Doppler frequency is over 100 Hz–1000 Hz. The throughput gain of APBLA relative to
ARF can be maximized if the normalized Doppler frequency is about 50 m and the packet
transmission interval is greater than 1 ms.

Figure 21. Throughput gain of APBLA vs. ARF as a function of Doppler frequency over various packet transmission in-
tervals, assuming a 1-tap channel (left) and a 3-tap channel (right).

5.2. Wireless Tests
Figure 22 shows the parameters used in the wireless tests (T0–T5) of the link adapta-

tion firmware which includes the three algorithms, ARF, APBLA, and ARF + APBLA (i.e.,
initially ARF to compensate for the SNR mismatch and later converted to APBLA). An
initial value of −20 dB is given as the SNR offset to compensate for the SNR mismatch due
to the RF gain difference between the uplink and the downlink, in view of the channel
coefficients that the firmware receives. The update step (NACK) column denotes to which
extent the SNR offset is updated whenever a NACK is assumed to have occurred. On the
other hand, whenever an ACK has occurred, the update step is set to a positive value with
a magnitude of one tenth the update step value for a NACK. The coarse and fine update
step values in case of NACK and ACK were explained previously in Section 3.3. The SNR
offset and the update step values are needed in APBLA and not in ARF.

Figure 21. Throughput gain of APBLA vs. ARF as a function of Doppler frequency over various packet transmission
intervals, assuming a 1-tap channel (left) and a 3-tap channel (right).

5.2. Wireless Tests

Figure 22 shows the parameters used in the wireless tests (T0–T5) of the link adaptation
firmware which includes the three algorithms, ARF, APBLA, and ARF + APBLA (i.e.,
initially ARF to compensate for the SNR mismatch and later converted to APBLA). An
initial value of −20 dB is given as the SNR offset to compensate for the SNR mismatch
due to the RF gain difference between the uplink and the downlink, in view of the channel
coefficients that the firmware receives. The update step (NACK) column denotes to which
extent the SNR offset is updated whenever a NACK is assumed to have occurred. On the
other hand, whenever an ACK has occurred, the update step is set to a positive value with
a magnitude of one tenth the update step value for a NACK. The coarse and fine update
step values in case of NACK and ACK were explained previously in Section 3.3. The SNR
offset and the update step values are needed in APBLA and not in ARF.

The SNR offset variation with time when APBLA is applied in the T3 test environment
is plotted in Figure 23. For the first 2k packets NACKs occur heavily and hence the SNR
offset drops rapidly from −20 dB to −40 dB. Then as the SNR offset approaches near the
expected value, one of the two means, coarse tuning and fine tuning, is selected and the
update step is altered accordingly. Most of the wireless tests have the SNR offset reach
the −45 dB to −40 dB range. The throughput measurement thereafter is conducted in the
2k-th to 10k-th packet range in which the SNR offset is relatively stabilized.

Electronics 2021, 10, 91 21 of 28
Electronics 2021, 17, x FOR PEER REVIEW 22 of 29

Figure 22. Firmware and parameters used for the wireless tests.

The SNR offset variation with time when APBLA is applied in the T3 test environ-
ment is plotted in Figure 23. For the first 2k packets NACKs occur heavily and hence the
SNR offset drops rapidly from −20 dB to −40 dB. Then as the SNR offset approaches near
the expected value, one of the two means, coarse tuning and fine tuning, is selected and
the update step is altered accordingly. Most of the wireless tests have the SNR offset reach
the −45 dB to −40 dB range. The throughput measurement thereafter is conducted in the
2k-th to 10k-th packet range in which the SNR offset is relatively stabilized.

Figure 23. SNR offset variation over time in case of APBLA only (test T3).

Figure 24 displays how the SNR offset varies with time in the T5 test environment,
in which ARF is initially applied to amend the SNR offset and subsequently the algorithm
is converted to APBLA. The first 5k packets are taken to be applied to ARF in this test.
Compared with APBLA in Figure 23, ARF + APBLA has its SNR offset converge to the
expected range more quickly.

Figure 22. Firmware and parameters used for the wireless tests.

Electronics 2021, 17, x FOR PEER REVIEW 22 of 29

Figure 22. Firmware and parameters used for the wireless tests.

The SNR offset variation with time when APBLA is applied in the T3 test environ-
ment is plotted in Figure 23. For the first 2k packets NACKs occur heavily and hence the
SNR offset drops rapidly from −20 dB to −40 dB. Then as the SNR offset approaches near
the expected value, one of the two means, coarse tuning and fine tuning, is selected and
the update step is altered accordingly. Most of the wireless tests have the SNR offset reach
the −45 dB to −40 dB range. The throughput measurement thereafter is conducted in the
2k-th to 10k-th packet range in which the SNR offset is relatively stabilized.

Figure 23. SNR offset variation over time in case of APBLA only (test T3).

Figure 24 displays how the SNR offset varies with time in the T5 test environment,
in which ARF is initially applied to amend the SNR offset and subsequently the algorithm
is converted to APBLA. The first 5k packets are taken to be applied to ARF in this test.
Compared with APBLA in Figure 23, ARF + APBLA has its SNR offset converge to the
expected range more quickly.

Figure 23. SNR offset variation over time in case of APBLA only (test T3).

Figure 24 displays how the SNR offset varies with time in the T5 test environment, in
which ARF is initially applied to amend the SNR offset and subsequently the algorithm
is converted to APBLA. The first 5k packets are taken to be applied to ARF in this test.
Compared with APBLA in Figure 23, ARF + APBLA has its SNR offset converge to the
expected range more quickly.

Electronics 2021, 10, 91 22 of 28Electronics 2021, 17, x FOR PEER REVIEW 23 of 29

Figure 24. SNR offset variation with time for ARF + APBLA (test T5).

Measurement results are analyzed by exploiting the channel information from the
wireless tests. In Figure 25, the channel quality (left) and MCS variations (right) with time
are plotted in the T1 test environment (ARF only). The MCS selected by ARF goes up and
down repeatedly and quickly and hence it is inferred that the width of the channel varia-
tion will be large, which may also be identified in the left half of Figure 25 that shows the
channel quality variation over time.

Figure 25. T1 channel quality and ARF MCS variations as a function of time.

In Figure 26, the channel quality (left) and MCS variations (right) with time are plot-
ted in the T5 test environment (ARF + APBLA) where initially ARF is applied to amend
the SNR offset and subsequently APBLA substitutes ARF. It is shown that during the ARF
period, a host of NACKs occur and ARF lowers the MCS index at a fast pace. The first 5k
packets are used to amend the SNR offset and then APBLA supplants ARF, leading to
stabilized MCS selection. Then, as the channel quality improves, higher MCS indices are

Figure 24. SNR offset variation with time for ARF + APBLA (test T5).

Measurement results are analyzed by exploiting the channel information from the
wireless tests. In Figure 25, the channel quality (left) and MCS variations (right) with time
are plotted in the T1 test environment (ARF only). The MCS selected by ARF goes up
and down repeatedly and quickly and hence it is inferred that the width of the channel
variation will be large, which may also be identified in the left half of Figure 25 that shows
the channel quality variation over time.

Electronics 2021, 17, x FOR PEER REVIEW 23 of 29

Figure 24. SNR offset variation with time for ARF + APBLA (test T5).

Measurement results are analyzed by exploiting the channel information from the
wireless tests. In Figure 25, the channel quality (left) and MCS variations (right) with time
are plotted in the T1 test environment (ARF only). The MCS selected by ARF goes up and
down repeatedly and quickly and hence it is inferred that the width of the channel varia-
tion will be large, which may also be identified in the left half of Figure 25 that shows the
channel quality variation over time.

Figure 25. T1 channel quality and ARF MCS variations as a function of time.

In Figure 26, the channel quality (left) and MCS variations (right) with time are plot-
ted in the T5 test environment (ARF + APBLA) where initially ARF is applied to amend
the SNR offset and subsequently APBLA substitutes ARF. It is shown that during the ARF
period, a host of NACKs occur and ARF lowers the MCS index at a fast pace. The first 5k
packets are used to amend the SNR offset and then APBLA supplants ARF, leading to
stabilized MCS selection. Then, as the channel quality improves, higher MCS indices are

Figure 25. T1 channel quality and ARF MCS variations as a function of time.

Electronics 2021, 10, 91 23 of 28

In Figure 26, the channel quality (left) and MCS variations (right) with time are plotted
in the T5 test environment (ARF + APBLA) where initially ARF is applied to amend the
SNR offset and subsequently APBLA substitutes ARF. It is shown that during the ARF
period, a host of NACKs occur and ARF lowers the MCS index at a fast pace. The first
5k packets are used to amend the SNR offset and then APBLA supplants ARF, leading to
stabilized MCS selection. Then, as the channel quality improves, higher MCS indices are
selected. The channel quality fluctuation in this test case is not uniform, which adversely
impacts the MCS selection by APBLA.

Electronics 2021, 17, x FOR PEER REVIEW 24 of 29

selected. The channel quality fluctuation in this test case is not uniform, which adversely
impacts the MCS selection by APBLA.

Figure 26. T5 channel quality and (ARF + APBLA) MCS variations as a function of time.

6. Discussion and Conclusions
Link adaptation or rate adaptation is still under active research in various fields. An

enhanced outer-loop link adaptation algorithm based on cyclic redundancy code and CSI
is proposed [36], coding and modulation formats are adjusted according to the state of the
optical link [37], rate is adapted in spatial modulation [38], adaptive modulation and cod-
ing is applied in a cognitive radio [39], link is adaptively adjusted in mobile satellite links
[40], and link is adapted in 5G cellular networks and LTE Advanced [41–43]. In [44],
MIMO mode, channel bonding, and frame aggregation level are adjusted together with
modulation coding scheme in a holistic manner.

As was demonstrated from the wireless tests in Section 5, the proposed firmware
achieves fast link rate adaptation, when compared with ARF and ideal link adaptation,
and is amenable to potential upgrades and changes in a flexible and swift manner. The
throughput gain of the proposed algorithm over ARF is 46% (15%) for a 1-tap (3-tap) chan-
nel over 10 m–250 m (16 m–160 m) normalized Doppler frequencies. For a 3-tap channel
and 30 m–50 m normalized Doppler frequencies, the throughput of the proposed algo-
rithm is about 31 Mbps, all but the same as that of ideal link adaptation, whereas the
throughput of ARF is about 24 Mbps, leading to a 30% throughput gain of the proposed
algorithm over ARF.

Table 2 lists the simulated results of APBLA, PBLA, and ARF, together with theoret-
ical maximum rates, in the presence of MMI-to-PER mapping table errors. The theoretical
maximum rate means the data rate of ILA, namely, the throughput achieved when the
optimal MCS is always selected with respect to a given channel and hence no LA can
achieve a better throughput than this throughput. PBLA is similar to FLA in [26] in its
operating principle and since the mapping table is fixed, the error is not overcome and the
throughput shows a large degradation, which is much inferior to that with ARF. Slow
fading (at 1 m of normalized Doppler) is the optimal environment for ARF whereas fast
fading (at over 5 m) is the optimal environment for APBLA, which is consistent with the
remarks in other literatures. APBLA always accomplishes more than 94% of the theoreti-
cal maximum rate, irrespective of Doppler, on condition that the ACK offset is set appro-
priately. If the offset is set overly small, LA is unable to follow the channel variation or
unable to compensate for the mapping table error whereas if set overly large, deviation

Figure 26. T5 channel quality and (ARF + APBLA) MCS variations as a function of time.

6. Discussion and Conclusions

Link adaptation or rate adaptation is still under active research in various fields. An
enhanced outer-loop link adaptation algorithm based on cyclic redundancy code and CSI
is proposed [36], coding and modulation formats are adjusted according to the state of
the optical link [37], rate is adapted in spatial modulation [38], adaptive modulation and
coding is applied in a cognitive radio [39], link is adaptively adjusted in mobile satellite
links [40], and link is adapted in 5G cellular networks and LTE Advanced [41–43]. In [44],
MIMO mode, channel bonding, and frame aggregation level are adjusted together with
modulation coding scheme in a holistic manner.

As was demonstrated from the wireless tests in Section 5, the proposed firmware
achieves fast link rate adaptation, when compared with ARF and ideal link adaptation,
and is amenable to potential upgrades and changes in a flexible and swift manner. The
throughput gain of the proposed algorithm over ARF is 46% (15%) for a 1-tap (3-tap)
channel over 10 m–250 m (16 m–160 m) normalized Doppler frequencies. For a 3-tap
channel and 30 m–50 m normalized Doppler frequencies, the throughput of the proposed
algorithm is about 31 Mbps, all but the same as that of ideal link adaptation, whereas the
throughput of ARF is about 24 Mbps, leading to a 30% throughput gain of the proposed
algorithm over ARF.

Table 2 lists the simulated results of APBLA, PBLA, and ARF, together with theoretical
maximum rates, in the presence of MMI-to-PER mapping table errors. The theoretical
maximum rate means the data rate of ILA, namely, the throughput achieved when the
optimal MCS is always selected with respect to a given channel and hence no LA can
achieve a better throughput than this throughput. PBLA is similar to FLA in [26] in its
operating principle and since the mapping table is fixed, the error is not overcome and
the throughput shows a large degradation, which is much inferior to that with ARF. Slow
fading (at 1 m of normalized Doppler) is the optimal environment for ARF whereas fast

Electronics 2021, 10, 91 24 of 28

fading (at over 5 m) is the optimal environment for APBLA, which is consistent with the
remarks in other literatures. APBLA always accomplishes more than 94% of the theoretical
maximum rate, irrespective of Doppler, on condition that the ACK offset is set appropriately.
If the offset is set overly small, LA is unable to follow the channel variation or unable to
compensate for the mapping table error whereas if set overly large, deviation from the
mapping table will be severe. As is shown, the ACK offset is generally set small for slow
fading and large for fast fading.

Table 2. Performance comparison table.

Throughput [Mbps] (Normalized Rate)
Normalized Doppler

1 m 5 m 10 m 30 m

ARF
(Normalized Rate)

32
(0.94)

31
(0.90)

28
(0.82)

24
(0.70)

PBLA
(Normalized Rate)

15.0
(0.44)

17.7
(0.51)

18.3
(0.54)

18.1
(0.53)

APBLA
(Normalized Rate)

ACK offset (dB)
0.01

32
(0.94)

32.3
(0.94)

32.1
(0.94)

32.2
(0.94)

ACK offset (dB)
0.03

31.3
(0.92)

32.6
(0.95)

32.5
(0.95)

32.8
(0.96)

ACK offset (dB)
0.1

22.1
(0.65)

26.8
(0.78)

27.7
(0.81)

30.6
(0.89)

ACK offset (dB)
0.3

15.8
(0.46)

19.0
(0.55)

19.5
(0.57)

21.0
(0.61)

Theoretical max. rate
(Normalized rate)

34.0
(1.00)

34.4
(1.00)

34.1
(1.00)

34.3
(1.00)

LA techniques to date are compared with one another in Table 3, in terms of per-
formance and complexity. The LA inputs may be ACK/NACK or CSI but in some cases
the cyclic redundancy code (CRC) or the log-likelihood ratio (LLR). Lots of means exist
to quantify the channel quality, called link quality metrics (LQMs), but among them, MI
calculated from subcarrier SNRs is generally known to be the most accurate LQM especially
in coded MIMO-OFDM. The mapping table used by the LQM needs some compensation
to reflect the discrepancy between two individual receivers (since different receivers will
exhibit different PERs under the same MMI) or between uplink and downlink SNRs. If
the mapping is adaptive rather than fixed, then the corresponding LA will be more robust
to the mapping table error. Moreover, the LA with adaptive mapping can keep track of
the channel variation more favorably. Most of the techniques in Table 3 are based on fixed
mapping, leading to considerable performance degradations, similar to the degradation
with PBLA in Table 2. Since ARF in [5] and SampleRate in [10] do not compute a separate
LQM, the computational complexity is considerably low but both of them are vulnerable
to fast fading owing to the fact that the optimal MCS is found by means of trial and error
on the ACK/NACK basis. For example, [45] showed that SampleRate in [10] achieved a
much lower throughput than the LA based on the effective SNR LQM. The proposed LA
algorithm in our paper is based on the most accurate LQM, subcarrier SNR—MI, and also
based on the adaptive mapping such that the algorithm is robust to mapping table errors
and channel variations. Furthermore, it can attain above 94% of the theoretical max rate
under fast fading as well, as was previously underscored in Table 2.

Electronics 2021, 10, 91 25 of 28

Table 3. Comparison of this work and selected other works.

ARF [5] FLA [26] Sample-Rate
[10]

Soft Rate
[46]

eOLLA
[36]

TSRA
[30]

ESNR
[45] This Work

LA Input ACK/NACK CSI ACK/NACK LLR CRC, CSI CSI CSI ACK/NACK,
CSI

LQM
calcu-
lation

Input - Subcarrier
SNR - LLR Subcarrier

SNR
Subcarrier

SNR
Subcarrier

SNR
Subcarrier

SNR

Output - MI - BER Average
SNR BER Effective

SNR MI

Mapping - Fixed - Fixed Adaptive Fixed Fixed Adaptive

Mapping error
Sensitivity - High - High Medium High High Low

Channel
variation

sensitivity
Medium High Medium High Low High High Low

Computational
complexity Very low Medium Very low Medium Medium Medium Medium Medium-to-

high

The proposed algorithm, APBLA, is associated with rate adjustment through the
modulation and coding scheme. Power control and antenna selection in MIMO are not
associated since the target system assumed is a 1 × 1 wireless local area network chip with
no null data packet or sounding.

A fast link adaptation algorithm to maximize the throughput with preamble-based
MMI calculation supplemented by the ACK mechanism to adaptively adjust the SNR offset
is proposed, simulated, implemented, and tested in this paper. As additional remarks,
the requirements imposed on the RF chain to guarantee the throughput gain of APBLA
compared with ARF are that the RX RF chain should exhibit little RF gain variation from
packet to packet, and also the SNR mismatch from the RF gain mismatch between the TX
RF and the RX RF should be all but time invariant, albeit this mismatch between TX and
RX can be compensated for by means of the SNR offset employed by APBLA.

Author Contributions: Conceptualization, C.S.P.; data curation, S.P.; formal analysis, S.P.; funding
acquisition, C.S.P.; investigation, S.P.; methodology, S.P.; project administration, C.S.P.; resources,
S.P.; software, C.S.P.; supervision, S.P.; validation, C.S.P.; visualization, C.S.P.; writing—original
draft preparation, C.S.P.; writing—review and editing, S.P. All authors have read and agreed to the
published version of the manuscript.

Funding: This paper was supported by Konkuk University in 2018.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The SNR-to-MI equations, IM(γ), as a function of SNR γ, mentioned in Sections 2 and 3.5,
are listed in Table A1. IM is the MI per symbol. The equations are different for different
modulation schemes and are expressed in terms of J(x), listed in Table A2, depending on
the condition of x. The coefficients which constitute J(x) are listed in Table A3.

Electronics 2021, 10, 91 26 of 28

Table A1. SNR-to-MI equations in terms of J(x).

Modulation IM(γ)

BPSK J(
√

8γ)
QPSK J(

√
4γ)

16-QAM 0.5 J(0.8818
√

γ) + 0.25 J(1.6764
√

γ) + 0.25 J(0.9316
√

γ)
64-QAM 0.333 J(1.1233

√
γ) + 0.333 J(0.4381

√
γ) + 0.333 J(0.4765

√
γ)

Table A2. J(x) used in IM(γ).

J(x) Condition

a1x3 + b1x2 + c1x 0 < x < 1.6363
1 − exp(a2x3 + b2x2 + c2x + d2) 1.63633 ≤ x < ∞

Table A3. Coefficient values of J(x).

Coefficient Value Coefficient Value

a1 −0.0421061 c1 −0.00640081
a2 0.00181491 c2 −0.08220540
b1 0.209252 d2 −0.08220540
b2 −0.142675 - -

References
1. Karmakar, R.; Chattopadhyay, S.; Chakraborty, S. Dynamic link adaptation for high throughput wireless access networks.

In Proceedings of the IEEE International Conference Advanced Networks and Telecommunication Systems, Kolkata, India,
15–18 December 2015.

2. Xia, Q.; Hamdi, M.; Ben Letaief, K. Open-Loop Link Adaptation for Next-Generation IEEE 802.11n Wireless Networks. IEEE
Trans. Veh. Technol. 2009, 58, 3713–3725.

3. Xia, Q.; Pu, J.; Hamdi, M.; Ben Letaief, K. Practical and efficient open-loop rate/link adaptation algorithm for high-speed IEEE
802.11n WLANs. In Proceedings of the 2009 IEEE Symposium on Computers and Communications, Sousse, Tunisia, 5–8 July
2009; pp. 661–666. [CrossRef]

4. Zhu, H.J.; Kidston, D. The Impact of Link Adaptation on Wifi 802.11N. In Proceedings of the 2016 IEEE International Conference
on Networking, Architecture and Storage (NAS), Long Beach, CA, USA, 8–10 August 2016; pp. 1–5. [CrossRef]

5. Kamerman, A.; Monteban, L. WaveLAN-II: A high-performance wireless LAN for the unlicensed band. Bell. Labs Tech. J. 1997, 2,
118–133. [CrossRef]

6. Chevillat, P.; Jelitto, J.; Barreto, A.N.; Truong, H. A dynamic link adaptation algorithm for IEEE 802.11 a wireless LANs. In
Proceedings of the IEEE International Conference on Communications, Anchorage, AK, USA, 11–15 May 2003; pp. 1141–1145.

7. Lacage, M.; Manshaei, M.H.; Turletti, T. IEEE 802.11 rate adaptation: A practical approach. In Proceedings of the Seventh ACM
International Symposium Modeling, Analysis and Simulation of Wireless and Mobile Systems, Venice, Italy, 4–6 October 2004.

8. Onoe Rate Control. Available online: http://sourceforge.net/projects/madwifi (accessed on 5 October 2019).
9. Qiao, D.; Choi, S. Fast-responsive link adaptation for IEEE 802.11 WLANs. In Proceedings of the IEEE International Conference

on Communications, Seoul, Korea, 16–20 May 2005; pp. 3583–3588.
10. Bicket, J. Bit-Rate Selection in Wireless Networks. Master’s Thesis, MIT, Cambridge, MA, USA, 2005.
11. Pang, Q.; Leung, V.C.M.; Liew, S.C. A rate adaptation algorithm for IEEE 802.11 WLANs based on MAC-layer loss differentiation.

In Proceedings of the 2nd International Conference on Broadband Networks, Boston, MA, USA, 7 October 2005; pp. 709–717.
12. Pocovi, G.; Pedersen, K.I.; Mogensen, P. Joint link adaptation and scheduling for 5G ultra-reliable low-latency communications.

IEEE Access 2018, 6, 28912–28922. [CrossRef]
13. Kim, J.; Kim, S.; Choi, S.; Qiao, D. CARA: Collision-Aware Rate Adaptation for IEEE 802.11 WLANs. In Proceedings of the

IEEE INFOCOM 2006, 25th IEEE International Conference on Computer Communications, Barcelona, Spain, 23–29 April 2006;
pp. 1–11.

14. Wong, S.H.Y.; Lu, S.; Yang, H.; Bharghavan, V. Robust rate adaptation for 802.11 wireless networks. In Proceedings of the 12th
Annual International Conference on Mobile Systems, Applications, and Services, Los Angeles, CA, USA, 12–16 September 2006;
pp. 146–157.

15. Joshi, T.; Ahuja, D.; Singh, D.; Agrawal, D. SARA: Stochastic Automata Rate Adaptation for IEEE 802.11 Networks. IEEE Trans.
Parallel Distrib. Syst. 2008, 19, 1579–1590. [CrossRef]

http://doi.org/10.1109/iscc.2009.5202283
http://doi.org/10.1109/nas.2016.7549424
http://doi.org/10.1002/bltj.2069
http://sourceforge.net/projects/madwifi
http://doi.org/10.1109/ACCESS.2018.2838585
http://doi.org/10.1109/TPDS.2007.70814

Electronics 2021, 10, 91 27 of 28

16. Rong, Y.; Teymorian, A.Y.; Ma, L.; Cheng, X.; Choi, H.-A. A novel rate adaptation scheme for 802.11 networks. IEEE Trans. Wirel.
Commun. 2009, 8, 862–870. [CrossRef]

17. Holland, G.; Vaidya, N.; Bahl, P. A rate-adaptive MAC protocol for multi-Hop wireless networks. In Proceedings of the 7th Annual
International Conference on Mobile Computing and Networking—MobiCom ′01, Rome, Italy, 16–21 July 2001; pp. 236–251.

18. Simoens, S.; Bartolome, D. Optimum performance of link adaptation in HIPERLAN/2 system. In Proceedings of the IEEE VTS
53rd Vehicular Technology Conference, Rhodes, Greece, 6–9 May 2001; pp. 1129–1133.

19. Qiao, D.; Choi, S. Goodput enhancement of IEEE 802.11a wireless LAN via link adaptation. In Proceedings of the ICC 2001 IEEE
International Conference on Communications, Conference Record (Cat. No.01CH37240), Washington, DC, USA, 11–14 June 2001;
Volume 7, pp. 1995–2000.

20. Qiao, D.; Choi, S.; Shin, K. Goodput analysis and link adaptation for IEEE 802.11a wireless LANs. IEEE Trans. Mob. Comput. 2002,
1, 278–292. [CrossRef]

21. Ericsson. System-Level Evaluation of OFDM—Further Considerations; Technical Report, 3GPP TSG-RAN WG1; Ericsson: Lisbon,
Portugal, 2003.

22. Lampe, M.; Giebel, T.; Rohling, H.; Zirwas, W. PER-prediction for PHY mode selection in OFDM communication systems. In
Proceedings of the GLOBECOM ’03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489), San Francisco, CA,
USA, 1–5 December 2003; pp. 25–29.

23. Blankenship, Y.; Sartori, P.; Classon, B.; Desai, V.; Baum, K. Link error prediction methods for multicarrier systems. In Proceedings
of the IEEE 60th Vehicular Technology Conference, Los Angeles, CA, USA, 26–29 September 2004; pp. 4175–4179.

24. Bjerke, B.A.; Ketchum, J.; Walton, R.; Nanda, S.; Medvedev, I.; Wallace, M.; Howard, S. Packet Error Probability Prediction for
System Level Simulations of MIMO-OFDM Based 802.11n WLANs. In Proceedings of the IEEE International Conference on
Communications, Seoul, Korea, 16–20 May 2005; pp. 2538–2542.

25. Simoens, S.; Rouquette-Léveil, S.; Sartori, P.; Blankenship, Y.; Classon, B. Error prediction for adaptive modulation and coding in
multiple-antenna OFDM systems. Signal Process. 2006, 86, 1911–1919. [CrossRef]

26. Jensen, T.L.; Kant, S.; Wehinger, J.; Fleury, B.H. Fast Link Adaptation for MIMO OFDM. IEEE Trans. Veh. Technol. 2010, 59,
3766–3778. [CrossRef]

27. Peng, F.; Zhang, J.; Ryan, W.E. Adaptive Modulation and Coding for IEEE 802.11n. In Proceedings of the 2007 IEEE Wireless
Communications and Networking Conference, Washington, DC, USA, 26–30 November 2007; pp. 656–661.

28. Tan, P.H.; Wu, Y.; Sun, S. Link adaptation based on adaptive modulation and coding for multiple-antenna OFDM system. IEEE J.
Sel. Areas Commun. 2008, 26, 1599–1606. [CrossRef]

29. del Prado Pavon, J.; Choi, S. Link adaptation strategy for IEEE 802.11 WLAN via received signal strength measurement. In
Proceedings of the IEEE International Conference on Communications, Anchorage, AK, USA, 11–15 May 2003; pp. 1108–1113.

30. Huang, T.; Li, S.; Lu, X.; Gao, S. An Interference-Aware Rate and Channel Adaptation Scheme for Dense IEEE 802.11n Networks.
Wirel. Commun. Mob. Comput. 2019, 2019, 1–14. [CrossRef]

31. Haratcherev, I.; Langendoen, K.; Lagendijk, R.; Sips, H. Hybrid rate control for IEEE 802.11. In Proceedings of the Second
International Workshop on RESTful Design—WS-REST ′11, Philadelphia, PA, USA, 1 October 2004.

32. Wang, J.; Zhai, H.; Fang, Y.; Yuang, M.C. Opportunistic media access control and rate adaptation for wireless ad hoc networks. In
Proceedings of the 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577), College Park, MD, USA,
20–24 June 2004; Volume 1, pp. 154–158.

33. Sadeghi, B.; Kanodia, V.; Sabharwal, A.; Knightly, E.W. OAR: An Opportunistic Auto-Rate Media Access Protocol for Ad Hoc
Networks. Wirel. Netw. 2005, 11, 39–53. [CrossRef]

34. Wang, K.; Yang, F.; Zhang, Q.; Wu, D.O.; Xu, Y. Distributed cooperative rate adaptation for energy efficiency in IEEE 802.11-based
multi-hop networks. In Proceedings of the 3rd International Conference on Intelligent Information, Pasadena, CA, USA, 18–20
December 2006; Volume 56, pp. 888–898.

35. Choi, J.-Y.; Jo, H.-S.; Mun, C.; Yook, J.-G. Preamble-Based Adaptive Channel Estimation for IEEE 802.11p. Sensors 2019,
19, 2971. [CrossRef]

36. Casado, F.B. Enhanced Link Adaptation Techniques for Cellular Networks. Ph.D. Thesis, University of Malaga, Malaga, Spain,
2017.

37. Jaiswal, A.; Jain, V.K.; Kar, S. Adaptive coding and modulation (ACM) technique for performance enhancement of FSO Link. In
Proceedings of the 2016 IEEE First International Conference on Control, Measurement and Instrumentation (CMI), Kolkata, India,
8–10 January 2016; pp. 53–57.

38. Bindu, P.; Jibukumar, M.G. Rate adaptation in generalised spatial modulation with RCPC codes. In Proceedings of the 6th Edition
of International Conference on Wireless Networks & Embedded Systems, Rajpura, India, 16–17 November 2018; pp. 126–130.

39. Hwang, J.; Saki, H.; Shikh-Bahaei, M. Adaptive modulation and coding and cooperative ARQ in a cognitive radio system. In
Proceedings of the International Conference on Advances in Computing, Communications and Informatics, Udupi, India, 13–16
September 2017; pp. 310–315.

40. Rico-Alvariño, A.; Arnau, J.; Mosquera, C. Link adaptation in mobile satellite links: Schemes for different degrees of CSI
knowledge. Int. J. Satell. Commun. Netw. 2015, 34, 679–694. [CrossRef]

http://doi.org/10.1109/TWC.2009.071196
http://doi.org/10.1109/TMC.2002.1175541
http://doi.org/10.1016/j.sigpro.2005.09.033
http://doi.org/10.1109/TVT.2010.2053727
http://doi.org/10.1109/JSAC.2008.081025
http://doi.org/10.1155/2019/1902463
http://doi.org/10.1007/s11276-004-4745-x
http://doi.org/10.3390/s19132971
http://doi.org/10.1002/sat.1164

Electronics 2021, 10, 91 28 of 28

41. Shariatmadari, H.; Li, Z.; Uusitalo, M.A.; Iraji, S.; Jantti, R. Link adaptation design for ultra-reliable communications. In
Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016;
pp. 1–5.

42. Wang, J.; Han, Y.; Li, X.; Jin, S. Design and Implementation of a 5G NR-based Link-adaptive System. In Proceedings of the 2020
IEEE/CIC International Conference on Communications in China (ICCC), Chongqing, China, 9–11 August 2020; pp. 196–201.

43. Ku, G.; Walsh, J.M. Resource Allocation and Link Adaptation in LTE and LTE Advanced: A Tutorial. IEEE Commun. Surv. Tutor.
2015, 17, 1605–1633. [CrossRef]

44. Kriara, L.; Marina, M.K. SampleLite: A hybrid approach to 802.11n link adaptation. ACM SIGCOMM Comput. Commun. Rev.
2015, 45, 5–13. [CrossRef]

45. Halperin, D.; Hu, W.; Sheth, A.; Wetherall, D. Predictable 802.11 packet delivery from wireless channel measurements. ACM
SIGCOMM Comput. Commun. Rev. 2010, 40, 159–170. [CrossRef]

46. Vutukuru, M.; Balakrishnan, H.; Jamieson, K. Cross-layer wireless bit rate adaptation. ACM SIGCOMM Comput. Commun. Rev.
2009, 39, 3–14. [CrossRef]

http://doi.org/10.1109/COMST.2014.2383691
http://doi.org/10.1145/2766330.2766332
http://doi.org/10.1145/1851275.1851203
http://doi.org/10.1145/1594977.1592571

	Introduction
	Link Adaptation Algorithm Basics
	The Link Adaptation Firmware
	Overall Flow
	Function coef2snr
	Function Offset_Update
	Function snr2thr
	Functions snr2mi_bpsk, snr2mi_qpsk, snr2mi_16qm, and snr2mi_64qm
	Function mmi2thr
	Function Interp

	Operating Speed of the Link Adaptation
	Execution Time Breakdown and Analysis
	Execution Time Optimization

	Performance Measurements and Wireless Tests of the Link Adaptation
	Simulation
	Wireless Tests

	Discussion and Conclusions
	
	References

