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Abstract: Fully convolutional structures provide feature maps acquiring local contexts of an image
by only stacking numerous convolutional layers. These structures are known to be effective in
modern state-of-the-art object detectors such as Faster R-CNN and SSD to find objects from local
contexts. However, the quality of object detectors can be further improved by incorporating global
contexts when some ambiguous objects should be identified by surrounding objects or background.
In this paper, we introduce a self-attention module for object detectors to incorporate global contexts.
More specifically, our self-attention module allows the feature extractor to compute feature maps with
global contexts by the self-attention mechanism. Our self-attention module computes relationships
among all elements in the feature maps, and then blends the feature maps considering the computed
relationships. Therefore, this module can capture long-range relationships among objects or back-
grounds, which is difficult for fully convolutional structures. Furthermore, our proposed module is
not limited to any specific object detectors, and it can be applied to any CNN-based model for any
computer vision task. In the experimental results on the object detection task, our method shows
remarkable gains in average precision (AP) compared to popular models that have fully convolu-
tional structures. In particular, compared to Faster R-CNN with the ResNet-50 backbone, our module
applied to the same backbone achieved +4.0 AP gains without the bells and whistles. In image
semantic segmentation and panoptic segmentation tasks, our module improved the performance in
all metrics used for each task.

Keywords: object detection; global context; self-attention; convolutional neural network

1. Introduction

Deep convolutional neural networks (CNN) are now the core of the recognition
systems in most computer vision tasks, including classification [1–4], object detection [5–9],
semantic segmentation [10,11], and panoptic segmentation [12]. In general, many of the
recognition systems adopt a backbone network internally in their framework to extract
useful features for their own target tasks. ResNet [3] and Inception [4] are the most popular
choices for the backbone networks.

The main goal of object detection is to find as many of objects’ tight bounding box
locations (regression) and classes (classification) as possible. These two sub-tasks can
be well trained by well-known backbone networks, since these networks are originally
designed and trained for the classification tasks. However, before the above two sub-tasks
(regression and classification), object detectors have to draw some regions of interest (RoI),
which is a nontrivial task.

In order to draw some RoIs from an image, two-stage detectors, such as Faster
R-CNN [7], propose region proposal networks (RPN) to produce bounding box proposals.
In detail, this RPN module receives the feature maps computed by the backbone networks,
which are usually designed to have fully convolutional structures. Inefficiency comes from
using these feature maps, which are generally highly biased to have local contexts. In this
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case, each spatial element (pixel) of the feature maps is inevitably influenced by its local
region only. As a result, the RPN module has to draw some RoIs with only local contexts.

The quality of object detectors can be further improved by incorporating global
contexts, since some ambiguous objects can be identified by surrounding objects and back-
ground. In human perception, an object is recognized by its surroundings and background
and how well it matches the global context. For example, in Figure 1, a bright yellow,
round object can be the sun when it is in the sky, or a light bulb when it is on a street light,
or a sunny-side-up egg when it is on a plate, or the moon when the sky is dark. Therefore,
we note that the feature maps should incorporate the global context to detect objects clearly.

Figure 1. Examples of similar objects; the shapes, colors, and textures are similar. It could be difficult
for typical feature extractors to clearly capture the characteristics of objects with with local context.
In these cases, global context from the entire image could help the detectors to identify objects
more clearly.

In this paper, we suggest an efficient way of incorporating global context for the
object detection. More specifically, we introduce a self-attention module to incorporate
global context to the feature maps computed by the backbone network. The attention
mechanism [13] is a well-known technique in natural language processing (NLP) tasks
to refine a feature vector (a word) according to other context (a sentence). By applying
this self-attention mechanism to the object detection task, the computed feature maps can
be refined according to the global contexts. In detail, our proposed self-attention module
computes relationships among all elements in the feature maps, and then blends the feature
maps considering the computed relationships. With our self-attention module, the RPN
can benefit from these refined feature maps with clearer representations using both local
and global context.

Researchers have used other methods to incorporate global context into the feature
maps. Among them, a global average pooling on the spatial dimensions (width and height)
is the most common way to incorporate global context. This is commonly used in image
classification tasks [1–4] where computed feature maps are finally global average pooled
and then transformed to logits to be classified. In other work [14] for image semantic
segmentation tasks, the pyramid scene parsing network (PSPNet) concatenated multiple
levels of pyramid features that were average pooled from computed feature maps and
then upsampled to original spatial dimensions. In another study [15] for object detection
tasks, feature pyramid networks (FPN) were proposed using multiple levels of feature
maps, and they propagate some region context through top-down pathway by upsampling.
These pyramid methods (PSPNet and FPN) have largely boosted the performance on their
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main target tasks, since they can benefit from incorporating some regional context by
down-sampling and up-sampling feature maps. However, in this case, global context is
indirectly obtained by upsampling, with which it is hard to represent relationships among
numerous objects and background elements, whereas our proposed module can directly
capture those relationships by the self-attention mechanism.

Note that our proposed self-attention module can be adapted to various CNN back-
bone networks, such as Inception-ResNet [16], ResNeXt [17], and FBNet [18], so the im-
provement could be orthogonal to the choice of backbone networks and detection meta-
architectures, such as Faster R-CNN [7] and SSD [9]. Furthermore, any computer vision
task that can exploit global context may benefit from simply adding our module.

In numerous experiments on the object detection task, our method shows remarkable
gains in comparison to other popular models, which use fully convolutional backbone
networks. When evaluating Faster R-CNN with the ResNet-50 backbone network on the
COCO val2017 (minival) dataset, our proposed self-attention module applied on the same
backbone network achieved +4.0 average precision (AP) gains without bells and whistles.
When using FPN [15] on the backbone network, which inherently gives some regional
context by upsampling, our gain is reduced to +1.4 AP, but it still outperforms the popular
models. We also evaluated the self-attention module not only on the object detection task,
but also on the semantic segmentation and panoptic segmentation tasks. The experimental
results showed that our module improves the performance in all metrics used for each task.

In summary, the main contributions of this paper are listed as follows: (1) We show
that incorporating global context can improve the object detection quality further. (2) We
propose a self-attention module to blend the feature maps to incorporate global context.
(3) We show that the self-attention module can be applied to other computer vision tasks,
such as semantic segmentation and panoptic segmentation tasks, to achieve better perfor-
mance. (4) We suggest some initialization tricks and useful optimizer settings to train the
models stably.

2. Related Work
2.1. Object Detectors

With the development of modern deep ConvNets, object detectors such as OverFeat [19]
and R-CNN [5] showed dramatic improvements in accuracy. OverFeat adopted a strategy
similar to early neural network face detectors by applying a ConvNet as a sliding window
detector on an image pyramid. Meanwhile, R-CNN adopted a region proposal-based strategy
in which each proposal was scale-normalized before classifying with a ConvNet. Additionally,
SPPnet [20] demonstrated that such region-based detectors could be applied much more
efficiently on feature maps extracted on a single image scale.

Recent and more accurate detection methods, such as Fast R-CNN [6] and Faster
R-CNN [7], advocate using features computed from a single scale, because it offers a good
trade-off between accuracy and speed. Those works propose a trainable regional proposal
network (RPN) and show great performances on several object detection benchmarks.
With a similar philosophy, Mask-R-CNN [10] developed the RPN-based approach for
segmentation tasks with ROI align techniques.

RPN-based approaches such as R-CNN series need two stages—one for generating
region proposals, one for detecting the object of each proposal, the single shot detector
(SSD) [9], and YOLO [8] to take one single shot to detect multiple objects within the image
without region proposals generator. On the other hand, two-stage object detectors aim
to boost accuracy; YOLO and SSD are tuned for speed but their accuracy trails that of
two-stage methods. SSD has a 10–20 lower AP, while YOLO focuses on an even more
extreme speed/accuracy trade-off. To achieve better performance in one-stage object
detectors, RetinaNet [21] adopts feature pyramid network (FPN) on the backbone network
and introduces focal loss.
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2.2. Global Contexts and Attention Mechanisms

There have been several works for exploiting global contexts in object detection.
RFCN [22] combined a segment proposal and an object detection module for “fully convo-
lutional instance segmentation” (FCIS). The common idea is to predict a set of position-
sensitive output channels fully convolutionally [11]. The feature pyramid network
(FPN) [15] augments a standard convolutional network with a top-down pathway and
lateral connections so the network efficiently constructs a rich, multi-scale feature pyramid
from a single resolution input image. Each level of the pyramid can be used for detecting
objects at a different scale. Recently, the squeeze-and-excitation network (SENet) [23]
introduced an architectural unit that boosts performance at slight computational cost. The
main goal is to improve the representational power of a network by explicitly modeling
the interdependencies between the channels of its convolutional features.

Attention mechanisms have become an integral part of models that must capture
global dependencies [24,25]. In particular, self-attention [26,27], also called intra-attention,
calculates the response at a position in a sequence by attending to all positions within the
same sequence. Outstandingly, transformer [13] observes that machine translation models
could achieve state-of-the-art results by solely using an attention model without any recur-
rent cells. Recently, variants of transformers have appeared in [28–30], and pre-training with
transformers [31] solves numerous NLP tasks, while showing state-of-the-art performance.

3. Network Design

In this section, we introduce the self-attention module to incorporate global contexts
that can capture relationships among numerous objects or backgrounds. Here we explain
how this module is applied to convolutional neural networks (CNN). In addition, we sug-
gest that the self-attention module have a bottleneck structure that is similar to that used in
ResNet [3] to reduce parameters and facilitate stable optimization.

3.1. Theoretical Background for Attention Mechanism

In Natural Language Processing (NLP) tasks, the attention mechanism is a well-known
technique to compute a relationship among words in a sentence. Many NLP applications,
such as neural machine translation (NMT), extensively use this technique to compute
a number of relationships from other words to a word of interest. There are numerous
approaches to implement the attention mechanism; the most recent and popular one is
defined in the transformer [13] for NMT tasks.

Attention(Q, K, V) = softmax(
QKT
√

dk
)V (1)

Generally, as defined in (1), an attention module computes relationships among
“query” words (Q) in a target sentence and “key” words (K) of a source sentence. The
relationships are computed by an inner product of “query” and “key” words normalized
by a square root of dimensions of key dk with a following softmax operation. Then the
attention module blends the “value” of all words (V) in the source sentence by a weighted
sum where the weights are the relationships computed by the above softmax operation.

A self-attention mechanism is a special case of the attention mechanism when the
source sentence and the target sentence are the same. In this case, an output sentence
of a self-attention module is influenced by its own input sentence. In other words, the
self-attention module refines the representation of all words in accordance with the repre-
sentation of its input sentence. This behavior makes sense in numerous NLP tasks, since
the meaning of words should be understood by their context. Similarly, in visual tasks
like object detection, an object can be determined more clearly by its surrounding contexts
and backgrounds. Therefore, based on these ideas, we propose a self-attention module for
CNNs that can be applied to most visual tasks, including object detection.
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3.2. Self-Attention Modules for Convolutional Neural Networks

Although there are no specific words in images, the self-attention mechanism can be
extended to computer vision tasks. In the CNNs, we can regard a spatial element (pixel) on
the feature maps as a “visual word” if each spatial element contains sufficient information
to explain a certain region in the image.

In popular CNN backbones like ResNets [3], the feature maps become smaller as
their stages increase. They usually have five stages that are separated by the resolution of
their output feature map. A group of all layers in each stage is called “Cn block” where
n = 1, 2, 3, 4, 5 and the size of its output feature map is reduced by 2n × 2n compared to the
size of the input image. Therefore, a spatial element on the output feature map of Cn block
corresponds to 2n × 2n pixels in the input image.

In the ResNet-C4 block, each spatial element of the output feature map corresponds
to 16× 16 pixels in the input image. In addition, wider visual receptive fields are obtained
by stacks of numerous former convolutional layers. Therefore, each spatial element of
the output feature map of ResNet-C4 block can be regarded as a “visual word”, since it
contains sufficient contexts from large visual receptive fields.

We propose a self-attention module for CNNs to apply the attention mechanism to
these visual words. In the self-attention module depicted in Figure 2, each spatial element
of the input feature maps is regarded as a visual word and the input feature maps are
regarded as visual sentences. The module first transforms each spatial element through
query (Q), key (K), and value (V) dense layers. Then it computes relationships among all
visual words by matrix multiplication with Q, and K. These relationships are exploited as
weights when the self-attention module blends the input feature maps by the weighted
sum of itself. Through these operations, every spatial element of feature maps is influenced
by all other spatial elements. In other words, local contexts are refined considering global
contexts by directly computing all of the relationships among local contexts.

Figure 2. A self-attention module to incorporate global context. An input feature map is transformed
to query Q, key K, and value V by fully connected layers. This self-attention module computes
relationships among all elements of feature maps by query Q and key K, and then value V is blended
by itself considering the computed relationships. Lastly, the fully connected layer is applied to
recover channel dimensions and give the module a bottleneck structure.
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There is a slight difference in the attention mechanism between NLP tasks and visual
tasks. The attention mechanism for NLP tasks is originally defined on the 3D features
shaped by (N, T, C) where N, T, and C denote the batch, length, and depth dimensions,
respectively. On the other hand, the feature maps of CNNs are composed of 4D features,
(N, H, W, C) where N, H, W, and C denote the batch, height, width, and depth dimensions,
respectively. In the 4D feature maps, the visual words are considered to be distributed
on the spatial dimensions. Due to the different dimensions of feature representations, the
self-attention module for CNNs needs to reshape its input and output feature maps. There
is no harm in combining spatial dimensions H and W, since the contexts of visual words
can be safely kept in their combined dimensions. Therefore, in the implementation of the
self-attention module for CNNs, 4D visual feature maps (N, H, W, C) are transformed to
3D feature maps (N, HW, C), as in sentence representation, and then the self-attention
mechanism can be applied. Finally, outputs of the self-attention module are reverted back to
4D feature maps (N, H, W, C) like usual visual feature maps. Note that this implementation
does not affect the actual computation of the attention mechanism, as it just changes the
order of visual words.

3.3. Backbones with Self-Attention Modules

The standard method of using the backbone network for the Faster R-CNN [7] ar-
chitecture is to divide the backbone network to two sets of blocks {C1, . . . , C4}, and {C5}.
Faster R-CNN jointly trains the region proposal network (RPN) with the former blocks and
trains the Fast R-CNN [6] with the latter block. The RPN takes the output feature map of
the C4 block as inputs to generate bounding box proposals, and the Fast R-CNN [6] takes
the pooled features of corresponding bounding box proposals from the output feature map
of the C4 block as inputs to classify the bounding box proposals. The overall structures
are depicted in Figure 3. Note that the RPN uses the output feature map of the C4 block
as input, and the Fast R-CNN uses the same feature map as input by pooling through
“RoIPool” (or “RoIAlign”) operators.

Figure 3. An overall structure for the object detection pipeline with the self-attention module. The self-attention module
is applied to the top of the feature map computed by backbone networks. In the Faster R-CNN [7]; this enables the RPN
to exploit both local and global contexts when generating bounding box proposals and forwarding features by “RoIPool”
(RoIAlign) operations.

We claim that the most appropriate place to apply the self-attention module to the
backbone network is after the C4 block, before the RPN generates the bounding box
proposals. When the RPN is detecting objects from the entire image, considering both local
and global contexts can be more helpful than considering only local contexts. Therefore,
we locate the self-attention module between the C4 block and the RPN to incorporate the
global contexts before the RPN generates the bounding box proposals. In this case, the
RPN can generate better bounding box proposals by exploiting local and global contexts,
which leads to better performance on the object detection task. This network design does
not harm the extraction of local contexts at lower stages of the backbone, and it helps to
generate global contexts with high-level features.

In the case of using feature pyramid networks (FPN) [15] on the backbone network,
we apply the self-attention module on the top of the backbone network depicted in Figure 4.
The FPN exploits all stages of the backbone network as inputs {C2, . . . , C5} that are used to
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generate a feature pyramid {P2, . . . , P5}. In the FPN, there is a top-down pathway through
{P5, . . . , P2} that allows it to propagate the higher-level rich features to lower stages.
We apply the self-attention module on the top of the backbone network, which locates
the self-attention module between the C5 and P5 feature maps. In this case, P5 feature
maps acquire global contexts by the self-attention module, and then global contexts are
propagated through the top-down pathway. We can add more self-attention modules
among lower {C2, . . . , C4} and {P2, . . . , P4} feature maps, but the best performance is
achieved when the self-attention module is located between C5 and P5 in our experiments.

Figure 4. Feature pyramid networks (FPN) [15] with the self-attention module. The self-attention
module is applied on the top of the backbone network. Global contexts are acquired by the self-
attention module and propagated through the top-down pathway of the FPN. All FPN stages are
influenced by the global contexts, which helps the RPN to generate better bounding boxes.

3.4. Bottleneck Structure

A standard attention module contains three fully connected layers that compute query
(Q), key (K), and value (V) from input feature maps. These fully connected layers can
change their channel dimension (depth) when needed. In our proposed self-attention
module, we introduce one more output fully connected layer to give the module the
bottleneck structure widely used in ResNets. Our bottleneck module operates as the
same as that of ResNets when expanding and contracting the channel dimension. In our
implementation of the bottleneck structure, the number of channels of query, key, and value
feature maps is reduced by four times in the channel dimension, and then the number of
channels of the self-attention outputs is reverted to its original number.

This bottleneck structure has several advantages when computing feature maps.
One of the advantages is that the amount of computations and parameters of self-attention
module can be reduced. In addition, the most important advantage we found is that it
facilitates stable optimization. Empirically, we have struggled with the optimization of
self-attention modules, because the loss often diverges when the parameters of the self-
attention module are randomly initialized. We have tried several well-known initialization
methods, but most of them do not change this situation. However, with the bottleneck
structure, we can use pre-trained weights of ResNets to initialize the self-attention module,
since ResNets have the same bottleneck structure. We have observed that it is successfully
finetuned from the pre-trained weights of ResNet blocks for initializing self-attention
modules with common optimization settings of Faster and Mask R-CNN [7,10] training.

3.5. Translation Equivariance Characteristic

We employ the self-attention module at the last stage of feature maps of the backbone
network, right before the RPN. As stated in Section 3.3, one reason for the location is that
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the self-attention module should be applied to visual words that have large visual receptive
fields. In addition, another important reason is that the all object detectors must follow
the translation equivariance characteristic. That is, the translation of inputs should be
forwarded to the equal amount of the translation on the outputs. In other words, if the
location of an object is moved (translation), then the location of the detection should be
moved by an equal amount (equivariance).

To obtain the translation equivariance characteristic, most of the conventional object
detectors are designed to have fully convolutional structures since the translation equiv-
ariance characteristic can be easily achieved by local contexts. However, in our network
design, the self-attention mechanism obtains global contexts at the cost of losing a por-
tion of local contexts. Due to this, stacking the self-attention modules multiple times can
lead to the loss of local contexts, decreasing the performance. Rather, we employ the
self-attention module once before the RPN to exploit both local and global contexts when
detecting objects.

4. Experiments
4.1. Object Detection

We performed a variety of experiments on on 2017 COCO detection datasets [32] with
118,000 training images and 5000 validation images. We used meta-architectures of object
detectors as Faster R-CNN [7] for the two-stage detection architecture and RetinaNet [21]
for the one-stage detection architecture. For the backbone networks, we used ResNet-50
and ResNet-101 by finetuning the pre-trained weights from the ImageNet classification
checkpoint. Since the model was trained with small batch sizes, each batch norm layer
on the backbone networks was frozen during training. All experiments were done using
TensorFlow Object Detection API [33]. Note that the height and width of input images
were resized to have minimum 600 pixels and maximum 1024 pixels, which are the default
settings in the API. Most of the other settings were the same as standard use which
are defined in the API. Some recent papers [15,21,34,35] report their performances with
higher numbers in AP (e.g., about 35 AP for Faster R-CNN with ResNet-50 backbone),
but direct comparisons are unfair since their input images are much bigger (about ×1.6)
and they use multi-scale training. Those large performance gaps come from the image
size, since small objects are clearer in large images. We followed the default settings in the
API, where the benchmarks are publicly available in the model zoo page of the TensorFlow
Object Detection API website.

Metric

For the object detection, AP (average precision averaged over categories and IoU
thresholds) [32] is the primary metric and AP@.50 and AP@.75 are additional metrics (at a
single IoU threshold of 0.5 and 0.75 respectively). We also report COCO AP on objects of
small, medium, and large sizes (namely, APs, APm, APl). Next we evaluate the average
recall (namely, AR and AR) on small, medium, and large objects (namely, ARs, ARm, and
ARl). We report results for 100 proposals per images (AR100) [36].

4.2. Global Contexts

To verify the effectiveness of incorporating global contexts by the self-attention mod-
ule, we trained the Faster R-CNN [7] and RetinaNet [21] with ResNet-50 and ResNet-101
backbone networks. Experimental results are shown in Table 1 and Table 2 respectively.
We observe that incorporating global contexts improve the object detection quality much
further. Especially in the experiment of Faster R-CNN with ResNet-50 backbone network,
the performance improves by +4.0 AP after adding the self-attention module.

In the experiments of training RetinaNet [21], which uses SSD [9] as meta-architecture
with ResNet and FPN [15] backbone networks, the detection performance improved by
1.4 AP. The performance gain is reduced compared to the backbone without FPN, but our
model still outperforms the RetinaNet models. The performance gap can be reduced when
FPN is used in backbone networks since FPN can capture a portion of region contexts.
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FPN forwards rich high-level features to the lower stage feature maps in the pyramid
via upsampling, which allows lower stage feature maps to be influenced by some region
contexts. At this point, the self-attention module can fill up the rest of global contexts
by directly computing relationships among all elements, leading to improve the object
detection quality further.

Table 1. Object detection results using Faster R-CNN [7] on the COCO val2017 dataset. Here ResNet is abbreviated as
“R”. Incorporating global contexts (GC) improves the quality of object detection in all metrics. The number in bold means
superiority compared to that of the baseline in the metric.

Faster R-CNN AP APs APm APl AP@.5 AP@.75 AR100 AR100
s AR100

m AR100
l

(a) R-50 [3] 30.1 7.65 27.2 45.7 49.7 31.3 46.6 64.2 44.9 19.0
(b) R-50 + GC 34.1 10.1 31.2 49.6 54.3 35.5 49.8 66.8 48.6 23.9

(c) R-101 33.9 8.93 30.7 51.0 53.5 35.6 49.7 66.6 48.0 21.6
(d) R-101 + GC 35.9 10.9 32.9 52.8 56.1 37.7 51.5 68.8 50.6 23.6

Table 2. Object detection results using RetinaNet [21] on the COCO val2017 dataset. Here ResNet is abbreviated as “R”.
Note that RetinaNet uses FPN [15] with a backbone network by default. Incorporating global contexts (GC) improves
the quality of object detection in all metrics. The number in bold means superiority compared to that of the baseline in
the metric.

RetinaNet AP APs APm APl AP@.5 AP@.75 AR100 AR100
s AR100

m AR100
l

(a) R-50-FPN 35.9 11.9 33.5 50.7 53.7 38.8 53.3 25.6 53.5 68.9
(b) R-50-FPN + GC 37.3 14.3 35.2 51.5 55.9 40.4 54.5 28.4 54.3 69.2

(c) R-101-FPN 37.5 13.2 35.6 53.1 55.5 40.8 54.3 27.1 54.4 69.9
(d) R-101-FPN + GC 38.4 14.6 36.3 53.6 56.8 41.8 55.5 28.6 55.7 70.8

In addition, the large portion of the performance gap comes from detecting small
objects. They are more difficult to be captured than large objects since RoIPooled features
of small bounding boxes inherently lacks of contexts and their receptive fields are very
small. At this point, the self-attention module fills a large amount of global contexts from
other spatial regions, and helps small objects to be identified more clearly.

4.3. Self-Attention Modules

We explore several structural choices for the proposed self-attention modules. The self-
attention module has a block structure, and it can be stacked in multiple times to intensify
the influence of global contexts to the feature maps. In addition, the self-attention module
supports multi-head attention to split attention along several sets of channel dimensions
rather the entire channel dimensions. Experimental results are shown in Table 3.

We observe that stacking self-attention modules in multiple times can hurt the object
detection quality. Comparing the results of (layer × head): {(1× 16), (2× 16), (3× 16)},
the performance degenerates when stacking more self-attention modules. As mentioned in
Section 3.5, if we enhance the feature representation with the global contexts too much, the
performance can be degenerated, since object detectors should have the translation equiv-
ariance characteristic. The local context involves a large portion of information in a certain
region, so the local contexts should not be encroached on much by the global contexts.

In the experiments of multi-head attention, a small number of multi-heads can be
enough to improve the performance. We observe that four or eight heads are proper to learn
multi-head attention. In case when stacking multiple self-attention modules, more heads
can fill up some lost performance but cannot fully recover the performance of the case
when not stacking self-attention module.
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Table 3. Results using Faster R-CNN [7] on the COCO val2017 dataset varying a number of self-
attention heads.

Setting Layer × Head AP

1× 1 33.1
1× 2 33.8
1× 4 34.1
1× 8 33.7

Faster R-CNN 1× 16 33.5

ResNet-50 + GC 2× 2 27.3
2× 4 31.7
2× 8 31.5

2× 16 32.2

3× 16 31.7

4.4. Semantic and Panoptic Segmentation

The self-attention module can be applied to any convolutional neural networks,
so other vision tasks can be improved by incorporating global contexts. Other well-
known visual tasks are image semantic segmentation task and recently defined panoptic
segmentation [12] task. When the self-attention module is applied to the backbone network
of two tasks, the performances are improved in all metrics of their tasks. The results are
shown in Tables 4 and 5.

Table 4. Image semantic segmentation results on the COCO val2017 dataset. Here ResNet is
abbreviated as “R”. Incorporating global contexts (GC) improves the quality of image semantic
segmentation in all metrics. The number in bold means superiority compared to that of the baseline
in the metric.

Backbone mIoU fwIoU mACC pACC

(a) R-50-FPN 41.2 68.5 52.2 80.3
(b) R-50-FPN + GC 42.6 69.3 53.7 80.8

Table 5. Panoptic segmentation results on the COCO val2017 dataset. Here ResNet is abbreviated
as ”R”. Incorporating global contexts (GC) improves the quality of panoptic segmentation in all
metrics. The number in bold means superiority compared to that of the baseline in the metric.

Backbone PQ SQ RQ PQSt PQTh

(a) R-50-FPN 39.4 77.8 48.3 29.6 45.9
(b) R-50-FPN + GC 40.2 78.1 49.3 31.0 46.4

Metric

We report standard semantic and instance segmentation metrics for the individual
tasks using evaluation code provided by each dataset. For semantic segmentation, the mIoU
(mean Intersection over Union) [37] is the primary metric on the COCO dataset [32]. We also
report fwIoU (frequency weighted IoU). For panoptic detection, we adopt PQ (Panoptic
Quality) [12] as the primary metric. PQ captures both recognition and segmentation quality,
and treats both stuff and thing categories in a unified manner. Additionally, we use PQSt

and PQTh to report stuff and thing performance separately.

4.5. Optimization

We observe that it is hard to train the models stably with randomly initialized pa-
rameters, which can screw up the rich feature representation from pre-trained backbone
networks. In that case, the training loss often easily diverges or converges with inferior
results. This behaviour is also reported in other recent researches [34,38] where they try to
learn models from randomly initialized parameters with large learning rates.
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To solve this, we trained the model with Adam [39] optimizer first and switched
to the common stochastic gradient descent (SGD) optimizer, which is introduced in [40].
We empirically found that the Adam optimizer is able to train the randomly initialized
weights without divergence. Finally, we finetuned the models by SGD optimizer to boost
the performance. The evaluation curves of the combination of Adam and SGD optimizers
are shown in Figure 5.

Figure 5. Comparisons of evaluation curves on the COCO val2017 dataset with Adam + SGD optimizer.

In addition, we adopted a bottleneck design to perform an initialization trick. Rather
than training from randomly initialized parameters, we finetune the pre-trained parameters
from ResNet classification checkpoint. Since fully-connected layers are considered as a
1× 1 convolution, the parameters of fully connected layers in the self-attention module
can be initialized from the 1× 1 convolutional layer in the bottleneck block in ResNet. The
optimization results are shown in Table 6.

Table 6. Comparisons between two optimizers, Adam + SGD and SGD with momentum, on the
COCO val2017 dataset. Here ResNet is abbreviated as “R”. The number in bold means superiority
compared to that of the baseline in the metric. When training Faster R-CNN with ResNet + GC
backbone, Adam optimizer and finetuning with SGD optimizer can successfully train the model
while SGD optimizer with momentum diverges (marked as ×). In the case of training RetinaNet,
which uses FPN by default, SGD with momentum optimizer can train the model successfully. It seems
that FPN helps the optimization stabilize.

Detector Backbone Optimizer AP

Faster R-CNN R-50 Adam + SGD 30.1
Momentum 30.0

Faster R-CNN R-50 + GC Adam + SGD 34.1
Momentum ×

Faster R-CNN R-101 Adam + SGD 33.9
Momentum 32.0

Faster R-CNN R-101 + GC Adam + SGD 35.9
Momentum ×

RetinaNet R-50-FPN Adam + SGD 35.2
Momentum 35.9

RetinaNet R-50-FPN + GC Adam + SGD 35.4
Momentum 37.3

We observe that longer training steps can boost performance since there is more space
to optimize the attention parameters. As studied in [35], when training shortly, training
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from scratch can be worse than finetuning from pre-trained weights, however it can catch
up with longer training steps. The evaluation curves shown in Figure 6 support that claim
and this technique is also applied when training the self-attention module. In addition, the
qualitative comparisons for the use of the self-attention module are shown in Figure 7.

Figure 6. Comparisons of evaluation curves with longer training steps. RetinaNet with ResNet-50
backbone was trained by a momentum optimizer with cosine decay and evaluated on the COCO
val2017 dataset.

Figure 7. Cont.
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Figure 7. Qualitative results on the COCO val2017 dataset of Faster R-CNN meta-architecture with
ResNet-101 + GC backbone. Detection results are on the left side of image pairs, and corresponding
groundtruths are on the right side of the pairs.

5. Conclusions

We explored the influences of global contexts from attention layers in modern object
detectors. We propose a self-attention module for CNNs in order to capture relationships
among other visual words indicating objects or backgrounds. We suggest a network design
for object detectors to apply the self-attention module effectively. From the experimental
results, our network design improves the detection performance largely in terms of AP.
This results indicate that the attention mechanisms defined in NLP tasks also have a
potential to improve performance in computer vision tasks. We verify its potential in the
semantic segmentation task and the panoptic segmentation task.

We believe that visual words in computer vision tasks are not that different from real
words in NLP tasks. The visual words can act as usual textual words if visual words have
sufficient contexts extracted from large visual receptive fields. From the help of pre-trained
CNNs, visual words can represent regional contextualized information of where they are
located. Therefore, self-attention mechanisms for visual words can improve the representa-
tional power of visual features. Any computer vision task that can exploit relationships
among objects or backgrounds should benefit by applying attention mechanisms. We hope
that this work facilitates the use of attention mechanisms even over computer vision tasks
to multi-modal tasks.
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Abbreviations

The following abbreviations are used in this manuscript:
mAP mean average precision
RoI regions of interest
RPN region proposal network
NLP natural language processing
FPN feature pyramid network
SSD single shot multibox detector
R-# ResNet-#
GC global contexts
SGD stochastic gradient descent
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