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Abstract: The 4-leg inverter can adjust the load current or output voltage even under unbalanced
load conditions, but it is known that the additional switch arm to the 3-leg inverter can increase the
overall cost and the failure rate. This paper aims to analyze the failure rate and mean time between
failures (MTBF) of 3-leg inverters and 4-leg inverters using part count failure analysis (PCA) and
fault-tree analysis (FTA), and to compare the price of the inverters. The FTA can analyze the failure
rate, including the type, number and connection status of the circuit components, and moreover
the redundancy effect of the 4-leg inverter. For more accurate failure-rate prediction, the failure
rate and MTBF of the 4-leg inverter according to the lifecycle of the controller are analyzed. Finally,
by comparing the price of 3-leg inverters and 4-leg inverters using the cost model of major parts,
the degree of reliability improvement against price increase is quantitatively analyzed.

Keywords: cost model; economic efficiency; 4-leg inverter; failure rate; fault-tree analysis (FTA);
mean time between failures (MTBF); part count failure analysis (PCA); 3-leg inverter

1. Introduction

An inverter is a power converter that converts DC into AC, which allows simultaneous
control of output voltage and frequency, and is used for various purposes such as motor
drives based on VVVF (variable voltage and variable frequency) and grid-connection
based on CVCF (constant voltage and constant frequency) control. Among the inverter
circuit topologies, the three-phase 3-leg inverter is widely used as a power converter that
connects distributed generation (DG) such as solar power, wind power or energy storage
systems (ESS) to the grid [1–5]. However, if a DG network accident results in a current
imbalance in the three-phase distribution network, the 3-leg inverter cannot supply an
imbalanced current called a zero-sequence current. In this case, a 3-leg inverter employing
a split DC-link capacitor or a 4-leg inverter can be a good alternative [6–10]. The 3-leg
inverter with split DC-link capacitors works like that of three independent half-bridge
inverters. Therefore, the line-to-neutral output voltage is half the input voltage, so the
utilization of the input voltage becomes low, and moreover the DC-link capacitor directly
handles the current flowing to the ground, so large capacitance is required [6,7]. The 4-leg
inverter increases the switching loss by the added switch arm. Nevertheless, various
modulation techniques are being studied because of the advantages of increasing DC-link
voltage utilization [8–10] and the presence of 16 switching states, enabling output voltage
adjustments for unbalanced loads and control of energy flow for each phase [11–18].

Three-dimensional space vector modulation (3D SVPWM), an extension of two-
dimensional space vector modulation (2D SVPWM), was proposed, and 3D SVPWM
was extensively studied [11–15]. A carrier-based PWM scheme using offset voltage has
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been proposed to alleviate the complexity of 3D SVPWM [16,17]. This research focuses
only on the CPWM, which corresponds to class I of the 3D SVPWM, which has the effect of
improving the THD but reduces the lifecycle of the inverter because each switch arm has a
different power loss due to an unbalanced current. The above-mentioned 4-leg inverter
modulation schemes commonly use 16 switching states appropriately to achieve various
control objectives. In particular, the 4-leg inverter is capable of alternative operation even
if a problem occurs with one switch arm of the 3-legs. In general, from a reliability per-
spective, increasing the number of parts increases the failure rate, but applying a control
technique that takes into account the redundancy to a 4-leg inverter structure can lower
the failure rate, which can predict the effect of improving reliability.

The reliability and economics of three-phase 3-leg and 4-leg inverters are analyzed in
this paper by using the fault-tree analysis (FTA) technique, which can consider operational
characteristics according to the redundancy characteristics of the 4-leg inverter. This study
aims to accurately predict reliability according to the driving environment by analyzing the
failure rate and MTBF (mean time between failures) by designing the fault-tree reflecting
the operational risk according to the 3-leg and 4-leg inverter structure and control method.
Among the various control methods for controlling the 4-leg inverter, the analysis is made
by adding a redundancy function to the SVPWM method that can produce an increased
output voltage compared with the sinusoidal PWM control method while keeping the
switching frequency constant.

In this paper, we first define the failure of 3-leg and 4-leg inverters, and then design
a fault-tree taking into account the operational characteristics. Second, using the fault
library of MIL-HDBK-217F, we calculate the failure rate and the MTBF from the fault-trees.
Third, we assume the lifecycle of the controller is 3 to 20 years and reflect this in the
fault-tree to analyze the correlation between the lifecycle of the controller and the failure
rate of the inverter. Fourth, we calculate the failure rate according to the part count failure
analysis (PCA) method and compare it with FTA (fault-tree analysis) results to compare the
advantages and disadvantages of 3-leg and 4-leg inverters in terms of reliability. Finally,
through the economic analysis of 3-leg and 4-leg inverters, the overall cost is compared to
the effect of reliability improvement.

2. Three-Phase 3-Leg and 4-Leg Inverter
2.1. 3-Leg Inverter

The three-phase inverter generates a three-phase AC output voltage using a DC input
source to supply power to the three-phase load. Figure 1 shows the circuit configuration of a
three-phase 3-leg inverter. The 3-leg inverter consists of three switch arms that can operate
independently of each other, and each arm produces its own arm voltage vA, vB, vC for three
phases, where the reference for each arm voltage is determined as the potential of the N node
corresponding to the (−) potential of the input voltage source. In this case, each arm voltage
will be a momentary VDC or zero potential. The line-to-line voltage supplied to the load is
vAB = vA − vB, vBC = vB − vC, vCA = vC − vA, so the arm voltage is one of the two values of
{VDC, 0} and the three-phase line voltage is one of the three values of {VDC, 0, −VDC}.
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If the three-phase load is balanced, the phase voltage of the load has VDC or 0, and each
phase of the load is connected to either of these two voltages. Therefore, if one switch arm
fails, an imbalance of power supplied to the three-phase load is inevitable.

2.2. 3-Leg Inverter Employing Split DC-Link Capacitor

To compensate for these unbalanced problems, a 3-leg inverter circuitry with split
DC-link capacitors can be used as shown in Figure 2. A three-phase 3-leg inverter with
split DC-link capacitors consists of three switch arms that can operate independently of
each other and each arm produces its own arm voltage vA, vB, vC for three phases. Here the
reference potential for each arm voltage is determined by the neutral point of the series-
connected capacitor. In this case, each arm voltage will be a momentary VDC/2 or −VDC/2.
The line-to-line voltage supplied to the load is vAB = vA − vB, vBC = vB − vC, vCA = vC − vA,
so the arm voltage is one of the two values of {VDC/2, −VDC/2} and the three-phase line
voltage is one of the three values of {VDC, 0, −VDC}.

In Figure 2, the neutral point current flows through the DC-link capacitor, and the
ground is clamped by half the DC-link voltage. The 3-leg inverter with split DC-link capac-
itors is the same as the three half-bridge inverters being driven independently. Therefore,
the line-to-neutral output voltage is half the input voltage, so the utilization of the input
voltage source is low, and moreover the DC-link capacitor directly handles the current
flowing to the ground, so the capacitance increases unrealistically. In conclusion, it is
possible to supplement the load imbalance problem, but in the case of a switch arm failure,
it is impossible to operate an alternative operation to secure redundancy.

2.3. 4-Leg Inverter

Figure 3 shows the circuit configuration of the 4-leg inverter. The additional switch
arm controls the neutral voltage and the neutral current. This allows the 4-leg inverter to
generate three independent output voltages regardless of load conditions. In other words,
even if one switch arm fails, it is possible to secure 100% redundancy that allows alternative
switching operation.
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3. Reliability Analysis of Inverters

To compare the reliability of 3-leg and 4-leg inverters, this chapter calculates the failure
rate and MTBF (mean time between failures) through part count failure analysis (PCA)
and fault-tree analysis (FTA) under conditions where the inverters are controlled by the
SVPWM. Figure 4 shows the power stage of the 4-leg inverter and the controller based
on TMS320F2835. Table 1 represents the specification of the 4-leg inverter and the 3-leg
inverter is constructed using the same component. The types and number of parts that
make up the inverter and controller vary widely. Reliability and economics are analyzed
for relatively expensive parts, such as the main components IGBT (Insulated Gate Bipolar
Transistor), capacitors and inductors, because it is difficult to consider all components
in reality. For capacitors, we analyze the electrolytic capacitor of DC-link and the film
capacitor for filtering purpose. Supercapacitor can also be analyzed as important parts of
the inverter depending on its application area [19], but it is excluded because it is difficult
to analyze accurately due to a lack of experimental data.
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Table 1. Specifications of three-phase 4-leg inverter.

Item Values

Output power 100 kW
Output voltage (line-to-neutral) 380 V, 60 Hz

DC-link voltage 600 V
DC-link capacitance 15.5 mF

Switching device IGBT CM600HA-24H
ac filter for A, B, C phase legs 660 µH

ac filter inductor for neutral leg 330 µH
ac filter capacitor for each phase 150 µH

3.1. Calculation of Part Failure Rate by MIL-HDBK-217F

To calculate the failure rate of inverters using PCA and FTA, it is first necessary to
calculate the failure rate of parts for the IGBT, the capacitor the and inductor, which are the
main circuit components that consist of the inverter. In this paper, we use the fault library
of MIL-HDBK-217F, which provides a failure-rate calculation equation for each part [20,21].
It considers various factors such as basic failure rate, power capacity, voltage rating, appli-
cation, temperature, environment, quality factor, etc. The experimental Equations (1)–(6)
are the result of reflecting the specification given in Table 1 for MIL-HDBK-217F’s failure-
rate calculation formula; the quality factor is based on the commercial product and the
environment factor is based on the state in which the inverter is a controlled environment.



Electronics 2021, 10, 87 5 of 22

3.1.1. Failure Rate of IGBT

The MIL-HDBK-217F does not provide failure rates for IGBTs. Since IGBT consists of
series combinations of BJT and MOSFET equivalent, failure of either will result in failure of
IGBT. Therefore, the failure rate of IGBT is calculated through the OR-gate operation of the
two elements [22].

λIGBT = 1− (1− λBJT)(1− λMOSFET) failures/106h (1)

λBJT = 0.00076923(Pr)
0.37 exp

(VCE_applied

VCEO_rated

)
exp

[
−2114

(
1

TJ + 273
− 1

298

)]
failures/106h (2)

λMOSFET = 3.96 exp
[
−1925

(
1

TJ + 273
− 1

298

)]
failures/106h (3)

where (2) and (3) are the failure rate based on the experimental data of BJT and MOSFET,
respectively. Here, TJ is the junction temperature (◦C), Pr is the rated power (W), VCE-applied
is the collector–emitter applied voltage, VCEO-rated is the collector–emitter rated voltage in
the base open state.

3.1.2. Failure Rate of DC-Link Capacitor

The failure rates of electrolytic capacitors (aluminum oxide) used as DC-link capacitors
are given in (4).

λC_dc = 0.012(C)0.23

[(
Voperating

0.6Vrated

)5

+ 1

]
exp

[
−0.35

8.617× 10−5

(
1

T + 273
− 1

298

)]
failures/106h (4)

Equation (4) is the failure rate based on the experimental data of an electrolytic
capacitor. Here, C is the capacitance (µF) of the capacitor. Voperating is the working voltage
of the capacitor, the sum of the DC voltage and AC voltage peak applied to the capacitor,
and Vrated is the rated voltage of the capacitor. T is the ambient temperature (◦C) of the
capacitor.

3.1.3. Failure Rate of Filter Capacitor

The metalized polypropylene film capacitor is employed as an AC filter capacitor,
and the failure rate according to the experimental data is shown in (5).

λC_ f = 0.051(C)0.09

[(
Voperating

0.6Vrated

)5

+ 1

]
exp

[
−0.15

8.617× 10−5

(
1

T + 273
− 1

298

)]
failures/106h (5)

Equation (5) is the failure rate based on the experimental data of the metalized
polypropylene film capacitor. Here, C is the capacitance (µF) of the capacitor. Voperating
is the working voltage of the capacitor, the sum of the DC voltage and AC voltage peak
applied to the capacitor, and Vrated is the rated voltage of the capacitor. T is the ambient
temperature (◦C) of the capacitor.

3.1.4. Failure Rate of Filter Inductor

The failure rate of the AC filter inductor according to experimental data is given in (6).

λL = 0.00054 exp
[

−0.11
8.617× 10−5

(
1

THS + 273
− 1

298

)]
failures/106h (6)

THS = TA+1.1(∆T) (7)

Here, the hot spot temperature of the inductor THS (◦C) is calculated by (7). TA is the
ambient temperature (◦C) at which the inductor operates and ∆T is the average temperature
rise above the ambient temperature (◦C).
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3.2. Failure Rate by Part Count Failure Analysis (PCA)

Figure 5 shows the failure dependence of a 3-leg inverter in application to PCA.
Failure of 3-leg inverter is caused by failure of six IGBTs, a DC-link capacitor, three AC
filter capacitors, three AC filter inductors and output load failure. If any of the components
fails, it has an OR-gate dependency that leads to a failure of the 3-leg inverter. We calculate
the failure rate of the 3-leg inverter by substituting the part failure rate calculated as MIL-
HDBK-217F for the failure dependence shown in Figure 5. Here, the output load failure
rate reflects 1% of AC filter inductor with the lowest failure rate among key components to
minimize the impact on the inverter failure rate under analysis and to reflect some portions
of the effect of temperature rise [23–25].

Figure 6 shows the failure dependence of a 3-leg inverter with split DC-link capacitors.
Failure of the inverter is caused by failure of six IGBTs, two DC-link capacitors, three AC
filter capacitors, three AC filter inductors and output load failure. If any of the components
fails, it has an OR-gate dependency that leads to a failure of the inverter.
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Figure 7 shows the failure dependence of a 4-leg inverter. Failure of 4-leg inverter is
caused by failure of eight IGBTs, a DC-link capacitor, three AC filter capacitors, three AC filter
inductors, a neutral inductor and output load failure. If any of the components fails, it has an
OR-gate dependency that leads to a failure of the 4-leg inverter. It is a configuration in which
two IGBTs and one neutral inductor are added compared to a 3-leg inverter.

Figure 8a shows a comparison of the failure rate of the three-phase inverters by the
PCA method. The 4-leg inverter has the highest failure rate at 25~180 ◦C. At 25 ◦C, the fail-
ure rate of the 3-leg inverter is 0.243 failures/104h, and the Split DC-link capacitor 3-leg
inverter shows 0.245 failures/104h, but the 4-leg inverter represents a relatively high failure
rate of 0.307 failures/104h. The increased failure rate of approximately 0.065 failures/104h
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compared to 3-leg inverters is the result of an increase of two IGBTs. The difference in
failure rates is reduced by 32% at 180 ◦C to approximately 0.021 failures/104h.
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Figure 8b shows the MTBF of a 3-leg inverter at 25 ◦C is 4.7 years, the split DC-link
capacitor 3-leg inverter is 4.66 years, but the 4-leg inverter represents a relatively small
MTBF of 3.71 years. The difference in MTBF is about 0.99 years at 25 ◦C and decreases to
about 0.025 years at 180 ◦C. The reason why the difference in failure rates decreases as the
temperature increases is that at higher driving temperatures, the effect of increasing failure
rates by temperature is greater than that by the number of parts.

3.3. Failure Rate by Fault-Tree Analysis (FTA)

This chapter designs and analyzes fault-trees for reliability analysis considering the
operational characteristics of 3-leg inverters and 4-leg inverters. The design of a fault-tree
requires an analysis of the various causes and consequences of failure of the inverter [26–28].
The causes of failure and the effects of the failure are very complex, so it is very difficult
to consider all conditions. Therefore, we design a fault-tree for major failures with high
RPN (Risk Priority Number) values defined by the multiplication of severity, frequency
of occurrence and detectability of failures in FMECA (Failure Mode, Effects Analysis and
Criticality Analysis) [29,30].

Fault-Tree Analysis (FTA) is a quantitative failure analysis method that logically analyzes
the cause of failures and makes a fault-tree and uses it to obtain the probability of failure.
The FTA is a top-down approach that uses Boolean algebra (AND, OR-gate, etc.) in graphical
representations to express logical inter-relationships between basic and top events.

3.3.1. Fault-Tree Design of 3-Leg Inverter

Figure 9 shows the fault-tree of a three-phase 3-leg inverter. Failure of the 3-leg
inverter is defined as failure of the output voltage generation function. Since the top-level
failure of the 3-leg inverter is defined as a failure of the output voltage generation, the cause
of the lower stage failure may be the failure of each phase voltage control. Function failures
that control the amplitude and frequency of the output voltage are defined as failures on
each phase, not separately classified. In addition, the input of the 3-leg inverter is assumed
to be supplied by the DC-link capacitor, and the probability of failure of the front-end
system supplying power to the DC-link capacitor is included in the DC-link capacitor
failure. The main goal is to analyze the reliability of the 3-leg inverter itself. Therefore,
the type and condition of the load are treated as a failure of Output load failure] without
being specifically identified.

[DC-link power supply failure] consists of OR-gate combination of [DC-link capacitor
intrinsic function failure] and [DC-link front-end circuit function failure]. The electrolytic
capacitor, which is a DC-link capacitor, is responsible for charging and discharging func-
tions for maintaining DC-link voltage, but may lose its original function due to short
circuit, opening and failure of the capacitor itself. Therefore, sub-failures are designed with
[Capacitor short failure], [Capacitor open failure] and [DC-link failure]. Since the input of
the 3-leg inverter assumes that it is supplied by the DC-link capacitor, the probability of
failure of the front-end system supplying power to the DC-link capacitor is included in the
DC-link capacitor failure.

[IGBT switching function failure] occurs from the loss of switching function of the
upper and lower IGBT of each arm. The causes of [Qxp switching function failure] can be
seen as [IGBT intrinsic function failure] and [Switching signal generation failure]. [IGBT
intrinsic function failure] is caused by short circuit, open circuit, overheating due to loss of
heat-sink function and failure of IGBT itself. Therefore, the sub-event of [Qxp switching
failure] is designed as an OR-gate combination of [IGBT Qxp failure], [Short circuit failure],
[Open circuit failure] and [Heat-sink failure].

The causes of failure for generating a switching signal of [switching signal generation
function failure] are control IC failure, failure of control algorithm and failure of gate-amp.
Therefore, the sub-event of [Switching signal generation failure] is designed with OR-
gate combination of [Gate-amp function failure], [Control signal generation failure] and
[Control IC failure]. [Control signal generation failure] is due to a problem with the control
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algorithm itself or to failure of the feedback function due to failure of the PT, CT sensor, etc.
Therefore, the sub-event of [Control signal generation failure] is designed as an OR-gate
combination of [Control Algorithm failure] and [Feedback function failure].

[AC filtering function failure] consists of the OR-gate combination of [AC filter Lfx
failure] and [ac filter Cfx failure]. The inductor and capacitor located at the output stage of
each phase are responsible for generating high quality output voltage by LC filtering the
inverter output voltage. While there are many possible causes of failure, only the inductor
and capacitor itself are considered as they have relatively low failures compared to IGBT,
DC-link capacitors and others.
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3.3.2. Fault-Tree Design of 3-Leg Inverter Employing Split DC-Link Capacitors

Figure 10 shows a fault-tree of three-phase 3-leg inverter employing split DC-link
capacitors. Another DC-link capacitor is added compared to the 3-leg inverter in Figure 9,
adding a red dotted box, an event indicating a failure of that function. This shows that each
capacitor failure is designed to be reflected, taking into account the structure of the split
DC-link capacitor. An increase in failure rate can be expected as much as an electrolytic
capacitor, a DC-link capacitor, compared with the failure rate of a 3-leg inverter.
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3.3.3. Fault-Tree Design of 4-Leg Inverter

Figure 11 shows the fault-tree of a 4-leg inverter. Failure of the 4-leg inverter is defined
as failure of the output voltage generation function like that of 3-leg inverter. The red
dotted box represents an [IGBT switching function failure] event, which differs from the
3-leg inverter in the fault-tree of a 4-leg inverter. The 4-leg inverter is a structure in which
one switch arm is added to the 3-leg inverter. Thus, even if a failure of the IGBT responsible
for each phase occurs, the output compensation of the load phase voltage can be achieved
through the alternate switching control of the added switch. If the 4-leg inverter meets
the 100% redundancy condition, the added switch arm operates completely separate for
positive (+) and negative (−) output phase voltage, so the sub-event of [IGBT switching
function failure] is designed with OR-gate combination. [Positive (or negative) output
voltage generation failure] is designed as AND-gate combination of [Qap (or Qan) switching
function failure] and [Qfp (or Qfn) switching function failure] taking into account 100%
redundancy condition.
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Figure 11. Fault-tree of three-phase 4-leg inverter.

Figure 12 shows the phase current (ia, ib, ic) and neutral point current (in) of the 4-leg
inverter. Figure 12a shows each phase current waveform in a balanced three-phase load.
It has the same amplitude of the phase current and a neutral current is zero. Figure 12b
shows the phase current when the load of phase A is half of the phase B and C loads
by load imbalance. The load is balanced by allowing the phase current as much as the
reduction of phase A current (ia) to flow over the additional switch arm. Figure 12c shows
the load phase current and neutral current (in) when the load of phase C doubles the load
of phases A and B due to load imbalance. When the amplitude of the phase C current (ic)
is greater than the current amplitude for the other two phases (ia, ib), the neutral current
(in) appears to be the same amplitude as the A and B phases but with phase differences.
Figure 12d shows a condition in which the phase C current (ic) cannot flow due to a fault in
phase C. The 4-leg inverter, which has the redundancy characteristic, is kept in a balanced
three-phase through alternative operation of the additional switch arm.
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Figure 13a shows a comparison of the failure rate of the three-phase inverters by FTA.
The 4-leg inverter has the lowest failure rate, in the range of 25 to 180 ◦C. At 25 ◦C, the 3-leg
inverter exhibits 0.247 failures/104h, and the split DC-link capacitor 3-leg inverter exhibits
0.254 failures/104h, similar to the failure rate results for PCA. However, for 4-leg inverters,
the PCA has a failure rate of 0.307 failures/104h, but the FTA has a very low failure rate
of 0.0266 failures/104h. This is because the PCA only considers the type, number and
connection of components, but the FTA also considers the operating characteristics of
inverters. The 4-leg inverter is a structure in which two IGBT switches with relatively
high failure rates are added, but in substance it shows that the added switch arm allows
redundancy for each output phase voltage generation, which can significantly reduce the
failure rate.

The MTBF in Figure 13b shows that the 3-leg inverter at 25 ◦C is 4.6 years and the split
DC-link capacitor 3-leg inverter is 4.5 years, similar to the results for PCA, but the 4-leg
inverter shows a significant increase in lifecycle to about 43 years. However, as the temper-
ature increases, the difference in failure rates decreases compared to PCA results because
at higher driving temperatures the effect of increasing failure rates due to temperature is
greater than that due to the operating characteristics of the inverter.
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3.4. Failure Rate of the Three-Phase Inverter According to the Reliability of the Controller

This section analyzes the failure rate of the inverter according to the reliability of
the controller applied to the three-phase inverter. The three-phase inverter can apply
various control techniques, such as sinusoidal PWM, SVPWM, depending on the purpose
of control. These control algorithms are implemented by control ICs, peripheral circuits,
etc., and the severity of failure rates due to performance differences in the control algorithm
itself is difficult to assess realistically. Even if performance or complexity between control
techniques is considered, the degree of difference in failure rates is not significant and the
impact on failure rate analysis is small. Thus, in this paper, the failure of a [Switching signal
generation function failure] event corresponding to the controller function in the fault-tree
is set to 3, 5, 10, 15 and 20 years and the inverter failure rate and MTBF are analyzed for
the analysis of how much the controller including the control algorithm affects the overall
reliability of the inverter. Table 2 shows the MTBF converted to failure rate (failures/104h).

Figure 14a shows the failure rate of the 3-leg inverter according to the lifecycle of
the controller using the FTA. At 25 ◦C, it is analyzed as 0.47 failures/104h for 20 years,
0.53 failures/104h for 15 years, 0.64 failures/104h for 10 years, 0.84 failures/104h for five
years and 0.96 failures/104h for three years of controller lifecycle. It shows that the MTBF
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of a controller decreases every five years; the failure rate increases almost twice as much.
It should be noted that if the MTBF of the controller at 25 ◦C is less than five years the
failure rate of the 3-leg inverter will increase rapidly to 0.84 failures/104h. In particular,
if the MTBF of the controller is designed to be less than three years, the failure rate of a
3-leg inverter is higher than 0.96 failures/104h, indicating that the lifecycle of the controller
is a condition that significantly affects the failure rate of the 3-leg inverter.

Table 2. Failure rate of [Switching signal generation function failure] corresponding to MTBF.

MTBF (Year) MTBF (Day) MTBF (h) Failure Rate (Failures/104h)

3 1095 26,280 0.380517504
5 1825 43,800 0.228310502
10 3650 87,600 0.114155251
15 5475 131,400 0.076103501
20 7300 175,200 0.057077626
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Figure 14b shows the MTBF of the 3-leg inverter according to the lifecycle of the
controller. In order for a 3-leg inverter to obtain MTBF of more than two years at 25 ◦C,
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the MTBF of the controller must be guaranteed at least 15 years. In particular, it should
be noted that the MTBF of a 3-leg inverter decreases sharply to 1.36 years, if the controller
MTBF is less than five years at 25 ◦C. In operating conditions above 100 ◦C, it falls below
1.5 years regardless of the MTBF of the controller, as the failure rate increases due to the
greater influence on the operating temperature than the lifecycle of the controller.

Figure 15a shows the failure rate of the split DC-link capacitor 3-leg inverter according
to the lifecycle of the controller using the FTA. Similar to a 3-leg inverter, the five-year
reduction in the controller’s MTBF shows that the failure rate almost doubles. If the MTBF
of the controller is not more than five years under 25 ◦C operating conditions, it shall be
noted that the failure rate of the split DC-link capacitor 3-leg inverter has increased rapidly
to 0.84 failures/104h. In particular, if the MTBF of the controller is designed to be less than
three years, the failure rate of the controller is higher than 0.96 failures/104h, similar to the
failure rate of the 3-leg inverter, because it significantly affects the failure rate of the inverter.
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Figure 15b shows the MTBF of the split DC-link capacitor 3-leg inverter according
to the lifecycle of the controller using the FTA. If the MTBF of the controller is 20 years
at 25 ◦C, the MTBF of the inverter is analyzed to be 2.4 years, 2.13 years for 15 years,
1.79 years for 10 years, 1.36 years for 5 years and 1.19 years for 3 years. The MTBF of the
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controller must be guaranteed for at least 15 years in order for the split DC-link capacitor
3-leg inverter to secure MTBF of at least 2 years in operation conditions of 25 ◦C. At 80 ◦C
and above, the MTBF of the inverter drops to less than 1.5 years regardless of the MTBF
of the controller. This is because the failure rate increases due to the greater influence on
operating temperature in comparison to the lifecycle of the controller.

Figure 16a shows the failure rate of the 4-leg inverter according to the lifecycle of the
controller obtained using the FTA. At 25 ◦C, it shows a failure rate of 0.07 failures/104h when
the MTBF of the controller is 20 years, 0.09 failures/104h for 15 years, 0.15 failures/104h
for 10 years, 0.36 failures/104h for 5 years, 0.67 failures/104h for 3 years. If the lifecycle
of the controller is more than 10 years, it is possible to obtain a failure rate of not more
than 0.15 failures/104h at 25 ◦C, as shown in Figure 16b. The failure rate of 4-leg inverters
according to the MTBF of the controller is analyzed relatively lower than that of 3-leg
inverters. This is because the redundancy effect of the 4-leg inverter is greater than that of
the lifecycle of the controller.
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4. Economic Efficiency Analysis of Inverter

In this section, we derive the cost model for the design of the 3-leg inverter and 4-leg
inverter and use it to compare the price of the inverters. We estimate the cost model of the
main part of inverter based on the parameters that increase in proportion to the price of
the parts sold on the market. An exchange rate of 1100 WON = 1 USD is applied because
the price of the parts is sampled in Korean WON [31,32].

4.1. Cost Model of IGBT

The 3-leg inverter consists of six IGBTs and the 4-leg inverter has eight IGBTs. We de-
rive the cost model from the 600 V product line, which is the rated voltage of the inverter,
and the 1200 V product line with twice the voltage margin. To ensure the validity of
the economic analysis, prices are compared using Microchip Technology’s products with
multiple samples for voltage ratings. Figure 17 shows the IGBT cost model with increasing
current rating and is expressed as a log function of (8) and (9).

σ600V
IGBT = 102.9 ln x− 493.35 (8)

σ1200V
IGBT = 84 ln x− 327.44 (9)

where x is the current rating of IGBT.
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4.2. Cost Model of Capacitor
4.2.1. Cost Model of DC-Link Capacitor

The 3-leg inverter and 4-leg inverter have one electrolytic capacitor as a DC-link capacitor.
Both inverters should analyze a product family of 600 V or higher, taking into account the
voltage applied to the DC-link capacitor. However, due to the lack of samples of commercial
products for high voltage electrolytic capacitors, prices are compared using TDK Electronics’
300 V, 400 V and 500 V product lines. A serial combination of capacitors can satisfy the working
voltage and a parallel combination of capacitors can satisfy the required capacitance.

Figure 18 shows the cost model of an electrolytic capacitor. As the capacitance in-
creases, the cost of the electrolytic capacitor increases linearly, as expressed in (10)–(12).

σ300V
C_dc−link = 9.956x + 15.023 (10)

σ400V
C_dc−link = 12.153x + 19.921 (11)

σ500V
C_dc−link = 21.109x + 22.168 (12)

where x is the capacitance (mF) of the DC-link capacitor.
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4.2.2. Cost Model of Filter Capacitor

The filter capacitor is analyzed based on the film capacitor. The rated voltage applied
to the filter capacitor for both inverters is 380 V. Therefore, a cost model is generated by
using the product line of 480 V, 550 V, and 780 V of KEMET considering voltage margin.
As shown in Figure 19, the cost of increasing the capacitance of the film capacitor is linear,
as expressed in (13)–(15).

σ480V
C_ f ilm = 0.1952x + 41.399 (13)

σ455V
C_ f ilm = 0.3902x + 39.721 (14)

σ780V
C_ f ilm = 0.5346x + 51.968 (15)

where x is the capacitance (µF) of the film capacitor.
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4.3. Cost Model of Filter Inductor

The 3-leg inverter has three filter detectors, and the 4-leg inverter has three filter in-
ductors and one neutral inductor. Unlike other parts, inductors do not have an appropriate
distribution of products on the market. Therefore, we estimate the cost model from the
sum of the price of core and wire. The core size and AWG of the wire required the design
of the filter inductor with reference to [33] and the core cost model is shown in (16).

Figure 20a shows the core price per available magnetizing area (Ae) of TDK Electronics’
toroidal core. As the Ae of the core increases, the price increases as an exponential function
and is expressed in (16).

σAe
L_core = 5.6424e0.007x (16)

where x means the Ae value of the core suitable for the filter inductor. Next, the AWG
of the wire used in the filter inductor and the number of turns according to AL-value
are considered [33]. When the number of turns of the inductor is determined, the wire
diameter is calculated from (17). Here ρc is the electrical resistance of the copper wire, lT is
the mean-length per turn (MLT) of the windings, and Pcu is the amount of heat or energy
wasted when the current flows.

d ≥ 2√
π

IS

√
ρclT N

Pcu
where, N =

√
L

AL−value (17)

To reduce skin effect and proximity effect losses in conductors, a copper-braid form,
which is many thin wire strands individually insulated and twisted or woven together
such as Litz wire, can be applied. However, since the wire price is calculated as part of the
inductor price, we consider the AWG of a single wire for convenience.
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Figure 20b shows the price per meter per AWG of copper wire. As the wire thickens,
the price per meter of the wire increases as an exponential function. The price per meter
per AWG is given as (18).

σL_wire = 2.0277e−0.23x (18)

4.4. Cost Comparison of the Inverter Using the Part Cost Model

In this section, the price of a 3-leg inverter and a 4-leg inverter are compared using
the part cost model. The 3-leg requires six IGBTs and the 4-leg inverter needs eight IGBTs.
An IGBT has 1200 V and 600 A ratings. The voltage applied to the DC-link capacitor of the
two inverters is 600 V. To meet the working voltage, connect four 7.5 mF capacitors with
a working voltage of 400 V in series parallel. Thus, the working voltage of the DC-link
capacitor is 800 V and the capacitance is 15 mF. The applied voltage of the filter inductor is
380 V. It uses film capacitors with a voltage rating of 550 V and capacitance of 150 µF with
a voltage margin of about 1.5 times higher. In the case of inductors, the voltage applied
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to the filter and the neutral inductor is the same, but the required inductance is different.
Since the minimum size of the filter inductor core meeting the output power capacity is
131 mm, the design uses a T140 × 103 × 25 core of AL-value 1100 nH. We calculate the
number of turns required for a filter inductor and a neutral inductor, derive the AWG and
calculate the price of the wire by multiplying the price per meter of the wire with the turns
and MLT (mean-length per turn).

The comparison of the 3-leg inverter and 4-leg inverter using the part cost model is
shown in Figure 21. Comparing the price of two inverters with the design conditions of
Table 1 results in a price difference of about USD 561. This is the result of the difference in
the number of neutral inductors and the number of IGBTs. The price comparison in Figure
21 does not take into account all the parts, design and manufacturing costs of the inverter.
A more accurate price comparison will be possible, considering that 4-leg inverters can
increase program coding costs and increase additional design costs for controllers compared
to 3-leg inverters.
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5. Conclusions

For 3-leg inverters and 4-leg inverters to which SVPWM control is applied, this paper
analyzes the failure rate and MTBF based on a fault-tree and compares the price of the
inverters. Because PCA is a reliability assessment that only takes into account the type,
number and connection status of parts, the failure rate usually increases as the number
of parts increases. However, the FTA results show a high failure rate in the order of split
DC-link capacitor 3-leg inverter > 3-leg inverter > 4-leg inverter. In general, the 4-leg
inverter with the largest number of parts should have the highest failure rate, but the
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redundancy effect significantly reduced the failure rate. For more accurate failure rate
prediction, the failure rate and MTBF of the 4-leg inverter according to the lifecycle of
the controller were analyzed. The MTBF of the controller shall be guaranteed for at least
10 years in order for the 4-leg inverter to secure MTBF of approximately eight years in the
25 ◦C operating conditions.

In conclusion, the 4-leg inverter has a price increase of USD 561 at the same power
capacity compared to the 3-leg inverter, but reliability is greatly improved by enabling the
operation of redundancy compensation while also enabling the adjustment of the energy
flow or output voltage in unbalanced load conditions.
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