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Abstract: Thanks to their higher performance compared to conventional batteries, lithium-ion (Li-
ion) batteries have recently become popular as a power source in many electronic systems. However,
Li-ion batteries are known to suffer from an aging issue: the available capacity is gradually degraded
as the operation goes by. The impact of aging is particularly critical to satellite systems where no
maintenance is available after the initial deployment. Recently, a real-time scheduling framework
was proposed to decelerate the aging of Li-ion batteries. However, this framework simply relies on
the fact that the elevated temperature results in a worse lifespan of the battery. In contrast to this,
in this paper, we argue that the reduced temperature may actually cause an adverse effect in the
battery lifetime when considering satellite environments. To evidently demonstrate this anomaly, we
extend an open-source Li-ion battery aging simulator to consider the temperature-dependent aging
characteristics of the Li-ion batteries. Then, a couple of alternative scheduling policies that better suit
the target satellite systems are evaluated in the simulator in comparison with the existing scheduling
policies. Our simulation results show that the existing scheduling method, which does not consider
the satellite temperature environments, rather deteriorates the lifespan of battery and the proposed
scheduling technique can extend the lifespan by up to 65.51%.

Keywords: real-time embedded systems; lithium-ion battery aging; lifespan; low earth orbit satellites

1. Introduction

Lithium-ion (Li-ion) batteries have been popularly used as a power source in mobile
devices thanks to their longer lifespan and higher energy density than conventional batter-
ies [1]. Their popularity is not only limited to customer electronics, but also increasingly
attracting attention in other real-time systems such as Electric Vehicles (EVs), Unmanned
Aerial Vehicles (UAVs) and satellites.

However, the Li-ion batteries suffer from some limitations such as safety, non-linear
performance, and aging issues. In particular, the battery aging issue is directly related
to the lifetime of a system when physical maintenance is infeasible, which is the main
challenge of this paper. The battery aging is usually represented by a capacity degradation
which is caused by a huge number of repeated cycles of charging and discharging. It is
common for electronic devices to become unusable due to this battery aging, instead of
due to failure of electronic or mechanical parts. In other words, the lifespan of a battery
has become a main bottleneck of the lifetime in battery-powered systems.

This aging effect has different impacts depending on the characteristics of systems.
While the impact of aging only causes some inconveniences in mobile devices, the same
level of aging would result in more critical consequences in other domains. In the case
of an EV which is equipped with a large number of batteries, the battery replacement
cost due to aging may be excessive. Moreover, a deteriorated health of battery sometimes
makes system operation unpredictable which can lead to catastrophic consequences in
safety-critical systems.
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Among various systems, the impact of aging is particularly fatal to satellite systems
where no maintenance is available after the initial deployment. Since Low Earth Orbit (LEO)
satellites revolve around the Earth, the sunlight period, in which the system is exposed
to sunlight, and the eclipse period, in which the Sun is blocked by the Earth, repeatedly
appear in an interleaved way. Note that harvesting energy from solar panels in the satellite
is only available during the sunlight period. Thus, during the energy-constrained eclipse
period, the battery is the only power source of the entire system. This implies that the
lifespan of satellite systems, which cost a lot for launch, can be compromised by the aging
of the batteries.

There are a handful of works that mitigate the aging of batteries for the satellite
systems. For a longer battery lifespan, Maheshwari et al. [2] proposed a transmission
power control technique that distributes traffic between adjacent satellites on the same
orbit plane. This study utilized the fact that the smaller amount of the required charge
per cycle, i.e., the shallower the depth of discharge (DOD), the longer the expected battery
lifespan. In addition to the DOD minimization, Lami et al. [3] claimed that minimizing
the state of charge (SOC) swing, i.e., the range of the used capacity, can extend the battery
lifespan. However, the above works have simply estimated the lifespan as a function
of DOD and this modeling is only valid under a narrow condition where the data for
modeling was obtained or measured. How the highly varying temperature condition of the
satellite systems would affect the battery lifetime has not been investigated in their studies.

There have been some studies in other industrial domains to mitigate the aging of
the Li-ion battery. Chon et al. [4] proposed a battery use guide scheme, targeting the
smartphone domain, that is based on a large-scale use-case profiling with crowdsensing.
Wegmann et al. [5] investigated the aging of hybrid battery with two different cell types
and reported that proper load splits between different cell types could improve the battery
lifetime at long recuperation phases in EV. However, none of these works can be directly
applied to satellite systems due to the heterogeneity in workload and the lack of large-scale
profiling data.

Recently, Kwak et al. [6] proposed a real-time scheduling framework, called Reserved
Execution Time (RET),that tries to maximize the battery lifetime in UAV systems. Based
on a Li-ion battery aging model proposed by [7], they tried to reduce the internal heat
dissipation out of battery to mitigate the aging factors. While they did consider the effects
of temperature in the battery aging, they basically assumed that the elevated temperature
always results in a worse battery lifetime. This does not always hold true even for the
systems operating on the Earth [8]. Furthermore, this assumption is increasingly unrealistic
when considering radical temperature changes often observed in the satellite systems.
Indeed, there have been several works that demonstrated low temperatures could also
cause adverse effects on battery aging [9,10]. Wu et al. [11] also investigated battery aging
of a number of batteries cycles with different discharge profiles at low temperature and
showed that the aging can be mitigated by increasing the battery temperature. However,
they did not propose any specific method how to increase the battery temperature. This
work focuses on how a real-time task scheduling approach can mitigate this adverse effect
within the given timing and power budget imposed in the satellite systems.

In this regard, we argue that the existing scheduling policy [6] that was proposed to
lengthen the battery lifetime may actually cause the opposite result for the satellite systems.
To evidently demonstrate this anomaly, we evaluate the lifetimes of batteries used for
satellite system on top of an open-source Li-ion battery aging simulator [12]. In doing so,
we first model the hardware and software behaviors of the target LEO satellites and their
ambient temperature changes throughout the revolution period in Section 2. Section 3
reviews a number of aging factors of Li-ion batteries that have been considered or ignored
in the existing techniques and how they can be affected by temperature changes. Based
on the discussed aging factors, we propose a modified scheduling policy that suits better
to the satellite systems in Section 4. It is shown in Section 5 that the proposed technique
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outperforms the existing technique in terms of the expected lifetime of Li-ion battery in
satellite systems, followed by concluding remarks in Section 6.

2. System Model

In this section, we describe how we model the satellite systems, their workloads
(tasks), and their working environments to quantitatively evaluate the battery aging.

2.1. Models for Target Satellite Systems and Their Workloads

The LEO satellites that we target in this paper refer to the satellites orbiting the Earth
at a low altitude (<2000 km) [13]. These LEO satellites are generally powered by the
energy harvested from solar panels, which charges the battery when exposed to sunlight.
During the eclipse period, the satellite system solely relies on the battery. For simplicity, we
model the system with a single battery pack without loss of generality. Furthermore, we
consider no overcharge/discharge, which is known to cause irreversible damage [14,15],
or cell balancing problems, which may result in sub-optimal energy efficiency in multi-
cell batteries [16], as the underlying battery management system is assumed to evenly
distribute the current demands in an optimal way.

A satellite system S consists of n subsystems (A subsystem can be any of hard-
ware/software components that may independently demand power dissipation, e.g., sen-
sor modules, communication modules, processors, and so forth), i.e., S = {S1, S2, ..., Sn}. A
subsystem Sj executes a set of its own power-consuming real-time tasks τ j = {τ j

1, τ
j
2, ..., τ

j
k}

which are executed mutually exclusively in a subsystem. That is, a subsystem can execute
only one task at a time. Each task τ

j
i ∈ τ j is characterized by a tuple of three constant

parameters (T j
i , X j

i , Pj
i ) that denote a minimum interval between successive execution

requests, worst-case execution time (WCET), and a constant current consumption. As
each task is characterized with these three constant values, we can uniquely identify the
current discharging behavior of the system as a single representative current trace once the
starting time of each task is fixed. It is worthwhile to mention that this workload model is
a widely accepted one as in other battery-aware scheduling techniques [6]. We also assume
that the minimum scheduling time unit is as small as 10 ms and the period/WCET are
represented as an integer number that is a multiple of minimum time unit. We consider
sporadic/periodic non-preemptive tasks with implicit deadline, i.e., the tasks should be
completed before the next execution request and a task execution is indivisible, thus cannot
be interfered by other tasks in the same subsystem.

Under these assumptions, the system model can be converted to a partitioned schedul-
ing on multi-core processors where each subsystem is abstracted as a processor executing
its own pre-assigned real-time power-consuming tasks. Note that, in the target problem,
the task-to-processor, i.e., task-to-subsystem, assignment is given by the design of the
satellite system. We only decide on when each subsystem (processor) executes the tasks in
order to minimize a battery aging while respecting all real-time constraints.

2.2. LEO Satellite Orbit Operation and Ambient Temperature Model

LEO satellites generally have different revolution periods depending on missions.
In this paper, we assume that the the target system has a revolution period of 100 min
consisting of 38 min of eclipse period and 62 min of sunlight period as exemplified in [17].
The batteries in the target system are being discharged only during the eclipse period,
while generation and consumption of energy happen at the same time during the sunlight
period. That is, within the sunlight period, the batteries are charged as much as the surplus
power, i.e., harvested power by solar panels subtracted by the consumed amount by all
subsystems. However, if eventually the harvested power is not enough for the power
demand, the batteries can also be discharged; that is, if more current is required than the
solar panel generates, the batteries would be discharged. In other words, the batteries
could also be discharged during the sunlight period as Mostacciuolo et al. [18,19] showed
in their work.
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The revolution behavior of the LEO satellite results in regular and predictable tem-
perature changes; Exposure to the sunlight heats up the system temperature during the
sunlight period. Conversely, it cools down during the eclipse period. As a result, satellites
orbiting around the Earth, experience extremely varying ambient temperature depending
on a presence or absence of sunlight. This behavior is also confirmed in other small satellite
systems [20]. As the ambient temperature is different depending on the architecture or
configuration of designed satellite, we borrow the ambient temperature model from the
work of Lee et al. [17] which is illustrated in Figure 1. They assume the ambient tempera-
ture varies linearly within [0 ◦C, 30 ◦C) for which the eclipse period (between t = 0 and
t = 38) and the sunlight period (between t = 38 and t = 100) last. This can be formulated
as follows:

Tambient(t) =

{
30− 38

30 t, if 0 ≤ t < 38
30
62 (t− 38), if 38 ≤ t < 100

(1)

where t denotes the relative time in the unit of minutes within a 100-min of revolution period.
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Figure 1. An ambient temperature model with one orbit period [17].

3. Li-Ion Battery Aging Model for Satellite Systems

In this section, we review the Li-ion battery aging models with two common aging
factors (Solid Electrolyte Interface and active material loss), which are widely adopted
in estimating the battery lifetime. Then, we extend the model to be accurately used for
satellite systems that operate in highly varying ambient temperatures by considering the
lithium plating effect.

3.1. Li-Ion Battery Degradation Model

Li-ion battery degradation models that are used for battery lifespan estimations can
be categorized into two: empirical model [21,22] or electro-chemical model [23–25]. The
empirical ones are not based on the sophisticated modeling of underlying physical pro-
cesses, but merely rely on the parameter fittings out of extensively measured battery
cycling data [22]. While these empirical models offer a simple yet effective solution to the
estimation of the battery lifetime, they only provide a limited analytic insight [26] and,
more importantly, their applications are limited to the similar environments or conditions
where the fitting data were obtained from. On the contrary, the electro-chemical model
quantitatively characterizes the physical processes of internal battery behaviors [12]. Thus,
this model can be applied to a wider range of operating conditions including the one that
is not accessible at design-time, for instance, the space environment for satellite systems.
We adopt an electro-chemical model in this work.
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Kwak et al. [6] also used an electro-chemical model for the lifetime estimation of
Li-ion batteries, based on two aging factors: Solid Electrolyte Interface (SEI) growth and
active material loss. SEI refers to a compound layer which is formed as a result of a side
reaction. That is, when lithium ions do not participate in the main reaction as depicted
in Figure 2a, i.e., charging/discharging, for any reason, but are involved in unintended
side reactions, a solid layer is accumulated either at the Anode or at the Cathode side as
illustrated in Figure 2b. The other factor is the active material loss, which is gradually
caused by mechanical stress induced by volume and structure changes [27]. Since Li-ion
battery produces current by means of the movements of lithium ions, the loss of lithium
ions that participate in the main reaction directly indicates a reduced battery capacity [28].

(a) A main reaction

(b) Side reactions

Figure 2. The difference with main reaction and side reaction.

The both degradation effects stated above are known as to be accelerated in an elevated
temperature. Jin et al. [23] modeled those two as functions of temperature, current, and
SOC, based on which the battery capacity loss is quantitatively modeled.

3.2. Battery Temperature Model

As shown before, in order to accurately quantify the aging effects, it is necessary
to model the temperature of the battery cell. Once the battery heating behaviors are
characterized by the heat generation qgen and the heat convection qconv, the battery cell
temperature T at time t can be formulated as follows:

ρ · cp ·
dT(t)

dt
= qgen + qconv, (2)

where ρ and cp are the density and heat capacity of battery, respectively.
The heat generation qgen is attributed to four heat sources. Among these heat sources,

the Joule ohmic heat is known to be the most significant factor of heat generation [29] and
can be formulated as

qjou = I2 · R (3)
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with I being the charged/discharged current and R being the effective DC resistance of
the battery.

3.3. Lithium Plating Effect

Note that we target the battery in LEO satellite systems that operate in highly varying
temperature environments as shown in Figure 1. In such cases, the battery aging model
should be properly extended considering the radical changes in the ambient temperature.
Existing battery aging models, e.g., the one used by Kwak et al. [6], failed to take this into
consideration. Specifically, they have not considered the lithium plating effect that can
accelerate the aging when operating in a very low temperature.

The lithium plating is observed when the battery is charged at a low temperature [30].
In a normal charging process, lithium ions intercalate into anode as depicted in the
Figure 3a. However, if the battery temperature is considerably low, diffusion at the anode
side is slowed down resulting in the accumulated lithium ions at the surface of anode,
as illustrated in the Figure 3b. This, in turn, causes the reduction of available lithium
ions, and thus the capacity of the battery. Furthermore, it can also result in a dangerous
consequence when the plated lithium induces an internal short circuit.

(a) Normal charging process (b) Lithium plating process

Figure 3. Charging processes in two conditions. (a) normal charging process without lithium plating
effect; (b) charging process with lithium plating effect due to a slower diffusion in a low temperature.

It is worthwhile to mention that each of the aging factors stated above may be affected
by the battery temperature in a different way. Typically, most chemical reactions, includ-
ing SEI, are accelerated at a higher temperature [31]. However, it has been reported by
Waldmann et al. [32] that the battery lifetime was the longest at 25 ◦C due to the adverse
effect caused by the lithium plating effect at lower temperatures (<25 ◦C). In other words,
the dominant factor that becomes the lifetime bottleneck may be different from one oper-
ating temperature to another. In this sense, Yang and Wang [8] investigated to figure out
optimal temperature for lifespan of batteries and reported that the optimal temperature
may vary depending on the cell characteristics as both the SEI growth and lithium plating
effect should be considered at the same time. These suggest that it is important to manage
the battery usage in a temperature-aware manner to prolong the battery lifetime in satellite
systems that operate in highly varying temperature conditions.

4. Proposed Scheduling Method

In this section, we propose a new scheduling policy that maximizes the expected lifes-
pan of Li-ion battery that is used in the target system modeled in Section 2. Kwak et al. [6]
proposed a scheduling policy, called RET, to maximize the battery lifespan for real-time
systems. They assumed a fixed normal ambient temperature which is usually about 300 K
and did not take the lithium plating effect into consideration in estimating the battery
lifetime. Therefore, in their modeling, it is always best to keep the temperature as low as
possible. So, they proposed to minimize the heat dissipated by the battery, specifically qjou
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which is known as the most dominant factor in Equation (3) by scheduling. Given the
workloads of the target system fixed, the sum of discharged currents from all subsystems
remains unchanged for any scheduling decision (As no dynamic voltage or frequency
scaling techniques considered, the amount of power (current) dissipated by all tasks is
constant for different scheduling results.). Based on the thermal dynamics modeled in [6],
it was proven that reducing the sum of squared currents by consumed by all tasks results
in lesser heat generation. In other words, they tried to minimize the variance of current
dissipation over time in the scheduling decision in order to maximize the battery lifetime.

However, such evenly distributed current dissipation loads may not always result
in an extended expected battery lifetime for satellite systems. As elaborated in the previ-
ous section, they operate in highly varying temperature environments and the ambient
temperatures mostly stay lower than the typical optimal temperature derived by Wald-
mann et al. [32], where the lithium plating effect may play a critical role in battery lifetime.
In particular, it is expected that the battery temperature continuously decreases during the
eclipse period. Charging Li-ion battery at low temperatures, e.g., right after the eclipse
period, may accelerate the lithium plating effect [32].

As will be shown in the evaluations, if the lithium plating effect is additionally con-
sidered in the lifetime estimation, the reduced battery cell temperature caused by the RET
scheduling policy results in rather shortened battery lifetime. Based on the observation of
this anomaly, we propose an alternative battery-aware scheduling policy which better suits
to the LEO satellite systems. It is hard to find out a single optimal operating temperature
since it may vary from one battery characteristic to another [8]. Even if the optimal tempera-
ture point is known, it is not trivial to keep the battery cell temperature at the optimal point
with respect to a set of heterogeneous workloads and the varying ambient temperatures.
Note in Figure 1 that the satellite ambient temperature is mostly below than the normal
room temperature (300 K) that normal systems operated on the Earth have. In this case,
the lithium plating effect is alleviated in a higher temperature [8]. Therefore, in this work,
we simply take the opposite approach to the RET framework; we try to place the current
discharge loads as unbalanced as possible with respect to the real-time constraints in favor
of increased temperature.

It is worth mentioning that, in this work, we restrict ourselves to the scope of schedul-
ing in heating up the battery cell, which means the total amount of discharged current
remains the same regardless of the scheduling decision. In the case that the harvested
energy is sufficient to power all subsystems and charge the battery for a certain amount of
time during the sunlight period, external thermal management techniques [33,34], e.g., us-
ing heaters, could be applied taking advantage of the extra power (current) to heat up the
battery. However, due to the additional weight and manufacturing costs, it is not common
to adopt such external thermal management approaches for small satellites [35]. Note
that the proposed scheduling approach can be applied independently together with these
external thermal management techniques. In this case, when and how much to actively
heat up could be considered as yet another problem to be optimized with respect to the
power availability.

Similarly to the RET framework [6], the proposed scheduling takes three-step off-
/on-line hybrid approach. First, as an off-line procedure, it calculates virtual execution
times, called reservation times (RV), for all tasks. These reservation times are assigned
in a way that the reservation time of each task is maximized but never causes a deadline
violation. Then, at run time, as a second step, it chooses a task to be scheduled next using
a conventional real-time scheduling policy, e.g., Earliest Deadline First (EDF). If task τi
is chosen for a subsystem in this step at time t, this task is said to be reserved for the
subsystem at time t and the time range [t, t + RVi] is occupied by τi, i.e., no other tasks can
be executed in this range.Finally, for a reserved task, when this task is executed should be
fixed at run time within its reserved time range. That is, in the previous example, the actual
starting time should be in the range [t, t + RVi − Xi).
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4.1. Off-Line Calculation of Reservation Time (Common for the RET Framework and the
Proposed Policies)

Algorithm 1 delineates the off-line calculation procedure of reservation times that the
proposed algorithm and the RET framework [6] have in common. For each subsystem
(processor), the reservation times of the tasks are initialized to their WCETs and all tasks
are stored in Q in a descending order of current consumption (lines 2–3). Then, for each
task popped from the head of Q, the reservation time is increased by 1 time quantum
(line 6) and the schedulability is checked with this increased reservation time being the
WCET (line 7). Once successful, this task is queued again into the tail of Q (line 8) and this
procedure is repeated until there is no further room for the increment in reservation time in
all tasks (lines 4–12). The idea is to find the largest time range of the task execution time that
guarantees the real-time schedulability even in the unluckiest case, i.e., WCETw

u = RVw
u .

For the schedulability analysis, the uni-core Non-Preemptive Earliest Deadline First (NP-
EDF) scheduling condition dervied by Jeffay et al. [36] is used. This off-line scheduling
algorithm takes a time complexity of O(max

τ
j
i ∈τ j(T

j
i −X j

i ) · sched_check(τ j)) for subsystem

Sj. Note that this reservation time calculation procedure is performed off-line, thus has no
impact on the runtime behavior of the system.

Algorithm 1 Calculation of reservation times

1: for every Sw ∈ S do

2: Q← φ; . Initialized as an empty FIFO queue

3: ∀τw
u ∈ τw, initialize RVw

u ← Xw
u and enqueue them into Q in a descending order of

Pw
u ;

4: while Q 6= φ do

5: τw
u ← dequeue(Q);

6: RVw
u ← RVw

u + 1 ;

7: if sched_check(τw) == schedulable with Xw
u ← RVw

u then

8: enqueue(τw
u ) into the tail of Q;

9: else

10: RVw
u ← RVw

u − 1;

11: end if

12: end while

13: end for

4.2. On-Line Scheduling in RET

At run time, firstly, it should be decided which task is reserved using an ordinary
scheduling policy. We call this default scheduling decision and used an EDF scheduler for
this. Then, for each of the reserved ones, when to start its actual execution is judiciously
determined within the reserved time range in a way that the variation of current dissipation
over time is minimized during the precise scheduling in the RET framework. Being an
on-line procedure, it is computationally intractable to investigate all possible scheduling
cases when making this decision. Instead, it is decided by a heuristic algorithm illustrated
in Algorithm 2 whenever a new task reservation occurs.

The procedure is given the current time stamp (tnow) and the array of the sum of the
currents dissipated by subsystems at each time step (I[t]) for [tnow, tmax] as input (lines 1–2)
where tmax denotes the biggest time stamp at which actual scheduling decision is made
among all subsystems. If a task is newly reserved by the default scheduling (line 3), all
tasks that are reserved but not yet fixed in scheduling are enqueued into a tail of the Q in
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a descending order of power consumption (lines 5–10). Note that a task that has already
been fixed its execution time before should also be enqueued if it is yet to be in actual
execution, i.e., tnow is smaller than its given starting time. Then, for each enqueued task, a
feasible starting time within its reserved time range, i.e., m ∈ [tnow, tnow + RVw

u − Xw
u ) such

that the interval sum of system-wide current consumption is minimized, is searched (lines
14–19). Once found, the task is decided to be executed from that time on and the current
(power) dissipation trace, I[t] is updated as per the scheduling decision (lines 20–22). Note
also that, if the actual task execution is completed than the end reserved time range, this
reserved time should not be used for other tasks’ executions.

Algorithm 2 Run time scheduling of the reserved tasks in the RET framework [6]

1: tnow: the current time step index

2: I[t]: current dissipation trace for t ∈ [tnow, tmax]

3: if a new task is reserved then . By the default scheduling decision

4: Q← φ; . Initialized as an empty queue

5: for each Sw ∈ S do

6: if Sw is reserved by τw
u and not in execution then

7: enqueue(τw
u ) into Q;

8: end if

9: end for

10: Sort Q in a descending order of Pw
u ; . From more power-consuming ones to lesser

11: while Q 6= φ do

12: τw
u ← dequeue(Q);

13: min← ∞; start← tnow;

14: for m in [tnow, tnow+RVw
u − Xw

u ) do

15: temp← ∑m+Xw
u −1

t=m {I[t] + Pw
u };

16: if temp < min then

17: min← temp; start← m;

18: end if

19: end for

20: for i ∈ [start, start + Xw
u ) do . Update I[t] as per the decided starting time of τw

u

21: I[i]← I[i] + Pw
u ;

22: end for

23: end while

24: end if

Figure 4 illustrates scheduling examples from the EDF and RET policies in comparison.
In the EDF policy, the scheduling decision is made in a work-conserving manner, i.e., no
task is allowed to defer its execution when the processor is idle. Thus, in subsystem Si, τi

a
and τi

b are executed back-to-back without any slack in-between at the beginning. On the
contrary, the RET framework first assigns the reservation time ranges for the two tasks
and separate them in time within their own reservation time ranges, resulting in the total
current dissipation workloads are more evenly distributed. For instance, by the RET policy,
τi

a in Si is discouraged to be overlapped with other tasks in other subsystems and that is
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why τ
j
a and τ

j
b are separately executed in Sj and τi

a is scheduled in the slack caused by these
two tasks.

(a) A general Earliest Deadline First (EDF) scheduling example

(b) A scheduling example from the Reserved Execution Time
(RET) policy

Figure 4. Examples of scheduling and current dissipation traces from (a) EDF and (b) the RET frame-
work.

As stated earlier, the heat generation is minimized when the variance of current
dissipation over time is minimized. Note that this is performed alternatively by minimizing
the sum of current consumption as revealed in lines 14–19 of Algorithm 2. In the originally
given trace I[t], the variance over time can be calculated as follows:

Var(I[t]) =
∑N

k=0(I[k]− avg)2

N + 1
(4)

in which avg and N denote the average current dissipation and the maximum time stamp,
respectively. By scheduling τ

j
i from m, the variance is changed to

Var(I′[t]) =
∑N

k=0(I[k] + bj
i [k] · P

j
i − avg′)2

N + 1
(5)

in which avg′ denotes the changed average current dissipation and bj
i [k] denotes a binary

variable that is only 1 if τ
j
i is in execution at time k. Note that avg′ and Pj

i are not sensitive

to the scheduling decision, i.e., bj
i [k]. By developing Var(I′[t])−Var(I[t]), it can be easily

noticed that minimizing Var(I′[t])−Var(I[t]) is equivalent to minimizing ∑N
k=0(b

j
i [k] · P

j
i ·
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I[k]). Therefore, the minimization of Var(I′[t]) can be safely replaced with minimizing
temp in line 15 of Algorithm 2.

4.3. Proposed On-Line Scheduling Policies

Based on empirical observations of the optimal temperature derived by Waldmann
et al. [32], unlike the RET framework, we argue that the reduced heat generation is not
beneficial to the battery lifetime in the satellite systems when they operate mostly at low
temperatures. Hence, we take alternative approaches for the on-line scheduling decision.
The first alternative, called MAX_VAR, is to find a starting time for each task with in its
reserved time that simply maximizes the sum of current dissipation as shown in Figure 5a.
In the example, the tasks are reserved in the order of τ

j
a, τi

a, τ
j
b, τi

b, and so forth. It can be

seen that τi
a and τi

b are determined to be overlapped in time with τ
j
a and τ

j
b, respectively,

to maximize the variance. However, this approach inevitably causes idle time slack post-
fixed to the actual execution in most cases. Due to this, some chances of overlapping remain
out of consideration. For example, as the second job of τ

j
a is scheduled at the beginning of

its reserved time, the second job of τi
a will never be able to be executed at the same time

with τ
j
a. To compensate for these lost possibilities of overlapping, we propose the second

alternative, referred to as MAX_VAR_ALAP, which also searches for the starting time
that maximizes the variance, but keeps the schedule as late as possible. As illustrated in
Figure 5b, this approach allows τi

a and τ
j
a to be overlapped in time for their second jobs too.

(a) A MAX_VAR scheduling example

(b) A MAX_VAR_ALAP scheduling example

Figure 5. Examples of scheduling and current dissipation traces from the proposed on-line scheduling
policies: (a) maximizing the variance (MAX_VAR) and (b) maximizing the variance while keeping
the execution as late as possible (MAX_VAR_ALAP).
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Algorithm 3 illustrates the on-line scheduling procedure of the MAX_VAR approach.
The default scheduling decision is made in the same way as the RET policy using EDF. But,
in determining the starting time of the reserved task, it considers the opposite objective; it
searches for the starting time that results in the maximum variance. Note that the max value
is initialized as 0, instead of min← ∞ of the RET policy, as shown in line 13. Whenever a
new maximum variance point is found (line 14), the starting time is updated (line 17).

Algorithm 3 Run time scheduling of the reserved tasks in the MAX_VAR approach

1: tnow: the current time step index

2: I[t]: current dissipation trace for t ∈ [tnow, tmax]

3: if a new task is reserved then . By the default scheduling decision

4: Q← φ; . Initialized ad an empty queue

5: for each Sw ∈ S do

6: if Sw is reserved by τw
u and not in execution then

7: enqueue(τw
u ) into Q;

8: end if

9: end for

10: Sort Q in a descending order of Pw
u ; . From more power-consuming ones to lesser

11: while Q 6= φ do

12: τw
u ← dequeue(Q);

13: max ← 0; start← tnow;

14: for m in [tnow, tnow + RVw
u − Xw

u ) do

15: temp← ∑m+Xw
u −1

t=m {I[t] + Pw
u }

16: if temp > max then

17: max ← temp; start← m;

18: end if

19: end for

20: for i ∈ [start, start + Xw
u ) do . Update I[t] as per the decided start time of τw

u

21: I[i]← I[i] + Pw
u ;

22: end for

23: end while

24: end if

Our goal in this on-line scheduling is to distribute the current dissipation workloads
as unbalanced as possible. The calculated reserved time range safely keeps the scheduling
decision free of any deadline violations. From the perspective of a single subsystem, one
may think that it would be beneficial to place the task execution times consecutively by
having horizontal execution bursts in Figure 5. However, as mathematically shown in
the previous subsection, the variance is proportional to the sum of current dissipation of
all subsystems over a certain period in time, i.e., the vertical bursts in Figure 5 matters.
As exemplified in Figure 5, the MAX_VAR may result in sub-optimal scheduling in terms
of vertical bursts by losing some possible overlaps.

In order to maximize the possibility of a task being overlapped with other tasks in other
subsystem, we propose another alternative on-line scheduling, called MAX_VAR_ALAP,



Electronics 2021, 10, 86 13 of 20

that places the task execution as late as possible when the sums of current dissipation are
tied for different starting points. For instance, the starting time of the second invocation of
task τ

j
a in Figure 5b is scheduled at the end of its reserved time range, unlike the MAX_VAR

approach. Afterwards, when the second invocation of τi
a is reserved, it can be overlapped in

time with τ
j
a as shown in the figure. Algorithm 4 shows how the MAX_VAR_ALAP differ

from the previous two on-line scheduling policies. Overall flow of the algorithm stays
the same, but it searches for the maximum variance point in a reverse order. The starting
index of the search loop (lines 14–20) is initialized to the latest possible starting point in the
reserved time range, i.e., tnow + RVw

u − Xw
u − 1, as shown in line 13 and the index of the

loop is switched in an opposite order (line 19).

Algorithm 4 Run time scheduling of the reserved tasks in the MAX_VAR_ALAP approach

1: tnow: the current time step index

2: I[t]: current dissipation trace for t ∈ [tnow, tmax]

3: if a new task is reserved then . By the default scheduling decision

4: Q← φ; . Initialized ad an empty queue

5: for each Sw ∈ S do

6: if Sw is reserved by τw
u and not in execution then

7: enqueue(τw
u ) into Q;

8: end if

9: end for

10: Sort Q in a descending order of Pw
u ; . From more power-consuming ones to lesser

11: while Q 6= φ do

12: τw
u ← dequeue(Q);

13: max ← 0; start← tnow+RVw
u − Xw

u − 1; m← start;

14: while m ≥ tnow do

15: temp← ∑m+Xw
u −1

t=m {I[t] + Pw
u }

16: if temp > max then

17: max ← temp; start← m;

18: end if

19: m← m− 1;

20: end while

21: for i ∈ [start, start + Xw
u ) do . Update I[t] as per the decided start time of τw

u

22: I[i]← I[i] + Pw
u ;

23: end for

24: end while

25: end if

The time complexity of the proposed on-line scheduling policies, i.e., Algorithms 3
and 4, are identical to that of the RET approach (Algorithm 2) as O(max

τ
j
j∈τ j(RV j

i −X j
i ) · n).

It is worthwhile to mention that, unlike the offline procedure, the scheduling overhead of
this on-line part can possibly affect the timing and current discharging behaviors. However,
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in this work, we assume that this run time overhead is insignificant as in [6] and do not
explicitly consider its effects both in timing and battery aging.

5. Evaluation
5.1. Battery Aging Simulator

The battery lifetime evaluation performed in the RET framework was based on the
thermal-electrochemcial pseudo 2D battery model proposed by Bizeray et al. [29]. How-
ever, the open source simulator released by them only supports the calculation of the
internal state for a single cycle. Thus, Kwak et al. [6] extended the simulator to support
multiple cycles, based on the degradation model proposed by Jin et al. [23]. Unfortunately,
the proposed technique cannot be directly evaluated with this simulator for two reasons.
They adopted fairly simplified correlation models for the SEI growth and loss of active
material. More importantly, they did not consider the lithium plating effect, which may be
critical in the satellite environment.

For the evaluation of this work, we used the open-source Li-ion battery aging simulator
, written in C++ and developed by Reiniers et al. [12], which is based on the same electro-
chemical model as Bizeray et al. [29] and considers the lithium plating effect. We made a
couple of modifications to the simulator to make it compliant to the target system. First,
we extended the simulator to have a variable ambient temperature. While the original
implementation takes a constant room temperature, it has been customized to have varying
environment temperature following Figure 1 as the simulation time proceeds. Second,
the original simulator, which had the minimum time scale of 1 s, was also modified to
work with a more sophisticated time scale (as small as 10 ms) as the minimum time scale
we consider in the scheduling is 10 ms.

5.2. Simulation Setup

For satellite task workloads, we generated task sets using UUniFast-Discard algo-
rithm [37], which can generate an uniformly distributed and unbiased task set for a given
utilization. We assumed a number of satellite subsystems n is 4 and a number of tasks k
in each subsystem is 5. Under this condition, we randomly generated a task set for each
subsystem with four different utilization points, i.e., U = {0.2, 0.4, 0.6, 0.8}. For a single
generated task, the period Tw

u was randomly selected within the range of [10, 1000] ms
(with the minimum time unit being 10 ms) and the WCET Xw

u was decided to match with
the given utilization with respect to the generated period, i.e., ∑ Xw

u /Tw
u should be equal

to the utilization. The current dissipation Pw
u was randomly chosen within the range of

[0.01C, 1
U C], where C is a measure of rate at which a battery is discharged relative to its

maximum capacity. For instance, 2C denotes 2A for a battery whose maximum capacity is
1 Ah. These random task generation procedures were performed in MATLAB. The detailed
information of the randomly generated task sets used for the simulation is summarized in
Table 1.

The scale of current is a very important configuration in the estimation of battery
lifetime as it is strongly related to heat generation. The RET framework considered the
average current of 4C to be discharged in in their target systems, UAVs, in which a number
power-consuming mechanical actuators exist. Considering the general amount of current
requirements of the LEO battery cells [38], we set the average scale of discharge current
and net charge current to C/2 and C/3 respectively. To reflect the real characteristics of
satellite systems, we additionally consider the solar panel degradation with temperature
increase. As the efficiency of power generation gradually decreases due to temperature
rise [20], we reflect this degradation behavior modeled in [17] to the simulator. As stated
in Section 2, the battery is also discharged when the demanding current is higher than the
harvested current even during the sunlight period.
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Table 1. Randomly generated task sets used for the battery lifetime simulations.

Period WCET Current

T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 T3 T4 T5

U = 0.2

S1 690 710 690 350 730 30 20 10 10 80 4.08 3.17 4.79 4.79 2.11
S2 130 780 250 140 380 10 20 10 10 30 4.53 0.49 4.83 2.43 4.58
S3 870 770 740 180 960 10 10 30 10 110 0.64 1.4 0.79 4.01 3.97
S4 940 450 120 840 130 20 30 10 10 10 4.57 2.74 4.86 0.71 4.8

U = 0.4

S1 760 370 690 280 840 40 10 20 30 180 2.3 0.82 1.69 1.57 1.76
S2 410 120 870 970 420 20 10 10 30 110 0.74 0.24 0.28 0.94 0.99
S3 170 260 340 470 550 10 40 20 10 80 1.37 1.11 0.5 1.52 1.43
S4 370 880 910 300 780 60 70 50 10 80 1.96 0.08 1.33 2.12 0.63

U = 0.6

S1 330 930 110 540 850 100 30 10 60 100 0.55 1.15 0.61 1.4 1.42
S2 800 190 760 410 250 140 20 100 10 40 1.33 0.09 0.94 0.3 1.35
S3 830 220 840 800 880 90 70 10 10 140 0.92 0.96 1.55 1.47 0.32
S4 550 880 200 350 940 130 20 20 50 90 0.39 1.66 0.44 0.47 1.64

U = 0.8

S1 870 290 610 670 820 260 20 50 30 240 0.67 0.9 0.73 0.87 0.63
S2 100 380 840 150 240 20 30 50 30 60 1.17 0.61 0.98 0.5 0.08
S3 280 410 170 770 770 110 100 10 10 80 0.97 0.56 0.9 0.16 0.66
S4 900 820 270 640 780 30 160 50 120 150 0.51 1.18 0.18 0.81 0.4

In each simulation, we generated the current traces of 100 min for one single revolution
period for four different scheduling policies: EDF, RET, MAX_VAR, and MAX_VAR_ALAP.
For this, each scheduling algorithm was implemented in MATLAB. The scheduling was
repeatedly performed with respect to the randomly generated task sets in MATLAB to
obtain the current traces, which in turn were be fed into the battery aging simulator to
evalute the battery lifetime. We have two baseline schedulers for comparison: EDF is
the naive NP-EDF scheduler without any modification and RET denotes the scheduler
proposed in [6]. Two proposed scheduling policies, MAX_VAR and MAX_VAR_ALAP are
the ones described in Algorithms 3 and 4, respectively. Note that the generated current
traces for the four different scheduling policies have the same average current dissipation,
but with different variances. We feed the generated traces to the modified battery aging
simulator in order to estimate the expected battery lifetimes. As the End Of Life (EOL) of
battery is generally defined as the time taken to the moment at which the remaining battery
capacity eventually reaches to 80% of its initial capacity [39], the simulation procedure
should be repeated until the evaluated remaining capacity in the simulator reaches the 80%
point. However, it is too burdensome to measure the remaining capacity every cycle. Thus,
in favor of efficient simulation performance, we measured the remaining capacity every
100 cycles and linearly interpolated the variables between two consecutive measuring
points. It is worthwhile to mention that the presented battery aging simulation is very time
consuming. Advancing each cycle in the simulator requires a considerable computation
power solving the differential equations in the model and the generated current traces
consist of several hundreds of thousands time units to be evaluated. It takes approximately
45 h to complete the simulation of one generated task set on top of an Intel Core i7-10510U
machine with 32 GB RAM running Windows 10. For the electro-chemical modeling of the
satellite battery, we used the LG Chem NMC 18650 battery parameters reported in [40].

5.3. Simulation Results

Figure 6 illustrates the measured current variances and the simulated lifespans that
four different scheduling policies result in for the four different randomly generated task
sets. As shown in Figure 6a, the RET policy always causes the minimal current variance. On
the other extreme, MAX_VAR_ALAP shows the highest current variances over the all four
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cases. It increases the variance up to 238.73% from RET and up to 34.14% from EDF in
the case of U = 0.2. These gaps gradually decrease as the utilization grows bigger (the
degree of freedom in scheduling gets smaller). As analyzed with an example in Section 4.3,
MAX_VAR could result in sub-optimal scheduling in terms of variance. This becomes
evident when comparing the measured variances of MAX_VAR and MAX_VAR_ALAP.
It sometimes results in even smaller variance than EDF and this implies that the slacks
caused by the reserved time may work against the prolonged battery lifetime.
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Figure 6. Simulation results of different scheduling policies.

The simulated lifespans reported in Figure 6b show the same tendency as the variance.
Comparing the lifetime caused by MAX_VAR_ALAP with that of RET, an improvement of
65.51% is achieved in the case of U = 0.2. For the other utilization points, U = 0.4, 0.6, 0.8,
the expected lifespan gain are lesser, 17.54%, 5.67%, and 1.99%, respectively, as the degree
of freedom in scheduling diminishes. This results prove that, on the contrary to the
conclusion of the RET framework [6], the increased current variances can actually extend
the lifespan of batteries in the satellite systems. This anomaly is attributed to the fact that
the heat generation due to such increased variance can mitigate the lithium plating effect
for satellite systems when they operate in low temperatures. Note that other aging effects
may be accelerated in this case. This results can be verified in the battery cell temperature
profile obtained by the simulator. The internal cell temperature profile reported by the
simulator for the case of U = 0.2 is illustrated in Figure 7. As expected, MAX_VAR_ALAP
always generates more heat than other policies and the the RET policy shows the lowest
temperature throughout the entire revolution period. The minimum cell temperature was
observed to be 3.35 ◦C when the tasks are scheduled by the MAX_VAR_ALAP policy, while
it was 2.45 ◦C for the RET policy.

As a result of the temperature difference, it has been observed that MAX_VAR_ALAP
promotes the amount of SEI layer by up to 13.10% (compared with RET), while the lithium
plating effect in RET is promoted by 230.78% in the case of U = 0.2. In summary, the existing
strategy that focuses on minimizing the heat generation can result in a serious adverse
effect in the battery lifetime when the system operates in considerably low temperatures.
The same tendency has been observed in the comparison between MAX_VAR_ALAP and
EDF. In case of U = 0.2, 0.4, 0.6, the lifespan extension by MAX_VAR_ALAP are 37.85%,
6.35%, and 2.23%, respectively.
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Figure 7. Simulated battery internal cell temperature profile at for U = 0.2.

5.4. Discussion and Future Work

For embedded systems, it is known that the choice of scheduling may influence a
number of system behaviors, e.g., energy consumption, performance, and dependability of
real-time control systems, and so forth. In particular, since the proposed method includes
an online part as stated in Section 4.3, it can possibly cause non-negligible effects in timing
and power consumption in large systems. Therefore, it is necessary to further investigate
how the scheduling overhead affects the system.

Since the Li-ion battery is associated with non-linear factors, such as rate capacity effect,
a fluctuating discharge current can cause a reduced discharge efficiency [41]. It has been
known that LEO satellites generally keep the DOD shallow, as small as about 10%–40% [38],
as it can be a dominantly contributing factor to lifespan degradation [42].This implies that
a current trace generated by the variance-maximizing policy, like the proposed one, may
result in this inefficiency. Thus, more quantitative analysis and optimization will be needed
to perform to determine the best degree of distributed current workloads with respect
to a given pair of temperature and DOD condition. Also, the battery power capability,
which is usually limited under low temperature, can be increased by the generated heat
from unbalanced current dissipation. In fact, it is possible to further optimize the trade-
off between the usable battery capacity in a cycle and the lifetime. We leave this co-
optimization as a future work.

Furthermore, it is noteworthy that the proposed scheduling policy is simply built
upon an empirical observation that the increased battery temperature always results in
better lifetime, thanks to the mitigation of the lithium plating effect. While this assumption
holds true for the tested simulation setup, the optimal temperature, in principle, may vary
depending on the battery cell characteristics. This implies that a more general adaptive
scheduling policy can be developed to keep the temperature close to optimal one if the
optimal temperature can be analyzed in advance. Such an adaptive scheduling approach
could also be effective to handle uncertain workloads, e.g., event-driven workloads such
as communications with ground stations. This also remains as a future research topic.

6. Conclusions

In this paper, we deal with a real-time scheduling technique that lengthens the Li-ion
battery lifetime in satellite systems. We showed that the existing scheduling policy, which
was proposed to minimize the heat dissipation, may cause even reduced battery lifetime
for the target satellite systems. This anomaly is attributed to the fact that the existing
scheduling policy assumed a fixed normal ambient temperature and did not take the
lithium plating effect into consideration in estimating battery lifetime for satellite systems
operating in low temperature. Hence, we proposed an alternative battery-aware scheduling
policy which better suits to the LEO satellite systems. In the alternative scheduling policies
we proposed, the current discharge loads are placed as unbalanced as possible with respect
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to the real-time constraints, in favor of increased temperature by scheduling, to mitigate
the lithium plating effect. The simulation results performed on a modified open-source
simulator proved that the proposed scheduling could considerably enhance the expected
lifetime by up to 65.51%.
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