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Abstract: The development of the Internet of Things (IoT) in electronics, computer, robotics, and
internet technology is inevitable and has rapidly accelerated more than before as the IoT paradigm is
a promising solution in terms of solving real world problems, especially for digitizing and monitoring
in real time. Various IoT schemes have successfully been applied to some areas such as smart health
and smart agriculture. Since the agriculture areas are getting narrow, the development of IoT in
agriculture should be prioritized to enhance crop production. This paper proposes the IoT scheme
for long range communication based on Long Range (LoRa) modules applied to smart agriculture.
The scheme utilizes the low power modules and long-distance communication for monitoring
temperature, humidity, soil moisture, and pH soil. Our IoT design has successfully been applied
to agriculture areas which have unstable network connections. The design is analyzed to obtain
the maximum coverage using different spreading factors and bandwidths. We show that as the
spreading factor increases to 12, the maximum coverage can be transmitted to 1000 m. However, the
large coverage also comes with the disadvantages of the increased delays.

Keywords: LoRa; communications; agriculture; the internet of things

1. Introduction

Following the preamble of the Internet of Things (IoT) paradigm, several fields have
applied this new paradigm to overcome existing problems. At the beginning of the IoT
paradigm, assessment of this technology starts getting popular for addressing communi-
cation problems in the medical area. Further, wearable devices for medical applications
are developed so that users could conduct a self-health assessment and be monitored
automatically. These smart health devices represent a core part of the IoT paradigm. For
instance, there is the introduction of the Internet of Things (IoT), as shown in [1,2]. The
basic module to create an IoT platform for healthcare, as well as the medical application, is
also explained and discussed.

On the other hand, the paradigm of constructing IoT for several fields is also studied,
and there are several proposed works discussing the ideas for implementing IoT as the
leading player to solve monitoring assessment. One promising field to apply and integrate
IoT to the typical traditional system is in agricultural areas. Several applications of IoT
in agriculture are offered to end-users [3,4]. In addition, researchers also explore the
appropriate technology we may need to construct solutions in agricultural areas by utilizing
an IoT scheme [5]. In this paper, Chen et al. provide a cheap and affordable solution
illustrated as a full framework named Agritalk. This framework is built by integrating
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several sensors through the specifically proposed platform committed for agricultural-
based applications. For instance, the monitoring scheme to measure soil conditions as well
as the current weather is discussed. They also introduced the use of a cloud-based system
for the entire IoT solution.

In Indonesia, most farmers are located in rural areas where the communication net-
work is not stable enough for IoT construction [6]. In reality, we need to overcome the
availability of network resources. To solve the problem, we proposed the development of
an IoT scheme based on Long Range Wide Area (LoRa) communication to send the data to
the cloud or remote server. As we know, LoRa is the pioneering of long-range connections
with low power consumption and can be one of the solutions for limited resources [7,8].

Therefore, using the LoRa based approach, we can reach long-range communication
compared to Bluetooth or other wireless communications [9]. Additionally, not only can it
address long distances, but LoRa can also save on power consumption. Comparing to other
conventional wire or wireless communications, LoRa is beneficial to be employed in areas
with very limited access to the ideal infrastructure. For example, as listed in [8], LoRa has a
wide coverage area and supports a private deployment compared to NB-IoT and Sigfox that
need licensed spectrum, which may limit the flexibility of the deployment. Furthermore,
compared to WiFi, Zigbee, and Bluetooth, LoRa has a relatively low power consumption [8].
Then, several contributions of using our approach can be listed as follows. First, the scheme
to implement low power and long-distance communication for the agricultural sector in the
Indonesian rural area is designed. Then, we also provide an affordable monitoring solution
for Indonesian farmers. Eventually, we conduct an analysis of some factors affecting
the performance of LoRa-based communications in a real environment in agricultural
fields. The rest of our paper is written as follows. Related work discusses several studies
and approaches for IoT solutions implemented in the agricultural sector. After that, the
explanation of the proposed scheme is elaborated in design and implementation. Thus, we
analyze the experimental results of our study. Finally, future work and the conclusion are
stated in the last section.

2. Related Work

As the adoption of IoT in the agriculture field becomes extensive, several challenges
have been identified to maximize the privilege of IoT [4]. This challenge includes the
necessity of devices for staying active and functioning in a long duration with limited
power resources. This low power feature becomes obligatory since the device is located in
remote areas where the replacement of the battery is regularly scheduled for long periods
due to having large areas to cover, such as large farming areas and vegetable plantations.

One of the solutions to address the challenge is proposed by cellular-IoT technology.
The technology is able to cover large areas since the technology maximizes the power of
fourth-generation (4G) Long Term Evolution (LTE), which have proven successful com-
mercially and widely used in various applications [10,11]. The examples of cellular-IoT
technology applied using licensed LTE are LTE-M and NB-IoT. Both LTE-M and NB-IoT
employ Single-Carrier Frequency Division Multiple Access (SC-FDMA) for uplink com-
munication and Orthogonal Frequency Division Multiple Access (OFDMA) for downlink
communication. However, the LTE implementation suffers from the energy efficiency
problem since it requires high energy consumption to transmit the signal.

Another solution in IoT for agricultural fields is provided by some private service
providers such as Sigfox [12] and In-genu [13]. Sigfox is a closed source infrastructure,
operating in ISM Sub-GHz and utilizing Differential Binary Phase Shift Keying (DBPSK) for
uplink communication and Gaussian Frequency-Shift Keying (GFSK) for downlink com-
munication. Sigfox is mostly famous in Europe, applied in livestock management, smart
irrigation, and precision agriculture. Ingenu works under the closed source infrastructure
located in San Diego, operating in ISM 2.4 Ghz and utilizing Random Phase Multiple
Access (RPMA), which offers a larger bandwidth of 80 MHz. However, private service
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technology relies on the use of closed source infrastructure, which suffers from a high price
in the future.

To respond to these challenges of energy duration and a low-price low-power wide-
area network (LPWAN), Long Range Wide Area (LoRa) communication protocol is intro-
duced as the long-range and low power communication, particularly for integrating IoT
devices, and is suitable for monitoring the remote and rural areas [14]. LoRa works in a
non-licensed band below 1 GHz, which is utilized in long distance communication opera-
tions. There are several approaches using LoRa as the machine-to-machine communication
system [15]. For example, by constructing LoRa infrastructure, IoT can be implemented in
agricultural fields such as for smart agriculture [16–19] including star-fruit plantations [20],
tree farms [21], mushrooms [22], and infrastructure of a rural area specifying to establish a
connection with remote horse stable [23], a water irrigation system [24], and application in
smart health systems [25,26].

The development of rural areas using IoT approaches inevitably occurs, since IoT is
regarded as an appropriate solution in terms of feasibility and reliability in the real world,
particularly for digitizing and monitoring surroundings.

3. Design and Implementation

From several points of view, we are going to discuss the design of our framework
and platform. Thus, we can explore the model into several parts, such as the design of the
general framework for our LoRa infrastructure itself and the deployment of several sensors
in LoRa nodes. Moreover, we also look into the details of the algorithm design for data
transmission.

3.1. The Design of LoRa Infrastructure

The design of the Internet of Things (IoT) based on LoRa communications is depicted
in Figure 1. The sensor node is equipped by the LoRa transmitter to send the information
of sensing measurement. From the sensor node, sensing data is transmitted to the LoRa
gateway using half-duplex communication. Therefore, data is acquired by the server, acting
as the cloud of our scheme. Eventually, users can monitor the environment of their field
and use the record of the data to have an action based on the reality of the field.
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Figure 1. Internet of Things (IoT) based on Long Range Wide Area (LoRa) communications.

Therefore, to have a long-distance capability for transferring the data, we follow the
LoRa standard protocol. According to the fundamental formula of LoRa based transferring
data scheme, longer distances can be achieved by setting a higher spreading factor, as
illustrated in Equation (1). To measure the effectiveness of every parameter, we conduct
the experiment to find the best combination we may need.
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3.2. LoRa Based Dragino Implementation

The pilot experiment utilizes the Dragino Lora IoT Kit [27] as a Lora framework with
a frequency of 925 Mhz, a maximum link budget around 168 dB, and a dynamic range
RSSI around 127 dB. The setup of the Lora system requires two devices, which are located
separately. The first device called as a client, which is located in a remote area, consists of a
LoRa shield and Arduino Uno. The client, in which refer to edge computing paradigm, is
surrounded and connected to several sensors such as a DHT11 [28] for air temperature and
humidity, a soil moisture sensor for estimation of water content in soil, and a pH soil sensor
for measuring soil pH. The client works by collecting data obtained from three different
sensors, then broadcasting them via LoRa wireless. The detail of client architecture is
shown in Figure 2.
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Thus, to store the recorded data, we construct a client-server communication using
Dragino LG-01P LoRa gateway. The server receives and collects the data which is broad-
casted by several clients. Figure 3 shows the server architecture. The server then maps the
data received from clients by adding one dummy variable such as code “01” for NODE
1 and “02” for NODE 2. The Arduino IDE is installed to the server so that the users can
access the data and data logger.
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3.3. The LoRa Physical Layer

LoRa uses frequency chirp modulation with varying frequency over time to decode
information. This is known as chirp spectrum modulation. Due to the linearity property
of the chirp, the frequency offset in the server and client are equivalent, eliminated by
the decoder. This advantage property allows the frequency offset, reaching 20% of the
bandwidth without impacting the decoding process [29]. In this LoRa modulation scheme,
several parameters are open to customization. These parameters include bandwidth (BW),
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the spreading factor (SF), and code rate (CR). LoRa uses the logarithm in base 2 for chirp in
the spreading factor. It influences the bitrate modulation, resistance to noise, and decoding
easily. In this type modulation, the chirp rate will depend on the bandwidth parameter,
as the chirp rate is proportional to the bandwidth. Equation (1) formulates the relation
between the chirp rate and the bandwidth.

Ts =
2SF

BW
(1)

where Ts represents the duration of package transmission, SF is the spreading factor, and
BW is the bandwidth. This formula represents that the increasing spreading factor will
eventually divide the span of the frequency of chirp by 2 and multiply the duration of
package transmission. Moreover, the bit rate at any given spreading factor is proportional
to the bandwidth, also doubling the transmission rate. Moreover, the code rate (CR) is also
open to adjustment. Equation (2) formulates the customizable CR in LoRa modulation.

Rb = SF × BW
2SF × CR (2)

where Rb is the bit rate. The Equation (2) allows us to compute the bit rate (Rb) in
LoRa modulation.

3.4. Testing Scenario

In this scenario, we verify that the maximum distance and packet delay of the LoRa-
based Dragino implementation in agriculture can be reached. The test is conducted by
varying the spreading factor and the bandwidth. First, the spreading factor is varied from
7, 9, and 12. Moreover, the bandwidth is set in values of the range of 7800–500,000 Hz.
The delay as well as the maximum data are measured to have an insight into the data
communication from the client side to the server. The location of clients is spread out in the
range of 50–1000 m with an increment of 100 m. Figure 4 shows the test flowchart of LoRa-
based Dragino implementation. For the delay test, we take the average value of the delay
at each location that is passed for 1 min. The delay measurement was implemented in the
Microcontroller used by device nodes. The scheme for calculation is depicted in Figure 5.
Please note that the spreading factor is set firstly, then followed by the bandwidth value.
This is required to identify the sufficient bandwidth value so that the data is transmitted at
the closest distance to the server.
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4. Result and Discussion

We had established and set the real environment of the LoRa-based Dragino imple-
mentation in rural areas, more specifically, on one of authors’ farming areas, as illustrated in
Figure 6. The surroundings of the farming site used to conduct the experiment is depicted
in Figure 7. The map was taken from Google Maps, and the implementation was located in
Tempurejo village, Jember, Indonesia. We also conducted assessments for evaluating the
performance of the default parameter from Dragino and measuring available variables af-
fecting LoRa performance, such as spreading factors and bandwidth. Gateway was located
near the server, and the distance between the gateway and the farming site was around
700 m. We adjusted the distance of measurement between device nodes and gateway based
on the straight line shown in Figure 7 and used in the architecture of the communication
protocol as shown in Figure 3.
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4.1. Analysis Using Default Parameter

Firstly, the test was conducted to assess the default parameters from Dragino compris-
ing the spreading factor of 7 and the bandwidth of 125 kHz. The parameter was carried
out following the existing scenario explained in Section 3. Table 1 and Figure 8 show
the detailed result of the experiment. As can be seen in Table 1, the average delay of the
proposed scheme was around 145–260 ms. The experiment to get the real behavior of the
available default parameters from Dragino was set to get the real data from a distance
of 100 m to 400 m as a maximum distance. We also noticed that, the further the distance
between the server and the client, the delay may increase, indicated by the data taken in
the range between 100 to 300 m. However, an anomaly came in the data received from
range 400 m. We further investigated that it may come from the shaking device caused
by natural effects, such as wind or an animal passing through our device nodes in a real
environment. This phenomenon, experiencing of the shaking device, may also affect the
wiring connection, and then the LoRa module cannot smoothly process the data sending.
A further experiment is necessary to support our findings.
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Table 1. The result with default parameters.

Range (m)
Time (ms)

Node 1 Node 2

100 145.8934 152.4674
200 173.6295 179.138
300 260.4892 250.1508
400 147.229 232.6086

4.2. Analysis in Varied Parameters

Secondly, we conducted the experiment using the varied parameter as explained in
Section 3. The bandwidth parameter was varied according to Figure 4. The experimental
objective was to find the appropriate parameters which may perform well during package
communications in our real environment. Theoretically, with the increase of spreading
factor (SF), the maximum bandwidth that can be set will be reduced. As per the preliminary
investigation, we found some anomalies that may affect the implementation in the real
world. Then, to find the maximum bandwidth setting for specific SF in our implementation,
we tried the bandwidth value ranging from 7800 Hz to 500,000 Hz. Table 2 shows the
specific parameter of the spreading factor and the maximum bandwidth that can be used
and is workable in our case. The value of SF was selected based on the fact that the default
value of SF in Dragino is 7. Therefore, to find the longest distance of the module we used,
we need to have the increasing value. Then, 9 was chosen as the median value, since
12 is the maximum workable value supported by the module. Eventually, the findings
were regarded as the main consideration to adjust and set the parameters on a second
experiment to have the workable solution for our specific agricultural use.

Table 2. Spreading factors and maximum workable bandwidth settings.

Spreading Factor Maximum Workable Bandwidth Settings

7 125 KHz
9 31,250 Hz

12 125 KHz

4.3. Coverage Performance Analysis

To measure the package communication in a certain coverage, we evaluated the em-
ployed module performance during sending and receiving of the package. The evaluation
was conducted to assess the network performance of the LoRa communication scheme
ranging from 100 m to 1000 m using the parameters assessed in the previous experiment.
Table 3 and Figure 9 depict the performance of the LoRa communication scheme imple-
mented in our work. It shows that some spreading factors have reached the maximum
range early, for instance the spreading factor of 7 reached 400 m and the spreading fac-
tor of 9 reached 500 m, respectively. This was indicated by 0 transmittal received in the
servers. Besides, we also noticed that the varied spreading factor eventually influences the
delay. As the spreading factor increases, the delay of communication between the client
and the servers was slightly to have a longer communication shown by the increasing of
delay, for instance the spreading factor of 7 suffers a 150 ms delay, while the spreading
factor of 12 suffers an almost 10 times longer delay. However, the spreading factor also
affected the range of the communication between the server and the client. The higher the
spreading factor value was given, the further the distance that could be reached, so that the
devices could communicate with each other in a longer range. Meanwhile, by increasing
the spreading factor, it was affecting the delay generated by the system. The delay took
a longer time even if the transmission was conducted in low range. For example, for
spreading factor 7, an average delay of the proposed scheme was 150 ms, but on spreading
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factor 9, the average of the delay value increased to 250 ms. Likewise, as the spreading
factor changed to 12, the delay increased to 1320 ms.

Table 3. Assessment of several spreading factor parameters.

Range (M)
Time (ms)

Node 1/7 Node 2/7 Node 1/9 Node 2/9 Node 1/12 Node 2/12

100 150.9788054 151.3590426 248.4338139 251.7093023 1321 1320.982456
200 162.0192308 156.5565111 245.9020101 252.4900181 1321 1321
300 266.8132678 207.2474747 301.3913934 280.0722101 1344.175439 1370.830189
400 238.8282828 222.8467153 273.9149338 350.150838 1321 1424.627451
500 0 0 390.5179856 332.6085714 1320.984848 1321
600 0 0 0 0 2917.208333 1445.622642
700 0 0 0 0 1346.423077 1321
800 0 0 0 0 1830.319149 1579.456522
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Besides that, by looking at the facts contained in Table 3, several findings could
be summarized. First, to be able to transmit data at a close range, the spreading factor
parameters need to be decreased. Meanwhile, if the user prefers to transmit data over long
distances, the value of the spreading factor must be increased. Second, adjusting the value
of the spreading factor to receive data transmission with a specific range is significantly
affecting the delay generated by the system. Thus, the further the data is transmitted, the
spreading factor value needs to be increased. Assessing the value of the spreading factor, it
is clearly presented in Table 3 that adjustment of the spreading factor to the higher value
was impacting the delay communication in the proposed work, even at very close distances
(100 m). Meanwhile, the clear illustration of the relationship between the value of the
spreading factor to the distance and delay is depicted in Figure 9. From the graph shown in
Figure 9, it could be notably seen that the delay measured in our real implementation was
assessed to have the rising trend indicated by the increasing of the time measured during
the data transmission. However, the anomaly was found in the data taking from NODE 1.
As can be seen in Table 3, NODE 1 experienced the data deviation for the communication
taken from the distance of 600 m. We found that the nature effects played an essential role
for the deployment of LoRa in agriculture. The experience of the device shaking, caused
by nature such as wind or rain, would have an impact for the communication in the real
world. We also conducted the experiment for 900 m and 1000 m. However, in our proposed
work implementation, the device node could not reach the gateway.

4.4. Reassessment of the Package Transfer

The reassessment of the data transfer was conducted three times, and the goal was to
measure the real delay of the LoRa communication implemented in our proposed work. A
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careful experiment was conducted by ensuring the area was clear enough from animals
passing by our devices. To make the circuit connection more robust, we also carefully
shielded the wiring connection. Therefore, the experience of shaking the device could be
minimized as well. In addition, the data presented in this section is the average value
of all experiments (three times). As depicted in Table 4 and Figure 10, the data clearly
presents that the anomaly shown in Table 1 was not occurring. The data taken from a clear
environment was consistent without experiencing an anomaly.

Table 4. The average value from reassessment of default parameters.

Range (m)
Time (ms)

Node 1 Node 2

100 145.8934 152.4674
200 173.6295 179.138
300 260.4892 250.1508
400 341.2726 329.2309
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The reassessment of the data transfer in a possibly clear environment was also per-
formed to investigate the several spreading factors used in the proposed work. Using a
shielded connection and a relatively clear environment, the error presented in Table 3 could
be avoided, as shown in Table 5 and depicted in Figure 11. Therefore, as we face the real
effect from animals or even nature, a careful design is needed to ensure the robustness of
the scheme and to minimize errors.

Table 5. The average value from the reassessment of several spreading factor parameters.

Range (M) Time (ms)

Node 1/7 Node 2/7 Node 1/9 Node 2/9 Node 1/12 Node 2/12

100 150.978805 151.359042 248.433813 251.709302 1321 1321
200 162.019231 156.556511 254.902010 252.490018 1321 1321
300 266.813268 207.247475 301.391393 280.072210 1321 1321
400 305.465116 252.846715 363.876872 391.516129 1321 1322
500 0 0 390.517985 449.640425 1320 1321
600 0 0 0 0 1321 1321
700 0 0 0 0 1321.000807 1440.981308
800 0 0 0 0 1827.963158 1837.191083
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5. Conclusions

We propose an IoT scheme for monitoring in the agriculture area. Therefore, the
implementation of the IoT scheme for long range communication is constructed and the
LoRa-based dragino scheme in agricultural areas is feasibly effective to be adopted in order
to monitor the areas within long distances. Thus, several experiments for data transfer
have been conducted to test the performance of our proposed design. Some factors might
affect the performance of LoRa-based communications in a real environment. Eventually,
the reassessments of data transfer in a clear environment are re-conducted to check the
anomaly in the previous experiments. In addition, by reassessing our platform in a clear
environment, it is confirmed that the anomaly data can be avoided. Therefore, the LoRa
developers should be careful enough to construct and assess the effective parameters and
nature consideration used for realizing the LoRa scheme implemented in remote or rural
areas.
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