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Abstract: As the technology node shrinks and shifts towards complex architectures, accurate control
of automated semiconductor manufacturing processes, particularly plasma etching, is crucial in
yield, cost, and semiconductor performance. However, current endpoint detection (EPD) methods
relying on the experience of skilled engineers result in process variations and even errors. This paper
proposes an enhanced optimal EPD in the plasma etching process based on a convolutional neural
network (CNN). The proposed approach performs feature extraction on the spectral data obtained
by optical emission spectroscopy (OES) and successfully predicts optimal EPD time. For the purpose
of comparison, the support vector machine (SVM) classifier and the Adaboost Ensemble classifier are
also investigated; the CNN-based model demonstrates better performance than the two models.
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1. Introduction

As the technology node shrinks and shifts towards complex architectures, accurate
control of automated semiconductor manufacturing processes, particularly plasma etching,
is crucial in yield, cost, and semiconductor performance. However, current end-point detec-
tion (EPD) methods relying on skilled engineers’ experience result in process variations and
even errors. Various approaches have recently been put forward to reduce such variations
and errors, based on artificial intelligence (AI).

Artificial intelligence (AI) allows predicting results and behaviors in advance from
collected experimental data through training procedures. Attributed to recent enhancement
in computing capability and algorithms, it has progressed significantly and has been
widely used in vast application areas [1–10]. In scientific and engineering problem-solving
and manufacturing processes, machine learning has received great attention [11–13]. As
advanced manufacturing becomes more complex, faster, and automated, quality control,
process monitoring and predictive maintenance are crucial. In this regard, AI is suitable
for automated semiconductor manufacturing as the technology node shrinks and shifts
towards complex architectures [14–16].

There are some reported works related to adopting machine learning and AI in
yield improvement, electrical testing, and predictive equipment maintenance [17–22]. Re-
cently, they have been explored to boost semiconductor fabrication processes such as
finding and classifying defects, lithography pattern recognition, and plasma etching pro-
cess [23–29]. For the sub-7 nm technology node, the plasma etching scheme for extreme
ultraviolet (EUV) patterning is quite challenging and optimal EPD is of paramount im-
portance. As a means of controlling plasma etching, the various EPD methods have been
proposed, and a non-invasive optical emission spectroscopy (OES) monitoring is widely
adopted [30,31]. However, two concerns may limit its applicability for the future technol-
ogy node: (i) difficulty in monitoring a vast amount of data across wide spectrum ranges
in every sub-second, and (ii) the smaller feature size, the weaker optical signal. Therefore,
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machine learning and AI have been expected to provide some solutions to these problems,
and previous work to tackle these issues has included SVM and K-means classifier [32–36].
In recent, neural network architecture is proposed to map the sensor data as input and the
metrology as output. The efficacy limits of the neural network model are demonstrated
with a small dataset [37]. A deep learning-based domain adaptation method is proposed
for fault diagnosis in semiconductor manufacturing [38]. In this study, the deep convo-
lutional neural network is used for autonomous feature extraction and health condition
classification. A deep learning approach is proposed for virtual metrology that exploits
semi-supervised feature extraction based on deep convolutional autoencoders [39]. This
approach is applied for etch rate estimation from optical emission spectroscopy (OES) data.

In this study, the CNN model is developed and optimized for improving prediction
accuracy using OES spectral data during the plasma etching process. According to a
previous work [30,31], the OES spectral data at the endpoint display a specific pattern with
respect to wavelength. It is well-known that CNN is good at specific two-dimensional
pattern recognition such as image detection. For this reason, the CNN-based model is
employed in this study. The OES data used in this experiment are collected from the in-
situ plasma etching process monitoring. The ground truth endpoint times for endpoint
are obtained by verifying the produced wafers. For comparing the performance of the
proposed model, the support vector machine (SVM) [40–42] and the Adaboost [43,44] are
employed for the endpoint detectors.

This paper is organized as follows. Section 2 presents the proposed model used in the
experiments and feature extraction techniques are described in Section 3. The experiment
results are presented and discussed in Section 4, and finally, Section 5 summarizes the work
with future research directions.

2. CNN-Based Model

Figure 1 shows an overview of the training process employed in this study. After
inputting training data for learning, they are converted into a matrix form or a vector
form depending on convenience for learning in the pre-processing stage. Thereafter, the
normalization process is conducted, and an artificial intelligence model is learned by
feedbacking the prediction results. When testing the learned model, the test data are
applied to the model through the pre-processing and normalization stages. The prediction
results are compared to the ground truth to evaluate the performance of the models.

Figure 1. Flowchart of the training process.
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In this study, a CNN model is investigated with respect to various parameters, includ-
ing layer numbers and the size and number of filters, since such parameters are crucial to
overfitting. A CNN model of eight layers is selected by trial and error, and it is observed
that accuracy decreases when the number of layers and/or filter sizes decrease. The valida-
tion loss value increases when they increase. For exploiting the good feature of CNN and
better performance, data are reshaped from a 1 × 2048 vector to a 32 × 64 matrix. In the
first layer, the convolution layer, the number of filters is set to 16, its kernel size is 3 × 3,
and Relu is employed for the active function. The pooling layer is maximum pooled with
2 × 2 kernels. The number of filters is set to 32 on the convolution layer. The remaining
are the same as those of the first layer. The maximum pooling is then performed on the
fourth layer, the fifth layer is a flatten layer, and all nodes are fully connected. In the sixth
layer, 2688 nodes are fully connected to 20 nodes. The seventh layer, the dropout layer, is a
normalization process that randomly removes some nodes entering a fully connected layer.
Finally, in the eighth layer, the binary layer is fully connected to the two layers and returns
to the Softmax function. The total amount of nodes used in this model is 58,622.

Table 1 describes the construction of the model used in the experiment, which illus-
trates each layer’s type and dimension, the size of the kernel, and the number of perceptrons
connected. In the type of layers, the flatten layer is a layer that transforms two-dimensional
information into one-dimensional to convey the characteristics obtained from the convolu-
tion layer and the pooling layer to the fully connected layer. The model structure of CNN
is illustrated in Figure 2. The optimizer used in this study is an Adam optimizer, and the
loss function is categorical cross entropy [45].

Table 1. Summary of the CNN model considered in this study.

Layer Type Dimension Kernel Connection
Percentage

1 Convolution 16@32 × 62 3 × 3 160
2 Pooling 16@15 × 31 2 × 2 -
3 Convolution 32@13 × 29 3 × 3 4640
4 Pooling 32@6 × 14 2 × 2 -
5 Flatten 2688@1 × 1 - -
6 Fully connected 20@1 × 1 - 53,780
7 Dropout 20@1 × 1 - -
8 Output 2@1 × 1 - 42

Figure 2. CNN Structure employed in the experiment.

3. Feature Extraction
3.1. Optical Emission Spectroscopy (OES)

One of the most commonly used EPD techniques is to monitor optical emission
spectra gathered from OES during the plasma etching process. Figure 3 shows a schematic
illustration of a plasma etching chamber attached with OES through a viewport and
its multi-wavelength OES data. A reactive plasma generated by radio-frequency (RF)
power under low pressure bombards the wafer surface and reacts with targeted materials.
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Consequently, the reactants and by-products of etching induce the variation of optical
emission spectra at a certain time. The OES data is influenced not only by target materials
but also by sizes of features to be etched because reduced feature sizes (i.e., low open area)
only provide a low signal to noise ratio [46]. The EPD is identified by monitoring the shift
of emission peak. The OES measurement is conducted conveniently without intervening in
the process but provides reliable real-time information on the etching process.

Figure 3. A schematic illustration of plasma etching process and multi-wavelength data obtained
from optical emission spectroscopy (OES).

However, the OES data are vast and multi-dimensional as a function of wavelength,
time, and intensity, and high-resolution data are required to provide required sensitivity
and accuracy for EPD as the feature size decreases. The signal of emission spectra can be
weak, and thus the existing simple method of tracking a few selected wavelengths may be
insufficient for advanced technology nodes. Figure 4 shows a sample of actual OES data
used in this work. The collected spectra range from 190.0 to 892.8 nm, and the sampling
rate is 0.1 sec for about 60 sec. Figure 5 shows the intensity fluctuations of the wavelengths
of 440.1 nm, 516.5 nm, 777.06 nm, which are related to C2 and SiF with respect to time.
The red line denotes the ground truth EPD time. Figure 6 illustrates one sample of the
intensity patterns of each wavelength at the EPD time. To handle thousands of such OES
data, feature extraction and the aforementioned CNN model are adopted.

Figure 4. A 3-D plot of a sample of actual OES spectrum data.
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Figure 5. Intensity fluctuations of the wavelengths of 440.1 nm, 516.5 nm, 777.06 nm, which are
related to C2 and SiF with respect to time. The red line denotes the ground truth EPD time.

Figure 6. A sample of intensity patterns of each wavelength at the EPD time.

3.2. Feature Extraction

Figure 7 illustrates the structure of the training data selection process. In the figure, the
vertical axis represents wavelength, while the horizontal axis is sample time. One column
denotes the 2048 × 1 vector, whose component represents each wavelength’s intensity.

Figure 7. The structure of OES data and the training data selection blocks.
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The training data set consists of endpoint vectors selected in the endpoint block and
non-endpoint vectors, randomly selected in the Non-End Point block. Three consecutive
vectors are selected in the known endpoint time block and mapped to one for supervised
learning. For the non-endpoint data, three vectors are randomly extracted using the random
function after excluding the forward ten blocks of the endpoint. The reason for using three
vectors is that the accuracy and loss of the model improve compared to extracting one
vector and five vectors.

The total OES data are obtained for 2046 wafers, which are processed using two
chambers, but in this study, each chamber’s characteristics are not considered. 1911 OES
data are randomly chosen for the training data, while the remaining 135 data are allocated
for the test data. Using 1911 OES data, 5733 endpoint feature vectors, and 5733 non-end
point feature vectors are acquired, as mentioned above. To prevent the overfitting of the
model, the ratio of the number of endpoint and non-end point features is equalized. In
the experiment, various data ratios, such as 8:2 and 6:4, are tested, but the ratio of 5:5
demonstrates the highest accuracy. After selecting the training data, a random function is
applied to separate the training data and the validation data at an 8:2 ratio. As a result, the
feature vector set is separated into 9172 training data and 2294 validation data.

4. Experiment and Results

In this section, the performance of the proposed CNN-based model is evaluated using
the data described in the previous section and for the purpose of comparison, the SVM and
the Adaboost are also employed to detect EPD time using the same feature vector. In the
CNN-based model, the 2048 × 1 feature vector is transformed into a 32 × 64 matrix form
and the other two models use the feature vector as given. The models are developed using
Keras with Tensorflow of Python 3.7 in the background, and the computing environment
used in the experiments is implemented with an 8-core 3.7-GHz CPU, 32GB of RAM, and
an RTX 2080 super GPU.

Three tests are carried out to verify the performance of the three learned models. In
the first test, the accuracy is evaluated by using 20% random validation data that are not
involved in the learning phase. In the second test, the means and variances of the detection
time of the three models are compared using 135 data sets. Each of these data sets contains
about 600 consecutive feature vectors of 2048 × 1 according to time. The number of feature
vectors in the set is varying depending on its EPD time. The accuracy and variance of the
CNN-based model are investigated according to the number of the feature vectors that are
selected in the EPD and Non EPD blocks.

4.1. Model Accuracy Test

The model accuracy is evaluated by comparing the model prediction outputs with
the ground truth. The third-order SVM classifier demonstrates an accuracy of 99.3%. The
Adaboost ensemble classifier achieves an accuracy of 99.17%. CNN shows an accuracy of
99.81%. As a result, the CNN performance was the highest among the three models. These
accuracy results are summarized in Table 2.

Table 2. Model Accuracy.

No. Model Name Accuracy (%)

1 Third-order SVM 99.3
2 Adaboost Ensemble 99.17
3 CNN 99.81

In addition, the receiver operating characteristic (ROC) curve and area under the curve
(AUC) of each model are investigated and shown in Figure 8. As observed in the figure, the
AUC of SVM is 0.996979, AdaBoost is 0.992447, and CNN is 0.999865. According to [47],
AUC greater than 0.9 indicates that the model achieves outstanding detection performance.
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(a)

(b)

(c)

Figure 8. (a) ROC Curve of SVM with AUC = 0.996979, (b) ROC Curve of Adaboost with AUC =
0.992447, and (c) ROC Curve of CNN with AUC = 0.999865.
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4.2. First Endpoint Detection

This test is performed with the 135 test datasets, which are not involved in the learning.
Each dataset contains the feature vectors, as shown in Figure 4. The size of the vector is
2048 by 1, and its number depends on its EPD time, usually about 600.

In the test, all spectral data over time are applied as inputs to evaluate the endpoint
detection performance in the actual etching process. That is, each feature vector of one
dataset is sequentially applied to each learned model, and the learned model responds
one or zero according to the feature vector, in which one represents EPD and zero does
Non-EPD. In this test, the time point when the first EPD (one) appears for the first time
is measured for each dataset. The test is carried out for the three models using the 135
datasets.

Figure 9 shows the average of 135 results obtained with the first endpoint detection
test. On average, the first endpoint detection of the SVM classifier is 10.79 blocks ahead
of the actual endpoint, that of the Adaboost Ensemble classifier is 6.91 blocks ahead, and
the CNN is 5.96 blocks ahead. The three models’ commonality in this test is that the
endpoint is continuously detected without false detection after the initial detection. There-
fore, if the appropriate number of continuous detections is set, the result will match the
actual endpoint.

Figure 9. Averages of first end point detection for the three models. The SVM classifier has the mean
of 1.079 s ahead of the actual endpoint, the Adaboost does 0.691 s, and the CNN does 0.596 s.

Figure 10 shows the histogram plots of 135 test results for the first endpoint detection
test, and Table 3 summarizes their averages, standard deviations, and variances for the
three models. As observed in Figure 10 and Table 3, in terms of accuracy and variance, the
CNN based model is superior to the other two models. For the two previous experiments,
the CNN based model outperforms the third-order SVM classifier and the Adaboost
ensemble classifier.

Table 3. Averages, standard deviations, and variances of first detection time for the three models.

Model Third-Order SVM Adaboost
Ensemble CNN

Average 10.79 6.91 5.96
Standard Deviation 2.406 2.466 2.401

Variance 5.792 6.081 5.768
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(a)

(b)

(c)

Figure 10. Histograms of the differences between the ground truth and the model output for the
three models (a) SVM (b) Adaboost (c) CNN.

4.3. Overfitting

The previous experiments show that the CNN-based model is relatively better than
the remaining two models. In this section, further investigation is carried out for the
CNN-based model regarding overfitting and feature size.
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First, to investigate the overfitting of the CNN-based model, the accuracy and loss
of the CNN based model are plotted for 300 epochs in Figure 11. The figure reveals that
the validation loss does not decrease any more after around epoch 150 compared to the
training loss, which can be regarded as overfitting. To overcome this, the early stopping
technique [48] is employed to train with the appropriate number of epochs. In Figure 12,
the accuracy and loss of the CNN-based model, which is trained with the early stopping
technique. In this experiment, the early stopping technique terminates the learning phase
at 132 epochs.

Figure 11. Accuracy and loss graphs of the CNN-based model which is trained without the early
stopping technique [48].

Figure 12. Accuracy and loss graphs of the CNN-based model with the early stopping technique [48].

5. Conclusions

In this paper, the CNN-based endpoint detection performance was investigated in
terms of model accuracy and first endpoint detection time compared to those of the third-
order SVM classifier and the Adaboost ensemble classifier. Besides, to prevent overfitting,
the application of the early stopping technique is investigated. It is observed that the
performance of the CNN-based model is better than the other two classifiers for the two
investigations. Considering the results of the CNN-based model obtained in such a non-
optimized situation, it is expected that the artificial intelligence technique using the neural
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network will greatly contribute to the improvement of the accuracy of the endpoint detec-
tion technique. In the future, for the model to be applied to the real process environments,
an approach based on reinforced learning is required to be further investigated for the
model.
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