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Abstract: In the last years, nanoparticles such as TiO2, ZnO, NiO, CuO and Fe2O3 were mainly used
in wastewater applications. In addition to the positive aspects concerning using nanoparticles in the
advanced oxidation process of wastewater containing pollutants, the impact of these nanoparticles
on the environment must also be investigated. The toxicity of nanoparticles is generally investigated
by the nanomaterials’ effect on green algae, especially on Chlorella vulgaris. In this review, several
aspects are reviewed: the Chlorella vulgaris culture monitoring and growth parameters, the effect
of different nanoparticles on Chlorella vulgaris, the toxicity of photocatalyst nanoparticles, and the
mechanism of photocatalyst during oxidative stress on the photosynthetic mechanism of Chlorella
vulgaris. The Bold basal medium (BBM) is generally recognized as an excellent standard cultivation
medium for Chlorella vulgaris in the known environmental conditions such as temperature in the
range 20–30 ◦C and light intensity of around 150 µE·m2·s−1 under a 16/8 h light/dark cycle. The
nanoparticles synthesis methods influence the particle size, morphology, density, surface area to
generate growth inhibition and further algal deaths at the nanoparticle-dependent concentration.
Moreover, the results revealed that nanoparticles caused a more potent inhibitory effect on microalgal
growth and severely disrupted algal cells’ membranes.

Keywords: nanoparticles; heterogeneous photocatalysis; aquatic toxicity; Chlorella vulgaris

1. Introduction

Conventional wastewater treatment technologies such as coagulation, precipitation,
flocculation, adsorption, and natural aerobic treatment [1] have been sufficient for years.
However, the complexity of pollutants discharged into the water has constrained new
technologies to removing various emerging pollutants. Technologies based on nanopar-
ticles, such as advanced oxidation processes, are efficient for emerging pollutants in low
concentrations, such as pesticides, pharmaceuticals, endocrine disruptors, and personal
care products [2]. Nanoparticles are particles obtained by natural or synthetic methods
with less than 100 nm [3]. Nanoparticles have applications in various industrial [4,5] and
medicine [6,7] fields, including wastewater treatment [8]. The most significant exposures
from engineering material applications avenues for assessing environmental risks are
water and soil [4,9]. The activity of nanoparticles in the environment depends on several
characteristics, such as morphology, porosity, grain size, composition and crystallinity,
groups attached on the surface, and charge of the surface. An area of interest for research is
the decontamination of wastewater through efficient and inexpensive methods to maintain
the environment in normal parameters.The use of nanoparticles is causing a substantial
environmental impact due to the aquatic environment’s toxic effect. This work provides an
overview of the key parameters of growing Chlorella vulgaris green algae. The current status
of photocatalytic nanomaterials and their toxic effect on Chlorella vulgaris’s growth provide
a direction for future research in this area and scaling-up and industrial-scale applications.
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2. Chlorella vulgaris—Culture, Monitoring and Growth Parameters

Microalgae respond rapidly to environmental changes, and they are essential because
of their role as primary producers in aquatic systems due to their short cell-doubling
time. In aquatic systems, microalgae Chlorella vulgaris have been used for experiments to
determine their crucial role in oxygen production and as the producers of food chains/food
webs [10]. Destruction of activity would lead to an imbalance in the aquatic environ-
ment [11]. Because of their unicellular structure, microalgae suffer abnormal damage
that may affect the whole aquatic system after exposure to pollutants. Simultaneously, in
multicellular organisms, there are barriers skin and respiration that protect them [10,12].

Chlorella vulgaris, an essential green eukaryotic photosynthetic microorganism capable
of rapid adaptation to new environments, with a structure similar to plants in an aquatic
system, is a unicellular organism [13] with a spherical shape 2.5–10 µm in diameter [13,14],
with a lipid production capacity range 14–56 dw% (dw—dry weight), protein content 10–
58 dw%, and carbohydrate content 10–17 dw% [15]. Chlorella vulgaris reproduces asexually
most commonly by auto-sporulation (i.e., four daughter cells with their own and dependent
cell wall) [16]. In optimum conditions, Chlorella vulgaris can rapidly multiply asexually,
and due to this, it is widely used as a model aquatic organism for toxic studies [17].

2.1. Chlorella vulgaris Maintenance Medium and Culturing Parameters

According to the Organisation for Economic Cooperation and Development (OECD)
criteria, the concentrations of the Chlorella vulgaris growth nutrients, OECD Test no. 201:
freshwater alga and cyanobacteria, growth inhibition test [18], are presented in Table 1.

Table 1. Composition of the Organisation for Economic Cooperation and Development (OECD) Test
no. 201 medium [18].

Nr.crt Component OECD Medium Concentration (mg L−1)

1 NaHCO3 50.0

2 NH4Cl 15.0

3 MgCl2·6(H2O) 12.0

4 CaCl2·2(H2O) 18.0

5 MgSO4·7(H2O) 15.0

6 KH2PO4 1.60

7 FeCl3·6(H2O) 0.0640

8 Na2EDTA·2(H2O) 0.100

9 H3BO3 0.185

10 MnCl2·4(H2O) 0.415

11 ZnCl2 0.00300

12 CoCl2·6(H2O) 0.00150

13 Na2MoO4·2(H2O) 0.00700

14 CuCl2·(H2O) 0.00001

Chlorella vulgaris has a rapid growth rate, and it is ideal for production because
it is remarkably resistant to conditions and invaders. For growth of this algae, there
are three types of method: autotrophic, mixotrophic, and heterotrophic. Microalgae
growth depends on pH, temperature, intensity and duration of illumination, and mineral
nutrients’ concentration [19]. Chlorella vulgaris grows better at a temperature between 22
and 30 ◦C [20]; a temperature higher than 30 ◦C leads to slow growth and cell death [21].
The pH is essential for optimal growth, and optimum pH is neutral, but microalgae can
survive at pH 3.0 [22,23]. A high concentration of iron, an essential micronutrient, induced
a lipid accumulation while increasing Chlorella vulgaris’s growth [24].
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Intensity and wavelength of light are significant for the growth of Chlorella vulgaris.
For algae, light helps cell proliferation and photosynthesis. In order to keep the cell growth
rate high and the costs low, it is recommended to alternate light with darkness under
8 h:16 h [25], 12 h:12 h [24], 14 h:10 h [26], or 16 h:8 h [27] light/dark cycle, but continuous
illumination has also been reported [28,29]. Chlorella vulgaris has registered more cell
division after stopping the light [30]. Light intensity is also important from the point of view
of economic and operating efficiency and varied from 2800 to 8000 lux m−2 s−1 [28,31,32].

In terms of wavelength, microalgae usually use wavelengths between 400 nm and
700 nm (red light λ = 630–665 nm [33] and blue light λ = 430–465 nm [34]) for photosynthesis.
Chlorella vulgaris cell size measurement demonstrated that microalgae cells’ growth had an
approximate increase of 60–70% in diameter under blue light, compared to red light [30].

Aeration is ensured through aeration pumps because in the absence of any aeration or
mixing, the unicellular form of algae dies, and the growth slowly decreases [35]. After five
days of aeration Chlorella vulgaris growth is two times than without aeration [36].

2.2. Chlorella vulgaris Growth Monitoring

Algae growth modeling has been attracting attention over the past century regarding
the effect of process parameters such as temperature, pH, light, nutrients, and growth rate.
A few essential parameters are usually monitored (Table 2).

Table 2. Parameters and methods for determining the development of Chlorella vulgaris.

Parameters Methods Description Ref

Cell
concentration

Optical density (OD) 649, 665, and 480 nm (spectrophotometric method) [37]

Neubauer cell
counting

Neubauer chamber is currently used as a standard in the
laboratories for manual counting under a light microscope [38]

Automatic cell counting To overcome manual counting limitations, advanced digital
image analysis has been promoted [39]

Biomass
quantification

Centrifugation, dried, weight
Centrifugation: 8000 g

Time: 10 min
Dried: 105 ◦C for 24 h

[40]

Spectrophotometric Dry biomass conc(g·L−1) = 0.25 OD680 nm + 0.001 [41]

Spectrophotometric Dry weight (g·L−1) = 0.3793·OD688 nm; [29]

Pigments

Chlorophyll A Chlorophyll A (mg·mL−1) = 12.47 OD665 nm
−3.62 OD649 nm

[37]

Chlorophyll B Chlorophyll B (mg·mL−1) = 27.44 OD 652 nm
–12.17 OD 665 nm – OD 750 nm

[42]

Total carotenoids Carotenoids (mg·mL−1) = 4 OD 480 nm – OD 750 nm [42]

Nutrients

Lipids Gravimetrically—using Blight and Dyer method [43]

Proteins Bradford method [42,44]

Carbohydrates 490 nm (UV-VIS spectrophotometer) [42]

Sugars Dubois method [45]

2.2.1. The cell Concentration

The cell concentration is needed to estimate the algae growth; for cell density quantifi-
cation, a few techniques are presented:

(1) UV-VIS spectrophotometric optical density (OD), estimating chromophore formation
in liquid culture and quantitative evaluation using Beer–Lambert low [46] at different
wavelengths of 480, 649, and 665 nm is a parameter that measured the cell concentra-
tion [47]. This parameter depends on the type of culture (autotrophic, heterotrophic,
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or mixotrophic) and CO2 concentration, light penetration, and the presence or absence
of inorganic or organic compounds can affect it [48]. If the algae concentration is
too low, they will not be established in an anaerobic condition of cultures because
the dissolved oxygen quantity is too low for the overall cell respiration [49]. For this
mechanism, when concentration hits 1.9 × 107 cell mL−1, it is important to keep an
active growth phase with density around 1–2 × 104 cell mL−1.

(2) Neubauer haemocytometry using Neubauer improved chamber is currently used as a
standard in laboratories for manual cell counting under a light microscope. The litera-
ture mentions that the Neubauer chamber showed the best overall performance [50].

(3) Automatic cell counting is based on image analysis to count the particles present on
the image.

(4) Particles are counted by flow cytometry for the fast quantification of fluorescent
particles excited with a fluorescent light source.

2.2.2. Biomass Quantification

Spectrophotometric analysis of the microalgae containing pigment such as Chlorophyll
A has been developed to quantitative the biomass culture of Chlorella vulgaris by measuring
the optical density (OD) as absorbance [42]. Chlorophyll A’s wavelengths in a range of
400–460 nm and 650–680 nm have been reported frequently. [37]. The OD of microalgae
culture at 680 nm (OD680) is measured to determine the dry biomass concentration of
microalgae, according to Gao et al. [41].

2.2.3. Pigments

Microalgae have pigment contents, for example, chlorophylls and carotenoids. Of
the total amount of wet biomass, the pigments can be a percentage of 0.1–9.7% [37]. The
viability of cells is an essential parameter for determining the growth rate of algae. This
index is known as chlorophylls content (sum of Chlorophyll A and Chlorophyll B) of the
algal cells [51]. Several methods are available to determine Chlorophyll A, for example, flu-
orometry, high-performance liquid chromatography (HPLC) using a fluorescence detector,
and spectrophotometry.

The chlorophyll content is measured after centrifugation (mechanical breaking of the
collected cells), followed by extracting the chlorophyll from the broken cells into alcohol or
acetone. The extract is analyzed spectrophotometrically measuring absorbance at 665 nm
and 750 nm [52]. Ethanol extraction is less harmful than the acetone method. The Chloro-
phyll A content (using ethanol extraction method) was calculated using Equation (1) [53].

Chla =
27.9·Vethanol ·[(E665 − E750)− (A665 − A750]

Vwater
(1)

where Chla is Chlorophyll A concentration (mg·m–3), Vethanol is the constant volume of the
extract (mL), Vwater is the volume of filtered water (L), A665 is the absorbance of the samples
in 665 nm wave, similar to A750. E665 and E750 indicate the absorbance of the samples
acidified with 1 mol/L HCl at 665 nm and 750 nm, respectively [53].

Another method of determining algae pigments described by Wellburn [54] uses
dimethylsulphoxide (DMSO). The supernatant extract was diluted with DMSO, and spec-
trophotometric tests were done at 649, 665, and 480 nm. The pigment content was calculated
using the formulae [37]:

Chlorophyll A (mg/L) = 12.47(OD665) − 3.62(OD649) (2)

Chlorophyll B (mg/L) = 25.06(OD649) − 6.5(OD665) (3)

Total carotenoids (mg/L) = [1000(OD480) − 1.29(Chla)-53.78(Chla)]/220 (4)

Total pigment (mg/L) = Chla + Chlb + Total carotenoids (5)
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where Chla and Chlb are Chlorophyll A and B, respectively, concentration (mg·m−3); and
OD649, OD665, and OD480 are the optical densities measured spectrophotometrically at 649,
665, and 480 nm, respectively.

2.2.4. Chemistry and Composition of Chlorella vulgaris

Chlorellavulgaris biomass contained 25–30% protein, 6–10% carbohydrate, and 30–40%
lipid. While growing, Chlorella vulgaris can reach 5–40% [55] lipids per dry weight of
biomass mainly composed of glycolipids, hydrocarbons, phospholipids, and free fatty
acids [13]. To determine the lipids, Blight and Dyer described the extraction process of total
lipids from Chlorella vulgaris using a mixture of chloroform and methanol. Quantification is
conducted gravimetrically after evaporating the extracting solvent [56]. Bradford [44] and
Dubois [45] methods are used for proteins and sugars, respectively.

3. Toxicity of Photocatalyst Nanoparticles to Chlorella vulgaris

The main source of nanoparticles in the environment is engineering nanoparticles for
water and air pollution, contaminated soil remediation with hazardous substances, sensors
for environmental application, biomedical imaging, and drug production [57].

Heterogeneous photodegradation based on nanoparticles (NPs) as photocatalytic
materials is also a well-known practice, and they are utilized for this purpose. Rogozea
et al. used NiO/ZnO NPs modified silica for photodegradation purposes. A high surface
area of nanoparticles facilitates the efficient photodegradation reaction because of their
small size (<10 nm) [58]. In addition to photocatalytic activity of nanoparticles, these
have been described by the same group as having optic, fluorescence proprieties, and
applications for compound degradation [59,60].

Heterogeneous photocatalysis is an advanced oxidation process for pollutant degra-
dation by generating hydroxyl radicals HO·, electron-hole pairs (e−/h+), and superoxide
radicals (O·−2 ) [61]. The hydroxyl radicals react with organic pollutants and transform
them into mineral constituents or in less toxic compounds [1]. The mechanism of pho-
tocatalysis are explained in Section 4. A fair number of metal oxides have been used as
photocatalytic materials for water treatment since the year 1972, e.g., titanium dioxide
(TiO2), zinc oxide (ZnO), iron (III) oxide (Fe2O3), vanadium oxide (V2O5), tungsten trioxide
(WO3), etc. [62,63]. The photocatalytic materials have unique properties such as chemical
stability, non-toxicity, photosensitivity, and low cost. For example, ZnO nanoparticles have
a ∼3.22eV bandgap, and they have a small size, increasing the specific surface area. Higher
numbers of active surface sites can facilitate absorption and degradation of pollutants,
making photogenerated charge carriers able to react with pollutants [64].

Between photocatalysts, TiO2 and ZnO semiconductors present a higher efficiency for
pollutant degradation [65], they are UV-light active materials and absorb a small portion of
the solar spectrum (4–5%) [66]. In the past twenty years, numerous bodies of research were
also developed to efficiently use solar energy and design new photocatalyst activity under
visible light irradiation [67].

The continuous exposure of TiO2 nanoparticles increases the probability of contam-
inating the environment. For example, because of Ag nanoparticles’ use in consumer
products, some of them are released into the aquatic environment, thus becoming a source
of dissolved Ag that exerts toxic effects on organisms like algae, bacteria, daphnia, and
fish [68]. The interactions between the particles and algal cells will lead to aggregation and
sedimentation reducing their availability in the system. All these previously mentioned
factors contribute to diminishing the toxicity of the nanoparticles during the algae exposure.
The oxidative stress indicators with decreased levels across the cycles manifest the decrease
in toxic effects. Thiagarajan et al. demonstrate that the nanoparticles’ continuous exposure
to algal cells (e.g., Chlorella vulgaris cells) would significantly reduce their toxic impact [69].

Chlorella vulgaris has a high growth rate, a simple cell cycle, and can respond quickly to
different nanoparticles [53,70]. When algae are incubated with a different type of nanoparti-
cles, they have specific interactions like nanoparticles-nanoparticles homo-aggregation [71],
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algal cell-cell interaction [72], and nanoparticles-algae hetero-aggregation [73]. For TiO2
nanoparticles, homo-aggregation interaction is caused by the electrical double layer that
is compressed around the nanoparticles [74]. The medium pH influences the interaction
between the nanoparticles and algae [75]. pH and ionic strength are parameters that play
an essential role in aggregation states of nanoparticles in water. Nanoparticles have toxic
effects on the microalgae which is important to determine their impact on water. Moreover,
decreasing the nanoparticles concentration will result in lower toxicity across the microal-
gae cycles from aggregation and sedimentation that plays a vital role in the growth rate of
Chlorella vulgaris [76].

Although research papers have addressed the toxic effects of nanoparticles on plant
cells, the toxicological studies are still limited.

The ecotoxicity of nanoparticles to algae has attracted the attention of scientists. For
different types of nanoparticles, they have different toxicity behaviors. They are identified
as causing growth inhibition and further algal deaths at the nanoparticle-dependent con-
centration and their properties (Table 3) [77]. Depending on the type of nanoparticles and
the algae’s experimental conditions, the toxic effects may vary. Some studies demonstrate
the toxicity of nanoparticles on algae growth and development (EC50).

Table 3. Toxic effect of nanoparticles (NPs) to Chlorella vulgaris algae.

NPs NP Concentration in
Toxicity Experiments

Synthesis Method/NP
Characteristics Growth Conditions Toxic Effect References

TiO2 100–400 µM Particle size: <25 nm

T: 23 ± 2 ◦C
Illumination: 16 h:8 h

light–dark
Light: 30 µmoles m2 s−1.

EC50 = 100 µM [78]

TiO2 20, 40, 80 mg L−1
Particle size: <25 nm
Density: 3.95 g/cm3

Surface area: 75–85 m2/g

Growth medium: BG11
T: 30 ◦C

Light: 5000 lux

EC50 = aprox
42 mgL−1 [79]

TiO2 3–192 mg L−1
Particle size < 25 nm,

surface area:
200–220 m2/g

Growth medium: sterile
BBT: 25 ◦C

Illumination: 12 h:12 h
light:dark

Light: white fluorescent
light (intensity 3000 lx)

EC50 = 16.12 mgL−1

(72 h)
[80]

TiO2 10 mg L−1 (96 h)
Particle size: 21 nm

Surface area: 10.64 m2/g

Growth medium: f/2
T: 20.0 ± 0.1 ◦C

Illumination: 12:12
light–dark

Salinity: 32.2 ± 0.2.

EC50 (pH 8.20) > EC50
(pH 7.77, 7.47) [81]

ZnO 50–300 mg L−1 (72 h)
Solid-state

pyrolytic method.
Particle size: 40–48 nm

T: 20 ◦C
Light: white

fluorescent lights
Illumination: 12 h:12 h

light:dark
Continuous aeration

Viability ↓ 90.49 ±
0.3% in 24 h
(50 mg L−1)

Viability ↓↓↓ 23.69 ±
1.8% (300 mg L−1)

[82]

ZnO 0.5, 1, 2 mg L−1
Particle size: 40–100 nm

Density: 5.61 g/cm3

Surface area: 10–25 m2/g

Growth medium: BG11
T: 30 ◦C

Light: 5000 lux
EC50 = 2.0 mg L−1 [79]
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Table 3. Cont.

NPs NP Concentration in
Toxicity Experiments

Synthesis Method/NP
Characteristics Growth Conditions Toxic Effect References

NiO 0, 0.1–100 mg L−1

(96 h)
Particle size: 30 nm

Surface area: 50–80 m2/g

Growth medium:
sterile BG11
T: 23 ± 1 ◦C

pH 7
Illumination:
continuous

Light intensity: white
fluorescent light

(100 µmol m−2 s−1)

EC50 = 13.7 mg L−1 [83]

NiO 4, 9, 18 mg L−1
Particle size: 30 nm
Density: 6.67 g/cm3

Surface area: 50–100 m2/g

Growth medium: BG11
T: 30 ◦C

Light: 5000 lux

EC50 =aprox
22 mg L−1 [79]

NiO 0, 1–30mg L−1 (72 h)
Particle size: 439 ± 33 nm

Zeta potential:
−5.87 ± 0.16 mV

T = 23 ± 1 ◦C
pH 8.2, Illumination:
12 h:12 h light:dark

Light intensity:
3000lx m−2 s−1

EC50 =1.73 mg L−1 [31]

NiO 0–50 mg L−1
Homogeneous

precipitation method
Particle size: 20 nm

T: 23 ± 1 ◦C Light:
73.6 µmol m−2 s−1

Illumination: 12h:12h
light:dark

EC50 = 32.28 (72 h)
EC50 = 44.33 (120 h) [84]

CuO 1, 10 mg L−1

(5 days)
Particle size: 15–50 nm

Growth medium:
Bold’s Basal

T: 24 ◦C
Light:15.000 lx

Illumination: 18 h:6 h
light:dark

10 mg L−1 CuO NPs
slightly suppressed

cell density at
day 3, 4, and 5

[85]

CuO 8, 16, 33 mg L−1
Particle size: 30–50 nm

Density: 6.40 g/cm3

Surface area: 13.1 m2/g

Growth medium: BG11
T: 30 ◦C

Light: 5000 lux
EC50 = 40 mg L−1 [79]

Fe2O3 22, 45, 90 mg L−1
Particle size: 20–40 nm

Density: 5.24 g/cm3

Surface area: 30–60 m2/g

Growth medium: BG11
T: 30 ◦C

Light: 5000 lux
EC50 = 76 mg L−1 [79]

Ag 90–1440 µg L−1 (96 h) Particle size: 46.8 ± 3.3 nm
Growth medium: Bold

BasalT: 23 ± 1 ◦C
Light: 120 µmol m−2 s−1

EC50 = 110 µg L−1

(96 h)
[86]

Ag 0, 5–60 µg L−1

(72 h)

Particle size:
28.95 ± 10.17 nm

Zeta potential:
−23.23 ± 0.75 mV

OECD protocol
Temperature: 22 ± 3 ◦C - [10]

The most probable toxic effects of nanoparticles can be determined using a mathematic
model (pattern) of the probability theory or calculating the EC50 value. EC50 is the concen-
tration of test substance, resulting in a 50% reduction in either growth (EbC50) or growth
rate (ErC50) relative to the control within 72–96 h exposure. Ecotoxicity tests are quantified
by determining the EC50 values in several replicates, defined as the concentration that
produces a toxic effect in 50% of the tested population [87]. Toxicity tests on the algae must
be consistent with the OECD TG 2011 guide [18]. ThI is a test that aims to determine the
effects of a substance on the growth of freshwater microalgae.

Most toxicity tests are done using a single type of nanoparticle. Ko et al. tested the
toxicity of a mixture of ZnO, NiO, CuO, TiO2 nanoparticles, and Fe2O3 on microalgae
Chlorella vulgaris growth. The parameter that was taken into consideration was the chloro-
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phyll content. The tests highlighted the high toxicity of the probes that contained ZnO
nanoparticles [79].

Table 3 reviews some types of nanoparticles used in photocatalytic processes; the
conclusions resulting from their toxicity studies are the following.

Titanium oxide significantly decreased the growth and biomass (dry weight, Chloro-
phyll A, and total chlorophyll) of Chlorella vulgaris. TiO2 nanoparticles can adsorb Zn and
P from the algal growth medium owing to surface adsorption of the NPs on the algal cell
promoting growth inhibition. The acidity significantly increased the oxidative damage
of TiO2 NPs on the algal cells. Metzler et al. [88] disclose that the “young” (3–5 days)
and the “old” (15–26 days) algal cultures were less resistant to the stress imposed by TiO2
nanoparticles than the “mid-age” (8–14 days) culture.

The interaction between the ZnO NPs and algae altered the morphological character-
istics after 72 h treatment. The toxicity of ZnO nanoparticles was attributed to dissolved
Zn2+. The oxidative stress induced by ZnO was ten-fold higher than that by TiO2 NPs.

Nickel oxide nanoparticles induced inevitably influenced the growth of aquatic pho-
toautotroph, cellular toxicity, and morphological alteration, cell deterioration, and oxidative
stress, which were related to NPs concentration and reactive oxygen species (ROS) produc-
tion, resulting in biotoxicity on Chlorella vulgaris.

Ag nanoparticles changed Chlorella vulgaris growth kinetics and cell metabolism
shown in photosynthetic pigments and chemical composition because it can affect carbon
acquisition, photosynthesis, and respiration processes. AgNPs could affect their toxic effects
to Chlorella vulgaris by increasing cells’ aggregation, especially at higher concentrations.

4. Mechanism of Photocatalyst Nanoparticles during Oxidative Stress of Algae

The application of photocatalysis in wastewater remediation aimed to evaluate the
risk of nanoparticles used during the photodegradation process. Despite the merits of
environmental remediation based on photocatalytic materials like TiO2 and ZnO, there
are a few drawbacks. Bioaccumulation and toxicity are significant shortcomings that
affect the aquatic environment when wastewater is treated by photocatalysis, especially if
contaminants’ complete mineralization is not ensured.

During photocatalysis, the reactive oxygen species (ROS), including superoxide
(O2
•−), hydroxyl radicals (HO·), and hydrogen peroxide (H2O2) are generated on the

surface of nanoparticles, such as TiO2, ZnO, WO3, SnO2, and so on.
Heterogeneous photocatalysis relies on the generation of electron-hole pairs when a

photon of energy higher or equal to the bandgap energy of the semiconducting photocata-
lyst (Eg) is absorbed (Equation (6)). The electron-hole recombination on the surface (or in
bulk) of the nanoparticles represents the main mechanism responsible for the photocata-
lyst’s deactivation. The electron-hole pair trapping in surface states leads to reactions with
chemisorbed O2 and HO-/H2O to generate reactive species such as superoxide O·−2 and
hydroxyl radicals HO· (Equations (7)–(10), Figure 1).

SC + hϑ
(
≥ Eg

)
→ e− + h+ (6)

O2 + e− → O·−2 (7)

O·−2 + H2O→ HO·2 (8)

H2O + h+ → HO· + H+ (9)

HO− + h+ → HO· + H+ (10)
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Figure 1. Reactive oxygen species produced during photocatalysis induce oxidative damage to algae cells. 
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Figure 1. Reactive oxygen species produced during photocatalysis induce oxidative damage to algae cells.

Numerous studies confirm that dissolved Ti4+, Zn2+, W3+, Sn4+, and ROS contribute
to the nanoparticles’ toxicity on green algae.

ROS interaction with cellular components may lead to toxic effects during oxidative
stress and act as secondary reactions in numerous cellular processes. ROS disrupt cell
function by lipid peroxidation, oxidizing proteins and damaging nucleic acid. Oxidative
stress in algal cells is monitored using common markers including lipid peroxidation
monitoring by quantifying malondialdehyde content and antioxidant enzyme (glutathione
S transferase and peroxidase) activities [78]. Chlorella vulgaris has been reported by Dauda
et al. [78] to produce polyunsaturated fatty acids sensitive to reactive oxygen species.

5. Conclusion and Perspectives

This review reflects an image of scientific progress in Chlorella vulgaris toxicity studies
and its impact in the aquatic ecosystem. This microalga is a simple plant because of
its unicellular structure, but it has a complex role in oxygen production and as a food
chains producer. The most common parameters for Chlorella vulgaris algae growth are
Bold’s basal medium (BBM); the temperature of 20–30 ◦C; and the light intensity of around
150 µE·m2·s−1 under a 16/8 h light/dark cycle. Considering that the nanoparticles are
used in a wide variety of fields (engineering, construction, medical, electric etc.), toxicity
tests became very important when we discussed their involvement in algae or other
microorganisms growth. Ecotoxicity tests were conducted to measure the impact of each
powder on aquatic and terrestrial ecosystems. The most tested nanoparticles for algae
toxicity are the oxides, for example, ZnO, TiO2, Ag, NiO, etc. Analysis of the algae showed
that the application of more than 20 ppm of nanoparticles could negatively impact aquatic
biology’s growth and physiology.

The nanoparticle exposure concentrations to Chlorella vulgaris is challenging to define,
especially in low concentration. The toxicity is estimated based on the effects on the growth
rate of algae. Chlorella vulgaris is a valuable bioindicator of nanoparticle suspensions, per-
mitting a better understanding of nanoparticles’ toxicity risks to the aquatic environment.
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9. Golobič, M.; Jemec, A.; Drobne, D.; Romih, T.; Kasemets, K.; Kahru, A. Upon Exposure to Cu Nanoparticles, Accumulation of

Copper in the IsopodPorcellio scaberIs Due to the Dissolved Cu Ions Inside the Digestive Tract. Environ. Sci. Technol. 2012, 46,
12112–12119. [CrossRef]

10. Khoshnamvand, M.; Ashtiani, S.; Chen, Y.; Liu, J. Impacts of organic matter on the toxicity of biosynthesized silver nanoparticles
to green microalgae Chlorella vulgaris. Environ. Res. 2020, 185, 109433. [CrossRef]

11. Baker, T.J.; Tyler, C.R.; Galloway, T.S. Impacts of metal and metal oxide nanoparticles on marine organisms. Environ. Pollut. 2014,
186, 257–271. [CrossRef] [PubMed]

12. Moreno-Garrido, I.; Pérez, S.; Blasco, J. Toxicity of silver and gold nanoparticles on marine microalgae. Mar. Environ. Res. 2015,
111, 60–73. [CrossRef] [PubMed]

13. Safi, C.; Zebib, B.; Merah, O.; Pontalier, P.-Y.; Vaca-Garcia, C. Morphology, composition, production, processing and applications
of Chlorella vulgaris: A review. Renew. Sustain. Energy Rev. 2014, 35, 265–278. [CrossRef]

14. Yamamoto, M.; Fujishita, M.; Hirata, A.; Kawano, S. Regeneration and maturation of daughter cell walls in the autospore-forming
green alga Chlorella vulgaris (Chlorophyta, Trebouxiophyceae). J. Plant Res. 2004, 117, 257–264. [CrossRef] [PubMed]

15. Júnior, W.G.M.; Gorgich, M.; Corrêa, P.S.; Martins, A.A.; Mata, T.M.; Caetano, N.S. Microalgae for biotechnological applications:
Cultivation, harvesting and biomass processing. Aquaculture 2020, 528, 735562. [CrossRef]

16. Yamamoto, M.; Kurihara, I.; Kawano, S. Late type of daughter cell wall synthesis in one of the Chlorellaceae, Parachlorella kessleri
(Chlorophyta, Trebouxiophyceae). Planta 2005, 221, 766–775. [CrossRef]

17. Oukarroum, A.; Bras, S.; Perreault, F.; Popovic, R. Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris
and Dunaliella tertiolecta. Ecotoxicol. Environ. Saf. 2012, 78, 80–85. [CrossRef]

18. OECD. Test No. 201: Freshwater Alga and Cyanobacteria, Growth Inhibition Test, OECD Guidelines for the Testing of Chemicals; Section 2;
OECD Publishing: Paris, France, 2011.

19. Wehr, J.D. Algae: Anatomy, Biochemistry, and Biotechnology by Barsanti, L. & Gualtieri, P.J. Phycology 2007, 43, 412–414.
20. Serra-Maia, R.; Bernard, O.; Gonçalves, A.; Bensalem, S.; Lopes, F. Influence of temperature on Chlorella vulgaris growth and

mortality rates in a photobioreactor. Algal Res. 2016, 18, 352–359. [CrossRef]
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